# **IRCS2277S Demo Board**

For 3-phase / 380V motor drives

## IRCS2277S Demo Board

- Up to 1200V DC-bus capability
- IR2277S device connected for 3-phase current sensing
- Open drain PWM output (PO)
- Open drain Over Current output (OC)
- Ratiometric analog output for A/D converters compatibility
- On-board disconnectable 5V reference
- On-board bootstrap supply for high-side gate drive
- Same board can host IR2177S or IR22771S or IR21771S, in place of IR2277S

## Stacked boards compatibility

- Connectable on top of IRMD2214SS and IRMD22141SS demo boards
- Connectable on top of IRMD22381Q demo board

# 

IRCS2277S Demo Board (Shown above not including IRMD22381Q demo board)

## Introduction

The IRCS2277S demo board is an evaluation board for IR2277S current sensor (see device data sheet for details). IRCS2277S is designed to read 3-phase motor currents on top of pin-out compatible gate driver boards. The board can be used for both AC and Brushless motors current sensing by reading the voltage developed on shunt resistors. The board is a flexible solution for different applications and can be customized by means reconfigurable components options. Three-phase shunt resistor (with sensing pins) must be placed in the gate driver board. Both PWM and ratiometric analog outputs are provided for all of the three phases. Both PWM output and Over Current signal are provided as open collector outputs. Board layout has been studied to reduce noise coupling between high and low voltage signals.



## Table of contents

| INTRODUCTION                                                                               | 1  |
|--------------------------------------------------------------------------------------------|----|
| Table of contents                                                                          | 2  |
| Table of figures                                                                           | 2  |
| The IR2277S                                                                                |    |
| The stacked structure of HVIC demo boards                                                  |    |
| Important Notice                                                                           |    |
| BOARD CONNECTORS                                                                           |    |
| Connection with the system controller                                                      |    |
| V <sub>RL</sub> , V <sub>RH</sub> , OUT <sub>U</sub> , OUT <sub>V</sub> , OUT <sub>W</sub> |    |
| V <sub>cc</sub> supply pin                                                                 |    |
| V <sub>ss</sub> ground pin (GND)                                                           |    |
| Connecting the current sensors                                                             |    |
| Test Points                                                                                |    |
| TEST BENCH CONNECTION                                                                      |    |
| OPERATING DESCRIPTION                                                                      |    |
| Normal operating mode                                                                      |    |
| Precharge of the bootstrapped sections                                                     |    |
| BOARD CUSTOMIZATION                                                                        |    |
| Bootstrap circuit                                                                          |    |
| G0 and G1 selection                                                                        | 9  |
| OTHER EXTRA COMPONENTS                                                                     |    |
| Clamping Diode for Vs below ground                                                         |    |
| RC filter on V <sub>INP</sub> and V <sub>INM</sub>                                         |    |
| Analog output OUT                                                                          |    |
| Auto-reset function                                                                        |    |
| BILL OF MATERIAL                                                                           | 12 |
|                                                                                            | 14 |

## Table of figures

| Figure 1: BOTTOM and TOP image with connectors | 4 |
|------------------------------------------------|---|
| Figure 2: LED connection                       |   |
| Figure 3: Test bench connection                |   |
| Figure 4: Bootstrap circuit                    | 8 |
| Figure 5: undershoot clamp                     |   |
| Figure 6: Vin filter                           |   |
|                                                |   |

| Parameters      | Values                                                                  | Description, condition |
|-----------------|-------------------------------------------------------------------------|------------------------|
| Input Power     |                                                                         |                        |
| V <sub>cc</sub> | 15V typ Low voltage power su<br>Follow IR2277S data s<br>supply setting |                        |
| V <sub>ss</sub> | ground                                                                  | Low voltage ground     |
| I <sub>cc</sub> | 25 mA (max) quiescent V <sub>c</sub>                                    |                        |

| Control Inputs/Outputs   |                        |                                             |  |  |  |  |  |
|--------------------------|------------------------|---------------------------------------------|--|--|--|--|--|
| 40 pin connector J1 I/Os | 3.3V to 15V compatible | see "Board Connectors" section<br>on page 4 |  |  |  |  |  |

## The IR2277S

The IR2277S is a high voltage current sensor, best suited for AC motor drive applications. An integrated adaptive filter provides superior ripple rejection on phase current measurement being synchronous with PWM carrier (SYNC input). A ratiometric analog output is provided by each device to the controller in a range that can be set through  $V_{RH}$  and  $V_{RL}$  pins. PWM open collector outputs are also provided for those controllers which do not use A/D converters for current measurement. Over current detection is also available via open collector OC pins.

For further technical information see the IR2277S data sheet at http://www.irf.com.

## The stacked structure of HVIC demo boards



IRCS2277S demo board is fully compatible with standard pin out of IRMD2214xSS and IRMD22381Q demo boards.

The HVIC demo boards are structured to work together on top of an ECONO2 power module or a PowerPCB.

#### **Important Notice**

IRCS2277S demo board is supplied with a tentative Bill of Material suitable for a generic 380V generic 3phase motor drive application. The BOM presented on page 12 provides just a suggestion. It is strongly recommended to customize the demo board to fit the application requirements for the power level that has been chosen.

## **Board Connectors**



Figure 1: BOTTOM and TOP image with connectors

## Connection with the system controller

On board there is a 40 pins connector for the control signals. The current sense board uses 26 pins. The remaining pins are for the sensing board (IRCS2277S) that can be connected on top of IRMD22381Q board.

| VRL             | 13 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | 8<br>10<br>12 | OUT <sub>u</sub><br>OC <sub>u</sub><br>PO <sub>u</sub> | OUT <sub>u</sub><br>OC <sub>u</sub><br>PO <sub>u</sub> | 7<br>9<br>11 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | 14       | V <sub>RL</sub> |
|-----------------|----|-------------------------------------------------------|---------------|--------------------------------------------------------|--------------------------------------------------------|--------------|-------------------------------------------------------|----------|-----------------|
|                 | 15 | 11 () () 12<br>13 () () 14                            | 16            | V <sub>RH</sub>                                        | V <sub>RH</sub>                                        | 15           | 11 () () 12<br>13 () () 14                            | 14       |                 |
| Vss             | 17 | 15 0 16                                               | 18            | Vss                                                    | Vss                                                    | 17           | 15 () 16                                              | 18       | Vss             |
| V <sub>ss</sub> | 19 | 17 () 18<br>19 () 20                                  | 20            | V <sub>ss</sub>                                        | V <sub>ss</sub>                                        | 19           | 17 () 18<br>19 () 20                                  | 20       | Vss             |
| OUTw            | 21 |                                                       |               |                                                        |                                                        |              | 21 0 22                                               | 22       | OUTw            |
|                 |    | 23 () 24                                              | 24            | SYNC                                                   | SYNC                                                   | 23           | 23 () 24                                              |          |                 |
|                 |    | 25 O 26<br>27 O 28                                    |               |                                                        |                                                        |              | 25 O 26<br>27 O 28                                    |          |                 |
| POv             | 27 | 29 0 30                                               | 28            | OCv                                                    | OCv                                                    | 27           | 29 0 30                                               | 28       | ΡΟν             |
|                 |    | 31 0 32                                               |               |                                                        |                                                        |              | 31 🔿 🖓 32                                             |          |                 |
|                 |    | 33 () 34<br>35 () 36                                  |               |                                                        |                                                        |              | 33 () 34<br>35 () 36                                  | $\vdash$ |                 |
| POw             | 35 | 37 🔿 38                                               | 36            | OCw                                                    | OCw                                                    | 35           | 37 🔿 38                                               | 36       | POw             |
| V <sub>cc</sub> | 37 | 39 🔿 🗘 40                                             | 38            | V <sub>cc</sub>                                        | V <sub>cc</sub>                                        | 37           | 39 🔿 🗘 40                                             | 38       | V <sub>cc</sub> |
| V <sub>cc</sub> | 39 |                                                       | 40            | V <sub>cc</sub>                                        | V <sub>cc</sub>                                        | 39           |                                                       | 40       | V <sub>cc</sub> |

Table 1: 40-pin connector J2 and J1

## Logical signals SYNC, PO<sub>U</sub>, PO<sub>V</sub>, PO<sub>W</sub>, OC<sub>U</sub>, OC<sub>V</sub>, OC<sub>W</sub>

SYNC and POx logic inputs are 5V and 3.3 V compatible CMOS I/O ports. SYNC input must be a 50% dutycycle square wave that provides filter synchronization with PWM carrier. POx as an input is used for over current reset when auto-reset function is disabled. As an opened drain output, POx is pull-up with a resistor to 15V supply. OCx open drain output is also pulled-up to 15V supply. Both pull-up resistors can be removed in order to use a different supply provided in the controller board. OCx pins are connected to a yellow led (see Figure 2) indicating the overcurrent condition of the respective current sensor. This led will be disabled when connecting OCx to a different pull-up.

## $V_{RL}$ , $V_{RH}$ , $OUT_U$ , $OUT_V$ , $OUT_W$

V<sub>RL</sub> and V<sub>RH</sub> inputs are the reference voltages for the OUTx analog output of the current sensors.

 $V_{RL}$  is the low voltage rail for OUTx and it is connected to  $V_{SS}$  by a 0 Ohm resistor.  $V_{RH}$  is the high voltage rail for OUTx and it is connected to a linear 5V regulator by a 0Ohm resistor.

Both  $V_{RH}$  and  $V_{RL}$  can be disconnected to the respective supplies ( $V_{SS}$  and 5V regulator) in order to be supplied by the controller board.

OUTx are directly connected to the IR2277S devices output.

Note: further information about IR2277S I/Os are described in details in IR2277S data sheet.

#### V<sub>cc</sub> supply pin

This is the supply pin for all the devices. On board a green LED indicates the supply power on; Figure 2b shows the connection.



Figure 2: LED connection

#### V<sub>ss</sub> ground pin (GND)

When stacked together, the board ground is shared among the stack. Gate drivers board share the  $V_{SS}$  with DC- (power ground) with a star connection on DC-.

#### Connecting the current sensors

P1, P2 and P3 are connected with the optional shunt resistors placed on the driver board between the phase output nodes and the motor.

| CONNECTOR P4                |       |         |  |  |  |
|-----------------------------|-------|---------|--|--|--|
| SHU+<br>(motor side)        | 1     | 10      |  |  |  |
| SHU-<br>(power module side) | 2     |         |  |  |  |
| U                           | 3     |         |  |  |  |
| C                           | ONNE  | CTOR P8 |  |  |  |
| SHV+<br>(motor side)        | 1     | 1       |  |  |  |
| SHV-<br>(power module side) | 2     |         |  |  |  |
| V                           | 3     |         |  |  |  |
| CC                          | ONNEC | TOR P12 |  |  |  |
| SHW+<br>(motor side)        | 1     | 1       |  |  |  |
| SHW-<br>(power module side) | 2     |         |  |  |  |
| W                           | 3     |         |  |  |  |

Table 2: P4, P8 and P12 connectors for Kelvin contacts to shunt signals

SHU, SHV and SHW are sense pins connected to the shunt resistors terminals.

### **Test Points**

Test points on board provide signals that are not available at the connectors. See the following table:

|                              | ONE FOR EACH CHANNEL<br>(CH1 $\rightarrow$ U, CH2 $\rightarrow$ V, CH3 $\rightarrow$ W) |  |  |  |  |
|------------------------------|-----------------------------------------------------------------------------------------|--|--|--|--|
| V <sub>Bu,v,w</sub>          | High side floating supply voltage                                                       |  |  |  |  |
| V <sub>Su,v,w</sub>          | High side floating supply offset voltage (jumper)                                       |  |  |  |  |
| <b>VINP</b> <sub>u,v,w</sub> | Current sensor positive input                                                           |  |  |  |  |
| VINM <sub>u,v,w</sub>        | Current sensor negative input                                                           |  |  |  |  |
| OUT <sub>u,v,w</sub>         | Analog output                                                                           |  |  |  |  |
| PO <sub>u,v,w</sub>          | PWM output                                                                              |  |  |  |  |
| OC <sub>u,v,w</sub>          | Overcurrent output                                                                      |  |  |  |  |
| GND <sub>u,v,w</sub>         | Local ground (V <sub>SS</sub> )                                                         |  |  |  |  |

Table 3: Test points

## **Test Bench connection**

IRMD2277S does NOT provide opto isolation.

The following picture shows the recommended connections for board evaluation. Bold lines are equipotential (DC-=Vss=gnd).



supply ( $V_{CC}$ =15V typ)

Figure 3: Test bench connection

## **OPERATING DESCRIPTION**

#### Normal operating mode

The IRCS2277S demo board has to be connected to a board equipped with shunt resistors to be operated properly.

IRMD22381Q, IRMD2214SS and IRMD22141SS driver boards can be connected with the IRCS2277S current sensing board through the 40-pin connector J2 and the 3-pin connectors P4, P8 and P12. J1 reflects J2 connector bringing all the signals to the controller board.

More information is available with gate driver board data sheets.

#### Pre-charge of the bootstrapped sections

High voltage current sensor sections are supplied by bootstrap topology technique. It's recommended to pre-charge the bootstrap supplies before starting to drive the motor with the preferred driving scheme.

## **BOARD** Customization

This demo board is meant to be flexible for self-customization. Place for many spare components allow to verify functionality of the current sensors under different external configurations. This section will go through the possible customizations of the board.

#### Bootstrap circuit

The high side floating supply (V<sub>BS</sub>) is provided by a bootstrap capacitor. Figure 4 shows the circuit on board.





The following table shows the names of these components on board.

|                      | U  | V   | W   |
|----------------------|----|-----|-----|
| C <sub>VCC</sub>     | C5 | C12 | C19 |
| C <sub>boot</sub> *  | C7 | C15 | C22 |
| C <sub>boot</sub> ** | C8 | C14 | C21 |
| R <sub>boot</sub> *  | R6 | R13 | R20 |
| R <sub>boot</sub> ** | R9 | R16 | R23 |

#### G0 and G1 selection

G0 and G1 gain selectors of each IR2277S device can be set by using P2, P3, P6, P7 and P10, P11 jumpers.

## Other extra components

These components are provided to make IRMD2277S board as customizable as possible. In many cases the use of the extra components is not necessary.

#### Clamping Diode for Vs below ground

This solution preserves the device when the  $V_s$ ,  $V_{inp}$  and  $V_{inm}$  pins go below ground out of the device absolute maximum ratings. The pins voltage is clamped to the maximum value allowed by a zener diode.





|                        | U  | V   | W   |
|------------------------|----|-----|-----|
| V <sub>s</sub> DIODE   | D4 | D8  | D12 |
| V <sub>s</sub> ZENER   | Z3 | Z6  | Z9  |
| V <sub>INM</sub> DIODE | D3 | D7  | D11 |
| VINM ZENER             | Z2 | Z5  | Z8  |
| VINP DIODE             | D2 | D6  | D10 |
| VINP ZENER             | Z1 | Z4  | Z7  |
| R <sub>VINP</sub>      | R7 | R14 | R21 |
| R <sub>VINM</sub>      | R8 | R15 | R22 |

The following table shows the names of these components on board.

**NOTE:** It must be noticed that during bootstrap filling, voltage will be developed across  $R_{boot}^{**}$ . It is important in that case to evaluate the voltage difference between  $V_S$  and  $V_{INP}/V_{INM}$ , that must stay in the maximum operating condition specified by the data sheet of the IR2277S. Filter capacitors (see next par.) across  $V_{INP}/V_{INM}$  and  $V_S$  may help in staying in the specified voltage range,

## RC filter on VINP and VINM

High frequency filter capacitors are located at  $V_{INP}$  and  $V_{INM}$  pins. They can be placed either in common mode (across pins and  $V_s$ ) or in differential mode (between  $V_{INP}$  and  $V_{INM}$ ).



Figure 6: VIN filter

The following table shows the names of these components on board.

|                 | U                         | V                          | W                          |
|-----------------|---------------------------|----------------------------|----------------------------|
| C <sub>CP</sub> | C9                        | C16                        | C23                        |
| C <sub>CM</sub> | C10                       | C17                        | C24                        |
| R <sub>D</sub>  | Use C9<br>and C10<br>pads | Use C16<br>and C17<br>pads | Use C23<br>and C24<br>pads |

#### Analog output OUT

Analog outputs  $OUT_U$ ,  $OUT_V$  and  $OUT_W$  are provided to the 40-pin connector with a capacitor that is connected to  $V_{RL}$  as per the following table.

|                     | U  | V   | W   |
|---------------------|----|-----|-----|
| C <sub>FILTER</sub> | C4 | C11 | C18 |

V<sub>RL</sub> is shorted to local V<sub>SS</sub> by 0 Ohm resistors as follows:

| - |                  | U  | V   | W   |
|---|------------------|----|-----|-----|
|   | R <sub>VRL</sub> | R5 | R12 | R19 |

To use a different voltage to supply the analog output low rail, disconnect these resistors.

 $V_{RH}$  is shorted to a linear 5V regulator (7805) output. Remove the 0 Ohm resistor R2 to disconnect the voltage regulator and provide the analog output high voltage rail via 40-pin connector.

The following table shows the names of these components on board.

#### Auto-reset function

To reset automatically IR2277 current sensors when they latch an overcurrent condition, short pin 1 to pin 2 of jumpers P1 (U1), P5 (U2) and P9 (U3).

## **Bill of material**

| Numeration   | Description                                  | Value           | Units | Numeration   | Description                         | Value    | Units  |
|--------------|----------------------------------------------|-----------------|-------|--------------|-------------------------------------|----------|--------|
| DL1          | Supply Led                                   | Green           |       | Phase V - HS |                                     |          |        |
| R1           | Supply Led bias resistor                     | 10K             | Ohm   | R14          | Vin+ filter and protection resistor | 10       | Ohm    |
| R2           | On-board 5V regulator series resistor        | 0               | Ohm   |              | Vin- filter and protection resistor | 10       | Ohm    |
| C3           | On-board 5∨ regulator cap                    | 100n            | F     | R16          | Vs filter and protection resistor   | 0        | Ohm    |
| REG1         | On-board 5∨ regulator                        | 78L05           |       | D6           | negative Vin+ protection            | STTA112U |        |
| C1           | Supply cap (electrolytic)                    | 10u             | F     | Z4           | negative Vin+ protection            | 10       | $\vee$ |
| C2           | Supply cap                                   | 100n            | F     | D7           | negative Vin- protection            | STTA112U |        |
| Phase U - HS |                                              |                 |       | Z5           | negative Vin- protection            | 10       | $\vee$ |
| R7           | Vin+ filter and protection resistor          | 10              | Ohm   | D8           | negative Vs protection              | STTA112U |        |
| R8           | Vin- filter and protection resistor          | 10              | Ohm   | Z6           | negative Vs protection              | 10       |        |
| R9           | Vs filter and protection resistor            | 0               | Ohm   | C16          | Vin+ filter cap                     | 100n     | F      |
| D2           | negative Vin+ protection                     | STTA112U        |       | C17          | Vin-filter cap                      | 100n     | F      |
| Z1           | negative Vin+ protection                     | 10              | V     | C15          | Bootstrap cap                       | 1u       | F      |
| D3           | negative Vin- protection                     | STTA112U        |       | C14          | Bootstrap cap (electolytic)         | DNM      |        |
| 72           | negative Vin- protection                     | 10              | V     | R13          | Bootstrap resistor                  |          | Ohm    |
| <br>D4       | negative Vs protection                       | STTA112U        |       | D5           | Bootstrap diode                     | STTA112U |        |
| Z3           | negative Vs protection                       | 10              | V     | Phase V - LS |                                     | 0111120  |        |
| C9           | Vin+ filter cap                              | 100n            |       | DL3          | Over current Led                    | Yellow   | ,      |
| C10          | Vin- filter cap                              | 100n            |       | D14          | Auto-reset diode                    | BAS16    |        |
| C7           | Bootstrap cap                                | 1001            |       | R10          | PO pull-up                          |          | Ohm    |
| C7<br>C8     | Bootstrap cap<br>Bootstrap cap (electolytic) | DNM             |       | R10          | OC pull-up                          |          | Ohm    |
| R6           |                                              |                 |       |              |                                     |          |        |
| Ro<br>D1     | Bootstrap resistor                           |                 |       | C12          | Vec cap                             | 100n     |        |
|              | Bootstrap diode                              | STTA112U        |       | R12          | VRL to Vss short                    |          | Ohm    |
| Phase U - LS |                                              |                 |       | C13          | VRH-VRL cap                         | 100n     |        |
| DL2          | Over current Led                             | Yellow          |       | C11          | Analog OUT cap                      | 5n       | F      |
| D13          | Auto-reset diode                             | BAS16           |       |              |                                     |          |        |
| R3           | PO pull-up                                   |                 | Ohm   |              |                                     |          |        |
| R4           | OC pull-up                                   |                 | Ohm   |              |                                     |          |        |
| C5           | Vcc cap                                      | 100n            |       |              |                                     |          |        |
| R5           | VRL to Vss short                             |                 | Ohm   |              |                                     |          |        |
| C6           | VRH-VRL cap                                  | 100n            |       |              |                                     |          |        |
| C4           | Analog OUT cap                               | 5n              | F     |              |                                     |          |        |
| Phase W - HS | 6                                            |                 |       |              |                                     |          |        |
| R21          | Vin+ filter and protection resistor          | 10              | Ohm   |              |                                     |          |        |
| R22          | Vin- filter and protection resistor          | 10              | Ohm   |              |                                     |          |        |
| R23          | Vs filter and protection resistor            | 0               | Ohm   |              |                                     |          |        |
| D10          | negative Vin+ protection                     | STTA112U        |       |              |                                     |          |        |
| Ζ7           | negative Vin+ protection                     | 10              | V     |              |                                     |          |        |
| D11          | negative Vin- protection                     | STTA112U        |       |              |                                     |          |        |
| Z8           | negative Vin- protection                     | 10              | V     |              |                                     |          |        |
| D12          | negative Vs protection                       | STTA112U        | -     |              |                                     |          |        |
| Z9           | negative Vs protection                       | 10              | V     |              |                                     |          |        |
| C23          | Vin+ filter cap                              | 100n            |       |              |                                     |          |        |
| C24          | Vin- filter cap                              | 100n            |       |              |                                     |          |        |
| C22          | Bootstrap cap                                | 10              |       |              |                                     |          |        |
| C21          | Bootstrap cap<br>Bootstrap cap (electolytic) | DNM             |       |              |                                     |          |        |
| R20          | Bootstrap resistor                           |                 | Ohm   |              |                                     |          |        |
| D9           | Bootstrap diode                              | STTA112U        |       |              |                                     |          |        |
| Phase W - LS |                                              | 3HAH20          |       |              |                                     |          |        |
|              |                                              | Vallaur         |       |              |                                     |          |        |
| DL4          | Over current Led                             | Yellow<br>BAS10 |       |              |                                     |          |        |
| D15          | Auto-reset diode                             | BAS16           |       |              |                                     |          |        |
| R17          | PO pull-up                                   |                 | Ohm   |              |                                     |          |        |
| R18          | OC pull-up                                   |                 | Ohm   |              |                                     |          |        |
| C19          | Vcc cap                                      | 100n            |       |              |                                     |          |        |
| R19          | VRL to Vss short                             |                 | Ohm   |              |                                     |          |        |
| C20          | VRH-VRL cap                                  | 100n            |       |              |                                     |          |        |
| C18          | Analog OUT cap                               | 5n              | F     |              |                                     |          |        |

## SCHEMATIC



## LAYOUT









**INT1 LAYER** 



**INT2 LAYER** 



**BOT LAYER** 



**TOP SILK** 

**BOT SILK** 

