Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

16

M16C/6N Group (M16C/6N4)

Hardware Manual

Renesas MCU M16C Family / M16C/60 Series

All information contained in this material, including products and product specifications at the time of publication of this material, is subject to change by Renesas Electronics Corp. without notice. Please review the latest information published by Renesas Electronics Corp. through various means, including the Renesas Electronics Corp. website (http://www.renesas.com).

Renesas Electronics

Rev.2.40 2006.04

Keep safety first in your circuit designs!

Renesas Technology Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials -

- These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corporation or a third party.
- Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor for the latest product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corporation by various means, including the Renesas Technology Corporation Semiconductor home page (http://www.renesas.com).

- When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these materials.
- If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
 Any diversion or reexport contrary to the export control laws and regulations of Japan and/ or the country of destination is prohibited.
- Please contact Renesas Technology Corporation for further details on these materials or the products contained therein.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

- The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on
 - The state of the product is undefined at the moment when power is supplied.
 - The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.

In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

- The reserved addresses are provided for the possible future expansion of functions. Do not access
 these addresses; the correct operation of LSI is not guaranteed if they are accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

— When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to one with a different type number, confirm that the change will not lead to problems.

— The characteristics of MPU/MCU in the same group but having different type numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different type numbers, implement a system-evaluation test for each of the products. Blank page

How to Use This Manual

1. Purpose and Target Readers

This manual is designed to provide the user with an understanding of the hardware functions and electrical characteristics of the MCU. It is intended for users designing application systems incorporating the MCU. A basic knowledge of electric circuits, logical circuits, and MCUs is necessary in order to use this manual. The manual comprises an overview of the product; descriptions of the CPU, system control functions, peripheral functions, and electrical characteristics; and usage notes.

Particular attention should be paid to the precautionary notes when using the manual. These notes occur within the body of the text, at the end of each section, and in the Usage Notes section.

The revision history summarizes the locations of revisions and additions. It does not list all revisions. Refer to the text of the manual for details.

The following documents apply to the M16C/6N Group (M16C/6N4). Make sure to refer to the latest versions of these documents. The newest versions of the documents listed may be obtained from the Renesas Technology Web site.

Document Type	Description	Document Title	Document No.
Datasheet	Hardware overview and	M16C/6N Group	REJ03B0003
	electrical characteristics	(M16C/6N4)	
		Datasheet	
Hardware manual	Hardware specifications (pin assignments,	M16C/6N Group	This hardware
	memory maps, peripheral function specifications,	(M16C/6N4)	manual
	electrical characteristics, timing charts) and	Hardware Manual	(REJ09B0009)
	operation description		
	Note: Refer to the application notes for details		
	on using peripheral functions.		
Software manual	Description of CPU instruction set	M16C/60,	REJ09B0137
		M16C/20,	
		M16C/Tiny Series	
		Software Manual	
Application note	Information on using peripheral functions and	Available from Renesas	
	application examples	Technology web s	ite
	Sample programs		
	Information on writing programs in assembly		
	language and C		
Renesas	Product specifications, updates on documents,		
technical update	etc.		

2. Notation of Numbers and Symbols

The notation conventions for register names, bit names, numbers, and symbols used in this manual are described below.

Register Names, Bit Names, and Pin Names Registers, bits, and pins are referred to in the text by symbols. The symbol is accompanied by the word "register," "bit," or "pin" to distinguish the three categories. Examples the PM03 bit in the PM0 register P3_5 pin, VCC pin

(2) Notation of Numbers

The indication "b" is appended to numeric values given in binary format. However, nothing is appended to the values of single bits. The indication "h" is appended to numeric values given in hexadecimal format. Nothing is appended to numeric values given in decimal format. Examples Binary: 11b Hexadecimal: EFA0h Decimal: 1234

3. Register Notation

The symbols and terms used in register diagrams are described below.

4. List of Abbreviations and Acronyms

Abbreviation	Full Form
ACIA	Asynchronous Communication Interface Adapter
bps	bits per second
CRC	Cyclic Redundancy Check
DMA	Direct Memory Access
DMAC	Direct Memory Access Controller
GSM	Global System for Mobile Communications
Hi-Z	High Impedance
IEBus	Inter Equipment bus
I/O	Input/Output
IrDA	Infrared Data Association
LSB	Least Significant Bit
MSB	Most Significant Bit
NC	Non-Connection
PLL	Phase Locked Loop
PWM	Pulse Width Modulation
SFR	Special Function Registers
SIM	Subscriber Identity Module
UART	Universal Asynchronous Receiver/Transmitter
VCO	Voltage Controlled Oscillator

Table of Contents

SFR Page Reference	B-1
1. Overview	1
1.1 Applications	
1.2 Performance Overview	2
1.3 Block Diagram	
1.4 Product Information	4
1.5 Pin Assignments	5
1.6 Pin Functions	9
2. Central Processing Unit (CPU)	
2.1 Data Registers (R0, R1, R2, and R3)	
2.2 Address Registers (A0 and A1)	
2.3 Frame Base Register (FB)	
2.4 Interrupt Table Register (INTB)	
2.5 Program Counter (PC)	13
2.6 User Stack Pointer (USP), Interrupt Stack Pointer (ISP)	
2.7 Static Base Register (SB)	13
2.8 Flag Register (FLG)	13
2.8.1 Carry Flag (C Flag)	
2.8.2 Debug Flag (D Flag)	13
2.8.3 Zero Flag (Z Flag)	13
2.8.4 Sign Flag (S Flag)	
2.8.5 Register Bank Select Flag (B Flag)	13
2.8.6 Overflow Flag (O Flag)	13
2.8.7 Interrupt Enable Flag (I Flag)	
2.8.8 Stack Pointer Select Flag (U Flag)	13
2.8.9 Processor Interrupt Priority Level (IPL)	
2.8.10 Reserved Area	13
3. Memory	
4. Special Function Registers (SFRs)	
5. Resets	
5.1 Hardware Reset	
5.1.1 Reset on a Stable Supply Voltage	
5.1.2 Power-on Reset	
5.2 Software Reset	
5.3 Watchdog Timer Reset	
5.4 Oscillation Stop Detection Reset	
5.5 Internal Space	
6. Processor Mode	
6.1 Types of Processor Mode	
6.2 Setting Processor Modes	
7. Bus	
7.1 Bus Mode	
7.1.1 Separate Bus	
7.1.2 Multiplexed Bus	

7.2 Bus Control	41
7.2.1 Address Bus	41
7.2.2 Data Bus	41
7.2.3 Chip Select Signal	41
7.2.4 Read and Write Signals	43
7.2.5 ALE Signal	43
7.2.6 RDY Signal	
7.2.7 HOLD Signal	45
7.2.8 BCLK Output	45
7.2.9 External Bus Status when Internal Area Accessed	
7.2.10 Software Wait	47
8. Clock Generation Circuit	51
8.1 Types of Clock Generation Circuit	51
8.1.1 Main Clock	
8.1.2 Sub Clock	59
8.1.3 On-chip Oscillator Clock	60
8.1.4 PLL Clock	60
8.2 CPU Clock and Peripheral Function Clock	62
8.2.1 CPU Clock and BCLK	62
8.2.2 Peripheral Function Clock	62
8.3 Clock Output Function	62
8.4 Power Control	63
8.4.1 Normal Operating Mode	63
8.4.2 Wait Mode	65
8.4.3 Stop Mode	67
8.5 Oscillation Stop and Re-oscillation Detection Function	72
8.5.1 Operation when CM27 Bit = 0 (Oscillation Stop Detection Reset)	72
8.5.2 Operation when CM27 Bit = 1 (Oscillation Stop, Re-oscillation Detection Interrupt)	72
8.5.3 How to Use Oscillation Stop and Re-oscillation Detection Function	73
9. Protection	74
10. Interrupts	75
10.1 Type of Interrupts	75
10.2 Software Interrupts	76
10.2.1 Undefined Instruction Interrupt	76
10.2.2 Overflow Interrupt	76
10.2.3 BRK Interrupt	76
10.2.4 INT Instruction Interrupt	76
10.3 Hardware Interrupts	77
10.3.1 Special Interrupts	77
10.3.2 Peripheral Function Interrupts	77
10.4 Interrupts and Interrupt Vector	78
10.4.1 Fixed Vector Tables	78
10.4.2 Relocatable Vector Tables	79
10.5 Interrupt Control	80
10.5.1 Flag	
10.5.2 IR Bit	
10.5.3 Bits ILVL2 to ILVL0 and IPL	

10.5.4 Interrupt Sequence	83
10.5.5 Interrupt Response Time	84
10.5.6 Variation of IPL when Interrupt Request is Accepted	
10.5.7 Saving Registers	85
10.5.8 Returning from Interrupt Routine	
10.5.9 Interrupt Priority	
10.5.10 Interrupt Priority Level Select Circuit	
10.6 INT Interrupt	
10.7 NMI Interrupt	90
10.8 Key Input Interrupt	90
10.9 CAN0/1 Wake-up Interrupt	90
10.10 Address Match Interrupt	91
11. Watchdog Timer	93
11.1 Count Source Protective Mode	94
12. DMAC	
12.1 Transfer Cycle	
12.1.1 Effect of Source and Destination Addresses	
12.1.2 Effect of BYTE Pin Level	
12.1.3 Effect of Software Wait	
12.1.4 Effect of RDY Signal	
12.2 DMA Transfer Cycles	
12.3 DMA Enable	
12.4 DMA Request	
12.5 Channel Priority and DMA Transfer Timing	
13. Timers	
13.1 Timer A	
13.1.1 Timer Mode	111
13.1.2 Event Counter Mode	112
13.1.3 One-shot Timer Mode	117
13.1.4 Pulse Width Modulation (PWM) Mode	119
13.2 Timer B	
13.2.1 Timer Mode	
13.2.2 Event Counter Mode	
13.2.3 Pulse Period and Pulse Width Measurement Mode	
14. Three-Phase Motor Control Timer Function	
15. Serial Interface	
15.1 UARTi	
15.1.1 Clock Synchronous Serial I/O Mode	
15.1.2 Clock Asynchronous Serial I/O (UART) Mode	
15.1.3 Special Mode 1 (I ² C Mode)	
15.1.4 Special Mode 2	
15.1.5 Special Mode 3 (IE Mode)	
15.1.6 Special Mode 4 (SIM Mode) (UART2)	
15.2 SI/O3	
15.2.1 SI/O3 Operation Timing	
15.2.2 CLK Polarity Selection	

16. A/D Converter	
16.1 Mode Description	
16.1.1 One-shot Mode	
16.1.2 Repeat Mode	
16.1.3 Single Sweep Mode	
16.1.4 Repeat Sweep Mode 0	
16.1.5 Repeat Sweep Mode 1	
16.2 Function	
16.2.1 Resolution Select Function	
16.2.2 Sample and Hold	
16.2.3 Extended Analog Input Pins	
16.2.4 External Operation Amplifier (Op-Amp) Connection Mode	
16.2.5 Current Consumption Reducing Function	
16.2.6 Output Impedance of Sensor under A/D Conversion	
17. D/A Converter	210
18. CRC Calculation	
19. CAN Module	
19.1 CAN Module-Related Registers	
19.1.1 CANi Message Box	
19.1.2 Acceptance Mask Registers	
19.1.3 CAN SFR Registers	
19.2 CANi Message Box	
19.3 Acceptance Mask Registers	
19.4 CAN SFR Registers	
19.5 Operational Modes	
19.5.1 CAN Reset/Initialization Mode	
19.5.2 CAN Operation Mode	
19.5.3 CAN Sleep Mode	
19.5.4 CAN Interface Sleep Mode	
19.5.5 Bus Off State	
19.6 CAN Module System Clock Configuration	
19.7 Bit Timing Configuration	
19.8 Bit-rate	
19.8.1 Calculation of Bit-rate	
19.9 Acceptance Filtering Function and Masking Function	
19.10 Acceptance Filter Support Unit (ASU)	
19.11 Basic CAN Mode	
19.12 Return from Bus Off Function	
19.13 Time Stamp Counter and Time Stamp Function	
19.14 Listen-Only Mode	
19.15 Reception and Transmission	
19.15.1 Reception	
19.15.2 Transmission	
19.16 CAN Interrupt	

20. Programmable I/O Ports	
20.1 PDi Register	
20.2 Pi Register	
20.3 PURj Register	
20.4 PCR Register	
21. Flash Memory Version	
21.1 Memory Map	
21.1.1 Boot Mode	
21.2 Functions to Prevent Flash Memory from Rewriting	
21.2.1 ROM Code Protect Function	
21.2.2 ID Code Check Function	
21.3 CPU Rewrite Mode	
21.3.1 EW0 Mode	
21.3.2 EW1 Mode	
21.3.3 Registers FMR0 and FMR1	
21.3.4 Notes on CPU Rewrite Mode	
21.3.5 Software Commands	
21.3.6 Data Protect Function	
21.3.7 Status Register (SRD Register)	
21.3.8 Full Status Check	
21.4 Standard Serial I/O Mode	
21.4.1 ID Code Check Function	
21.4.2 Example of Circuit Application in Standard Serial I/O Mode	
21.5 Parallel I/O Mode	
21.5.1 User ROM and Boot ROM Areas	
21.5.2 ROM Code Protect Function	
21.6 CAN I/O Mode	
21.6.1 ID Code Check Function	
21.6.2 Example of Circuit Application in CAN I/O Mode	
21.7 Electrical Characteristics	
21.7.1 Electrical Characteristics (T/V-ver.)	
21.7.2 Electrical Characteristics (Normal-ver.)	
22. Electrical Characteristics	
22.1 Electrical Characteristics (T/V-ver.)	
22.2 Electrical Characteristics (Normal-ver.)	
23. Usage Notes	
23.1 SFRs	
23.1 SFRS	
23.3 PLL Frequency Synthesizer	
23.3 FLL Frequency Synthesizer	
23.5 Protection	
23.6 Interrupts	
23.6.1 Reading Address 00000h	
23.6.2 Setting SP	
23.6.3 NMI Interrupt	
23.6.4 Changing Interrupt Source	
23.6.5 INT Interrupt 23.6.6 Rewrite Interrupt Control Register	
23.6.7 Watchdog Timer Interrupt	

23.7.1 Write to DMAE Bit in DMICON Register 351 23.8.1 Timers 352 23.8.1 Timer A 352 23.8.2 Timer B 355 23.9 Serial Interface 357 23.9.1 Clock Synchronous Serial I/O Mode 357 23.9.2 Special Modes 358 23.9.3 SI/O3 359 23.10 A/D Converter 360 23.11 CAN Module 362 23.11 A Reading CiSTR Register 362 23.11 A Reading CiSTR Register 362 23.11.1 Reading CiSTR Register 362 23.11.2 Performing CAN Configuration 364 23.11.3 Suggestions to Reduce Power Consumption 365 23.12 Programmable I/O Ports 367 23.13 Electrical Characteristic Differences between Mask ROM and Flash Memory Version MCUs 368 23.14 Mask ROM Version 370 23.15.1 Functions to Prevent Flash Memory from Rewriting 370 23.15.2 Stop Mode 370 23.15.3 Wait Mode 370 23.15.4 Low Power Dissipation Mode and On-Chip Oscillator Low Power Dissipation Mode 370 23.15.6 Program Command 370 23.15.7 Lock Bit Program Command 370	23.7 DMAC	
23.8.1 Timer A	23.7.1 Write to DMAE Bit in DMiCON Register	
23.8.2 Timer B 355 23.9 Serial Interface 357 23.9.1 Clock Synchronous Serial I/O Mode 357 23.9.2 Special Modes 358 23.9.3 SI/O3 359 23.10 A/D Converter 360 23.11 CAM Module 362 23.11 A Reading CiSTR Register 362 23.11.1 Performing CAN Configuration 364 23.11.2 Performing CAN Configuration 365 23.11.4 CAN Transceiver in Boot Mode 366 23.12 Programmable I/O Ports 367 23.13 Electrical Characteristic Differences between Mask ROM and Flash Memory Version MCUs 368 23.14 Mask ROM Version 369 23.15 Flash Memory Version 370 23.15.1 Functions to Prevent Flash Memory from Rewriting 370 23.15.2 Stop Mode 370 23.15.3 Wait Mode 370 23.15.4 Low Power Dissipation Mode and On-Chip Oscillator Low Power Dissipation Mode 370 23.15.4 Low Power Dissipation Mode and On-Chip Oscillator Low Power Dissipation Mode 370 23.15.4 Low Power Dissipation Mode and On-Chip Oscillator Low Power Dissipation Mode 370 23.15.10 Interrupts 371 371 2	23.8 Timers	352
23.9 Serial Interface 357 23.9.1 Clock Synchronous Serial I/O Mode 357 23.9.2 Special Modes 358 23.9.3 SI/O3 359 23.10 A/D Converter 360 23.11 CAN Module 362 23.11 CAN Module 362 23.11.1 Reading CISTR Register 362 23.11.2 Performing CAN Configuration 364 23.11.2 Performing CAN Configuration 365 23.11.4 CAN Transceiver in Boot Mode 366 23.12 Programmable I/O Ports 367 23.15 I Sab Memory Version 368 23.15 A Low Power Dissipation Mode 370 23.15 I Functions to Prevent Flash Memory from Rewriting 370 23.15.2 Stop Mode 370 23.15.3 Wait Mode 370 23.15.4 Low Power Dissipation Mode and On-Chip Oscillator Low Power Dissipation Mode 370 23.15.5 Writing Command 370 23.15.7 Lock Bit Program Command 370 23.15.8 Operating Speed 371 23.15.9 Prohibited Instructions 371 23.15.1 I How to Access 371 23.15.1 DM A Transfer 371 23.15.1 DM A Transfer<	23.8.1 Timer A	
23.9.1 Clock Synchronous Serial I/O Mode 357 23.9.2 Special Modes 358 23.9.3 SI/O3 559 23.10 A/D Converter 360 23.11 CAN Module 362 23.11 CAN Module 362 23.11 L Performing CAN Configuration 364 23.11.2 Performing CAN Configuration 364 23.11.3 Suggestions to Reduce Power Consumption 365 23.11 A CAN Transceiver in Boot Mode 366 23.12 Programmable I/O Ports 367 23.13 Electrical Characteristic Differences between Mask ROM and Flash Memory Version MCUs 368 23.14 Mask ROM Version 370 23.15 Z Stop Mode 370 23.15.3 Unit Mode 370 23.15.4 Low Power Dissipation Mode and On-Chip Oscillator Low Power Dissipation Mode 370 23.15.5 Stop Mode 370 23.15.4 Low Power Dissipation Mode and On-Chip Oscillator Low Power Dissipation Mode 370 23.15.5 Writing Command and Data 370 23.15.4 Low Power Dissipation Mode and On-Chip Oscillator Low Power Dissipation Mode 370 23.15.4 Low Porgram Command 370 23.15.7 Uock Bit Program Command 370 23.15.8 Operati	23.8.2 Timer B	
23.9.2 Special Modes35823.9.3 SI/O335923.10 A/D Converter36023.11 CAN Module36223.11.1 Reading CISTR Register36223.11.1 Reading CISTR Register36223.11.2 Performing CAN Configuration36423.11.3 Suggestions to Reduce Power Consumption36523.11.4 CAN Transceiver in Boot Mode36623.12 Programmable I/O Ports36723.13 Electrical Characteristic Differences between Mask ROM and Flash Memory Version MCUs36823.14 Mask ROM Version36923.15 I Functions to Prevent Flash Memory from Rewriting37023.15.2 Stop Mode37023.15.3 Wait Mode37023.15.4 Low Power Dissipation Mode and On-Chip Oscillator Low Power Dissipation Mode37023.15.5 Writing Command and Data37023.15.8 Operating Speed37023.15.9 Prohibited Instructions37123.15.10 Interrupts37123.15.11 How to Access37123.15.12 Rewriting in User ROM Area37123.16 I Rash Memory Programming Using Boot Program37223.16.1 Programming Using Serial I/O Mode37223.16.2 Programming Using Serial I/O Mode37223.16.2 Programming Using Serial I/O Mode37223.17 Noise374	23.9 Serial Interface	
23.9.3 SI/O3 359 23.10 A/D Converter 360 23.11 CAN Module 362 23.11.1 Reading CiSTR Register 362 23.11.2 Performing CAN Configuration 364 23.11.3 Suggestions to Reduce Power Consumption 365 23.11.4 CAN Transceiver in Boot Mode 366 23.12 Programmable I/O Ports 367 23.13 Electrical Characteristic Differences between Mask ROM and Flash Memory Version MCUs 368 23.15 Flash Memory Version 369 23.15.1 Functions to Prevent Flash Memory from Rewriting 370 23.15.2 Stop Mode 370 23.15.4 Low Power Dissipation Mode and On-Chip Oscillator Low Power Dissipation Mode 370 23.15.6 Program Command 370 23.15.7 Lock Bit Program Command 370 23.15.8 Operating Speed 371 23.15.10 Interrupts 371 23.15.12 Rewriting in User ROM Area 371 23.15.13 DMA Transfer 371 23.15.12 Rewriting in User ROM Area 371 23.15.12 Rewriting in User ROM Area 371 23.15.12 Rewriting in User ROM Area 372 23.16.12 Programming Using Goot Program 372 <td>23.9.1 Clock Synchronous Serial I/O Mode</td> <td></td>	23.9.1 Clock Synchronous Serial I/O Mode	
23.10 A/D Converter 360 23.11 CAN Module 362 23.11.1 Reading CiSTR Register 362 23.11.2 Performing CAN Configuration 364 23.11.3 Suggestions to Reduce Power Consumption 365 23.11.4 CAN Transceiver in Boot Mode 366 23.12 Programmable I/O Ports 367 23.13 Electrical Characteristic Differences between Mask ROM and Flash Memory Version MCUs 368 23.15 Flash Memory Version 370 23.15.1 Functions to Prevent Flash Memory from Rewriting 370 23.15.2 Stop Mode 370 23.15.4 Low Power Dissipation Mode and On-Chip Oscillator Low Power Dissipation Mode 370 23.15.5 Writing Command and Data 370 23.15.6 Program Command 370 23.15.7 Lock Bit Program Command 370 23.15.8 Operating Speed 371 23.15.1 How to Access 371 23.15.1 Prohibited Instructions 371 23.15.1 Propraming Using Boot Program 372 23.15.2 Prohibited Instructions 371 23.15.4 Low Power Dissipation Mode and 370 23.15.5 Uriting in User ROM Area 371 23.15.1 Programming Using Boot Program <td>23.9.2 Special Modes</td> <td></td>	23.9.2 Special Modes	
23.11 CAN Module 362 23.11.1 Reading CiSTR Register 362 23.11.2 Performing CAN Configuration 364 23.11.3 Suggestions to Reduce Power Consumption 365 23.11.4 CAN Transceiver in Boot Mode 366 23.12 Programmable I/O Ports 367 23.13 Electrical Characteristic Differences between Mask ROM and Flash Memory Version MCUs 368 23.14 Mask ROM Version 369 23.15 Flash Memory Version 370 23.15.1 Functions to Prevent Flash Memory from Rewriting 370 23.15.2 Stop Mode 370 23.15.4 Low Power Dissipation Mode and On-Chip Oscillator Low Power Dissipation Mode 370 23.15.5 Writing Command and Data 370 23.15.6 Program Command 370 23.15.7 Lock Bit Program Command 370 23.15.9 Prohibited Instructions 371 23.15.10 Interrupts 371 23.15.11 How to Access 371 23.15.12 Rewriting in User ROM Area 371 23.15.13 DMA Transfer 371 23.15.14 Rewriting in User ROM Area 372 23.15.10 Interrupts 371 23.15.10 Rewriting in User ROM Area 372	23.9.3 SI/O3	359
23.11.1 Reading CiSTR Register36223.11.2 Performing CAN Configuration36423.11.3 Suggestions to Reduce Power Consumption36523.11.4 CAN Transceiver in Boot Mode36623.12 Programmable I/O Ports36723.13 Electrical Characteristic Differences between Mask ROM and Flash Memory Version MCUs36823.14 Mask ROM Version36923.15 Flash Memory Version37023.15.1 Functions to Prevent Flash Memory from Rewriting37023.15.2 Stop Mode37023.15.3 Wait Mode37023.15.4 Low Power Dissipation Mode and On-Chip Oscillator Low Power Dissipation Mode37023.15.5 Writing Command37023.15.6 Program Command37023.15.8 Operating Speed37023.15.9 Prohibited Instructions37123.15.10 Interrupts37123.15.11 How to Access37123.15.12 Rewriting in User ROM Area37123.16 Flash Memory Programming Using Boot Program37223.16.1 Programming Using Serial I/O Mode37223.17 Noise373Opendix 1. Package Dimensions374	23.10 A/D Converter	
23.11.2 Performing CAN Configuration36423.11.3 Suggestions to Reduce Power Consumption36523.11.4 CAN Transceiver in Boot Mode36623.12 Programmable I/O Ports36723.13 Electrical Characteristic Differences between Mask ROM and Flash Memory Version MCUs36823.14 Mask ROM Version37023.15.1 Functions to Prevent Flash Memory from Rewriting37023.15.2 Stop Mode37023.15.3 Wait Mode37023.15.4 Low Power Dissipation Mode and On-Chip Oscillator Low Power Dissipation Mode37023.15.5 Writing Command and Data37023.15.6 Program Command37023.15.8 Operating Speed37023.15.9 Prohibited Instructions37123.15.10 Interrupts37123.15.12 Rewriting in User ROM Area37123.15.13 DMA Transfer37123.16.1 Programming Using Boot Program37223.16.2 Programming Using Boot Program37223.16.3 Programming Using Serial I/O Mode37223.17 Noise374	23.11 CAN Module	
23.11.3 Suggestions to Reduce Power Consumption36523.11.4 CAN Transceiver in Boot Mode36623.12 Programmable I/O Ports36723.13 Electrical Characteristic Differences between Mask ROM and Flash Memory Version MCUs36823.14 Mask ROM Version36923.15 Flash Memory Version37023.15.1 Functions to Prevent Flash Memory from Rewriting37023.15.2 Stop Mode37023.15.4 Low Power Dissipation Mode and On-Chip Oscillator Low Power Dissipation Mode37023.15.5 Writing Command and Data37023.15.7 Lock Bit Program Command37023.15.8 Operating Speed37023.15.9 Prohibited Instructions37123.15.1 How to Access37123.15.1 Suffix In Work Programming Using Boot Program37123.15.1 New Programming Using Serial I/O Mode37223.16.1 Programming Using Serial I/O Mode37223.17 Noise374	23.11.1 Reading CiSTR Register	
23.11.4 CAN Transceiver in Boot Mode36623.12 Programmable I/O Ports36723.13 Electrical Characteristic Differences between Mask ROM and Flash Memory Version MCUs36823.14 Mask ROM Version36923.15 Flash Memory Version37023.15.1 Functions to Prevent Flash Memory from Rewriting37023.15.2 Stop Mode37023.15.3 Wait Mode37023.15.4 Low Power Dissipation Mode and On-Chip Oscillator Low Power Dissipation Mode37023.15.5 Writing Command and Data37023.15.7 Lock Bit Program Command37023.15.8 Operating Speed37023.15.9 Prohibited Instructions37123.15.12 Rewriting in User ROM Area37123.15.13 DMA Transfer37123.16.1 Programming Using Boot Program37223.16.1 Programming Using CAN I/O Mode37223.17 Noise374	23.11.2 Performing CAN Configuration	
23.12 Programmable I/O Ports36723.13 Electrical Characteristic Differences between Mask ROM and Flash Memory Version MCUs36823.14 Mask ROM Version36923.15 Flash Memory Version37023.15.1 Functions to Prevent Flash Memory from Rewriting37023.15.2 Stop Mode37023.15.3 Wait Mode37023.15.4 Low Power Dissipation Mode and On-Chip Oscillator Low Power Dissipation Mode37023.15.5 Writing Command and Data37023.15.7 Lock Bit Program Command37023.15.8 Operating Speed37023.15.9 Prohibited Instructions37123.15.10 Interrupts37123.15.12 Rewriting in User ROM Area37123.15.13 DMA Transfer37123.16 Flash Memory Programming Using Boot Program37223.16.1 Programing Using Serial I/O Mode37223.16.2 Programming Using CAN I/O Mode37223.17 Noise373Opendix 1. Package Dimensions374	23.11.3 Suggestions to Reduce Power Consumption	
23.13 Electrical Characteristic Differences between Mask ROM and Flash Memory Version MCUs 368 23.14 Mask ROM Version 369 23.15 Flash Memory Version 370 23.15.1 Functions to Prevent Flash Memory from Rewriting 370 23.15.2 Stop Mode 370 23.15.3 Wait Mode 370 23.15.4 Low Power Dissipation Mode and On-Chip Oscillator Low Power Dissipation Mode 370 23.15.5 Writing Command and Data 370 23.15.6 Program Command 370 23.15.7 Lock Bit Program Command 370 23.15.9 Prohibited Instructions 371 23.15.10 Interrupts 371 23.15.12 Rewriting in User ROM Area 371 23.15.13 DMA Transfer 371 23.16.1 Programming Using Boot Program 372 23.16.2 Programming Using Serial I/O Mode 372 23.16.1 Programming Using Serial I/O Mode 372 23.16.2 Programming Using CAN I/O Mode 372 23.17 Noise 373 374 374	23.11.4 CAN Transceiver in Boot Mode	
23.14 Mask ROM Version 369 23.15 Flash Memory Version 370 23.15.1 Functions to Prevent Flash Memory from Rewriting 370 23.15.2 Stop Mode 370 23.15.3 Wait Mode 370 23.15.4 Low Power Dissipation Mode and On-Chip Oscillator Low Power Dissipation Mode 370 23.15.5 Writing Command and Data 370 23.15.6 Program Command 370 23.15.7 Lock Bit Program Command 370 23.15.8 Operating Speed 370 23.15.9 Prohibited Instructions 371 23.15.10 Interrupts 371 23.15.12 Rewriting in User ROM Area 371 23.16.1 Programming Using Boot Program 372 23.16.1 Programming Using Serial I/O Mode 372 23.16.2 Programming Using Serial I/O Mode 372 23.17 Noise 373 Opendix 1. Package Dimensions 374	23.12 Programmable I/O Ports	
23.15 Flash Memory Version 370 23.15.1 Functions to Prevent Flash Memory from Rewriting 370 23.15.2 Stop Mode 370 23.15.3 Wait Mode 370 23.15.4 Low Power Dissipation Mode and On-Chip Oscillator Low Power Dissipation Mode 370 23.15.5 Writing Command and Data 370 23.15.6 Program Command 370 23.15.7 Lock Bit Program Command 370 23.15.8 Operating Speed 370 23.15.9 Prohibited Instructions 371 23.15.10 Interrupts 371 23.15.12 Rewriting in User ROM Area 371 23.16.1 Programming Using Boot Program 372 23.16.1 Programming Using Serial I/O Mode 372 23.16.2 Programming Using Serial I/O Mode 372 23.16.2 Programming Using CAN I/O Mode 372 23.17 Noise 373 Dependix 1. Package Dimensions 374	23.13 Electrical Characteristic Differences between Mask ROM and Flash Memory Version MCUs	
23.15.1 Functions to Prevent Flash Memory from Rewriting37023.15.2 Stop Mode37023.15.2 Stop Mode37023.15.3 Wait Mode37023.15.4 Low Power Dissipation Mode and On-Chip Oscillator Low Power Dissipation Mode37023.15.5 Writing Command and Data37023.15.6 Program Command37023.15.7 Lock Bit Program Command37023.15.8 Operating Speed37023.15.9 Prohibited Instructions37123.15.10 Interrupts37123.15.12 Rewriting in User ROM Area37123.16.13 DMA Transfer37123.16.1 Programming Using Boot Program37223.16.2 Programming Using Serial I/O Mode37223.16.2 Programming Using Serial I/O Mode37223.17 Noise373opendix 1. Package Dimensions374	23.14 Mask ROM Version	
23.15.2 Stop Mode 370 23.15.3 Wait Mode 370 23.15.3 Wait Mode 370 23.15.4 Low Power Dissipation Mode and On-Chip Oscillator Low Power Dissipation Mode 370 23.15.5 Writing Command and Data 370 23.15.6 Program Command 370 23.15.7 Lock Bit Program Command 370 23.15.8 Operating Speed 370 23.15.9 Prohibited Instructions 371 23.15.10 Interrupts 371 23.15.11 How to Access 371 23.15.12 Rewriting in User ROM Area 371 23.15.13 DMA Transfer 371 23.16.1 Programming Using Boot Program 372 23.16.2 Programming Using Serial I/O Mode 372 23.16.2 Programming Using CAN I/O Mode 372 23.17 Noise 373 opendix 1. Package Dimensions 374	23.15 Flash Memory Version	
23.15.3 Wait Mode37023.15.4 Low Power Dissipation Mode and On-Chip Oscillator Low Power Dissipation Mode37023.15.5 Writing Command and Data37023.15.6 Program Command37023.15.7 Lock Bit Program Command37023.15.8 Operating Speed37023.15.9 Prohibited Instructions37123.15.10 Interrupts37123.15.12 Rewriting in User ROM Area37123.15.13 DMA Transfer37123.16.1 Programming Using Boot Program37223.16.2 Programming Using CAN I/O Mode37223.17 Noise373opendix 1. Package Dimensions374	23.15.1 Functions to Prevent Flash Memory from Rewriting	
23.15.4 Low Power Dissipation Mode and On-Chip Oscillator Low Power Dissipation Mode37023.15.5 Writing Command and Data37023.15.6 Program Command37023.15.7 Lock Bit Program Command37023.15.8 Operating Speed37023.15.9 Prohibited Instructions37123.15.10 Interrupts37123.15.11 How to Access37123.15.12 Rewriting in User ROM Area37123.15.13 DMA Transfer37123.16 Flash Memory Programming Using Boot Program37223.16.1 Programming Using CAN I/O Mode37223.17 Noise373opendix 1. Package Dimensions374	23.15.2 Stop Mode	
23.15.5 Writing Command and Data37023.15.6 Program Command37023.15.7 Lock Bit Program Command37023.15.8 Operating Speed37023.15.9 Prohibited Instructions37123.15.10 Interrupts37123.15.12 Rewriting in User ROM Area37123.15.13 DMA Transfer37123.16.1 Programming Using Boot Program37223.16.2 Programming Using Serial I/O Mode37223.17 Noise373opendix 1. Package Dimensions374	23.15.3 Wait Mode	
23.15.6 Program Command37023.15.7 Lock Bit Program Command37023.15.8 Operating Speed37023.15.9 Prohibited Instructions37123.15.10 Interrupts37123.15.11 How to Access37123.15.12 Rewriting in User ROM Area37123.15.13 DMA Transfer37123.16 Flash Memory Programming Using Boot Program37223.16.1 Programming Using Serial I/O Mode37223.17 Noise373opendix 1. Package Dimensions374	23.15.4 Low Power Dissipation Mode and On-Chip Oscillator Low Power Dissipation Mode	370
23.15.7 Lock Bit Program Command37023.15.8 Operating Speed37023.15.9 Prohibited Instructions37123.15.10 Interrupts37123.15.11 How to Access37123.15.12 Rewriting in User ROM Area37123.15.13 DMA Transfer37123.16 Flash Memory Programming Using Boot Program37223.16.1 Programming Using Serial I/O Mode37223.16.2 Programming Using CAN I/O Mode37223.17 Noise373Opendix 1. Package Dimensions374	23.15.5 Writing Command and Data	
23.15.8 Operating Speed37023.15.9 Prohibited Instructions37123.15.10 Interrupts37123.15.11 How to Access37123.15.12 Rewriting in User ROM Area37123.15.13 DMA Transfer37123.16 Flash Memory Programming Using Boot Program37223.16.1 Programming Using Serial I/O Mode37223.16.2 Programming Using CAN I/O Mode37223.17 Noise373Opendix 1. Package Dimensions374	23.15.6 Program Command	
23.15.9 Prohibited Instructions37123.15.10 Interrupts37123.15.10 Interrupts37123.15.11 How to Access37123.15.12 Rewriting in User ROM Area37123.15.13 DMA Transfer37123.16 Flash Memory Programming Using Boot Program37223.16.1 Programming Using Serial I/O Mode37223.16.2 Programming Using CAN I/O Mode37223.17 Noise373oppendix 1. Package Dimensions374	23.15.7 Lock Bit Program Command	
23.15.10 Interrupts 371 23.15.11 How to Access 371 23.15.12 Rewriting in User ROM Area 371 23.15.13 DMA Transfer 371 23.16 Flash Memory Programming Using Boot Program 372 23.16.1 Programming Using Serial I/O Mode 372 23.16.2 Programming Using CAN I/O Mode 372 23.17 Noise 373 oppendix 1. Package Dimensions 374	23.15.8 Operating Speed	
23.15.11 How to Access37123.15.12 Rewriting in User ROM Area37123.15.13 DMA Transfer37123.16 Flash Memory Programming Using Boot Program37223.16.1 Programming Using Serial I/O Mode37223.16.2 Programming Using CAN I/O Mode37223.17 Noise373opendix 1. Package Dimensions374	23.15.9 Prohibited Instructions	
23.15.12 Rewriting in User ROM Area37123.15.13 DMA Transfer37123.16 Flash Memory Programming Using Boot Program37223.16.1 Programming Using Serial I/O Mode37223.16.2 Programming Using CAN I/O Mode37223.17 Noise373opendix 1. Package Dimensions374	23.15.10 Interrupts	
23.15.13 DMA Transfer37123.16 Flash Memory Programming Using Boot Program37223.16.1 Programming Using Serial I/O Mode37223.16.2 Programming Using CAN I/O Mode37223.17 Noise373Opendix 1. Package Dimensions374	23.15.11 How to Access	
23.16 Flash Memory Programming Using Boot Program 372 23.16.1 Programming Using Serial I/O Mode 372 23.16.2 Programming Using CAN I/O Mode 372 23.17 Noise 373 opendix 1. Package Dimensions 374	23.15.12 Rewriting in User ROM Area	
23.16.1 Programming Using Serial I/O Mode 372 23.16.2 Programming Using CAN I/O Mode 372 23.17 Noise 373 opendix 1. Package Dimensions 374	23.15.13 DMA Transfer	
23.16.2 Programming Using CAN I/O Mode 372 23.17 Noise 373 opendix 1. Package Dimensions 374	23.16 Flash Memory Programming Using Boot Program	
23.17 Noise	23.16.1 Programming Using Serial I/O Mode	
opendix 1. Package Dimensions	23.16.2 Programming Using CAN I/O Mode	
	23.17 Noise	
agistor Indox	opendix 1. Package Dimensions	374
	egister Index	375

Specifications written in this manual are believed to be accurate, but are not guaranteed to be entirely free of error. Specifications in this manual may be changed for functional or performance improvements. Please make sure your manual is the latest edition.

SFR Page Reference

Address	Register	Symbol	Page	Address	Registe
0000h				0040h	
0001h				0041h	CAN0/1 Wake-up Interrup
0002h				0042h	CAN0 Successful Reception Int
0003h				0043h	CANO Successful Transmission Ir
0004h	Processor Mode Register 0	PM0	35	0044h	INT3 Interrupt Control
		PM1	36	0045h	Timer B5 Interrupt Cor
	System Clock Control Register 0	CM0	53	0046h	Timer B4 Interrupt Co
	System Clock Control Register 1	CM1	54		UART1 Bus Collision Detection In
	Chip Select Control Register	CSR	41	0047h	Timer B3 Interrupt Cor
	Address Match Interrupt Enable Register	AIER	92		UARTO Bus Collision Detection In
	Protect Register	PRCR	74	0048h	CAN1 Successful Reception Int
000Bh		0140			INT5 Interrupt Control
	Oscillation Stop Detection Register	CM2	55		CAN1 Successful Transmission Ir
000Dh				0049h	SI/O3 Interrupt Contro
	Watchdog Timer Start Register	WDTS	94		INT4 Interrupt Control
	Watchdog Timer Control Register	WDC	94	004Ah	UART2 Bus Collision Detection In
0010h					DMA0 Interrupt Contro
0011h	Address Match Interrupt Register 0	RMAD0	92		DMA1 Interrupt Contro
0012h				004Dh	
0013h				004Eh	A/D Conversion Interrup
0014h					Key Input Interrupt Co
0015h	Address Match Interrupt Register 1	RMAD1	92	004Fh	UART2 Transmit Interrup
0016h					UART2 Receive Interrup
0017h					UART0 Transmit Interrup
0018h					UART0 Receive Interrup
0019h					UART1 Transmit Interrup
001Ah					UART1 Receive Interrup
	-	CSE	47	0055h	
	PLL Control Register 0	PLC0	57	0056h	
001Dh				0057h	Timer A2 Interrupt Cor
001Eh	Processor Mode Register 2	PM2	57	0058h	Timer A3 Interrupt Co
001Fh				0059h	
0020h					Timer B0 Interrupt Cor
0021h	DMA0 Source Pointer	SAR0	99		Timer B1 Interrupt Co
0022h				005Ch	Timer B2 Interrupt Cor
0023h				005Dh	INT0 Interrupt Control
0024h				005Eh	INT1 Interrupt Control
0025h	DMA0 Destination Pointer	DAR0	99	005Fh	INT2 Interrupt Control
0026h				0060h	
0027h				0061h	
0028h	DMA0 Transfer Counter	TCR0	99	0062h	CAN0 Message Box 0
0029h	DiviAo mansier Odunter	10110	33	0063h 0064h	0
002Ah				0065h	
002Bh				0066h	
002Ch	DMA0 Control Register	DM0CON	98	0067h	
002Dh				0068h	
002Eh				0069h	
002Fh				006Ah	CAN0 Message Box 0
0030h				006Bh	
0031h	DMA1 Source Pointer	SAR1	99	006Ch	
0032h				006Dh	
0033h				006Eh	CAN0 Message Box 0
0034h				006Fh	5
0035h	DMA1 Destination Pointer	DAR1	99	0070h 0071h	
0036h				0071h	
0037h				0072h	CAN0 Message Box 1
0038h				0074h	
0039h	DMA1 Transfer Counter	TCR1	99	0075h	
			+	0076h	
UU3An			<u> </u>	0077h	
003Bh	DMA1 Control Begieter		98	0078h	
003Bh 003Ch	DMA1 Control Register	DM1CON	98	0079h	CAN0 Message Box 1
003Ah 003Bh 003Ch 003Dh 003Fh	DMA1 Control Register	DM1CON	98	0079h 007Ah	CAN0 Message Box 1
003Bh 003Ch	DMA1 Control Register	DM1CON	98	0079h	CAN0 Message Box 1

111/11/10	Register	Symbol	Page
0040h	CANO/1 Wales up Interrupt Control Depictor	00114////0	00
0041h	CAN0/1 Wake-up Interrupt Control Register	C01WKIC	80
0042h	CANO Successful Reception Interrupt Control Register	CORECIC	80
0043h	CANO Successful Transmission Interrupt Control Register	C0TRMIC INT3IC	80
0044h 0045h	INT3 Interrupt Control Register	TB5IC	81
004511	Timer B5 Interrupt Control Register	TB3IC TB4IC	80
0046h	Timer B4 Interrupt Control Register		80
	UART1 Bus Collision Detection Interrupt Control Register	U1BCNIC TB3IC	80
0047h	Timer B3 Interrupt Control Register		80
	UARTO Bus Collision Detection Interrupt Control Register	U0BCNIC C1RECIC	80
0048h	CAN1 Successful Reception Interrupt Control Register	INT5IC	81
	INT5 Interrupt Control Register CAN1 Successful Transmission Interrupt Control Register	C1TRMIC	81
00406		S3IC	81
0049h	SI/O3 Interrupt Control Register	INT4IC	81
00146	INT4 Interrupt Control Register		81
004Ah 004Bh	UART2 Bus Collision Detection Interrupt Control Register DMA0 Interrupt Control Register	U2BCNIC DM0IC	80
004Bn		DM0IC DM1IC	80
004Ch	DMA1 Interrupt Control Register CAN0/1 Error Interrupt Control Register	C01ERRIC	80 80
004DI1	A/D Conversion Interrupt Control Register	ADIC	80
004Eh	Key Input Interrupt Control Register	KUPIC	80
004Fh	UART2 Transmit Interrupt Control Register	S2TIC	80
0050h	UART2 Receive Interrupt Control Register	S2RIC	80
0050h	UARTO Transmit Interrupt Control Register	SOTIC	80
0052h	UARTO Receive Interrupt Control Register	SORIC	80
0052h	UART1 Transmit Interrupt Control Register	S1TIC	80
0053h	UART1 Receive Interrupt Control Register	S1RIC	80
0055h	Timer A0 Interrupt Control Register	TAOIC	80
0056h	Timer A1 Interrupt Control Register	TAIIC	80
0057h	Timer A2 Interrupt Control Register	TA1IC TA2IC	80
0058h	Timer A3 Interrupt Control Register	TA3IC	80
0059h	Timer A4 Interrupt Control Register	TA4IC	80
005Ah	Timer B0 Interrupt Control Register	TBOIC	80
005Bh	Timer B1 Interrupt Control Register	TB1IC	80
005Ch	Timer B2 Interrupt Control Register	TB2IC	80
005Dh	INTO Interrupt Control Register	INTOIC	81
005Eh	INT1 Interrupt Control Register	INT1IC	81
005Fh	INT2 Interrupt Control Register	INT2IC	81
			•.
0060h			
0060h 0061h			
0061h 0062h	CAND Message Box 0: Identifier / DI C		
0061h 0062h 0063h	CAN0 Message Box 0: Identifier / DLC		
0061h 0062h 0063h 0064h	CAN0 Message Box 0: Identifier / DLC		
0061h 0062h 0063h 0064h 0065h	CAN0 Message Box 0: Identifier / DLC		
0061h 0062h 0063h 0064h 0065h 0066h	CAN0 Message Box 0: Identifier / DLC		
0061h 0062h 0063h 0064h 0065h 0066h 0067h	CAN0 Message Box 0: Identifier / DLC		
0061h 0062h 0063h 0064h 0065h 0066h			
0061h 0062h 0063h 0064h 0065h 0066h 0067h 0068h	CAN0 Message Box 0: Identifier / DLC		
0061h 0062h 0063h 0064h 0065h 0066h 0067h 0068h 0069h 006Ah 006Bh			
0061h 0062h 0063h 0064h 0065h 0066h 0067h 0068h 0069h 006Ah 006Bh 006Ch			
0061h 0062h 0063h 0064h 0065h 0066h 0067h 0068h 0069h 006Ah 006Bh 006Ch			
0061h 0062h 0063h 0064h 0065h 0066h 0067h 0068h 0068h 0068h 006Bh 006Bh 006Ch			216
0061h 0062h 0063h 0064h 0065h 0066h 0067h 0068h 0068h 006Bh 006Bh 006Ch 006Ch	CAN0 Message Box 0: Data Field		216 217
0061h 0062h 0063h 0064h 0065h 0066h 0067h 0068h 0069h 006Ah 006Bh 006Ch 006Fh 006Fh 006Fh	CAN0 Message Box 0: Data Field		-
0061h 0062h 0063h 0064h 0065h 0066h 0068h 0068h 0068h 006Bh 006Ch 006Ch 006Eh 006Eh 006Fh 006Fh 006Fh	CAN0 Message Box 0: Data Field CAN0 Message Box 0: Time Stamp		-
0061h 0062h 0063h 0064h 0065h 0066h 0068h 0068h 0068h 006Bh 006Ch 006Ch 006Ch 006Ch 006Ch 006Ch 006Ch 0070h 0071h 0072h	CAN0 Message Box 0: Data Field		-
0061h 0062h 0063h 0064h 0065h 0066h 0068h 0068h 0068h 0068h 006Bh 006Ch 006Ch 006Ch 006Ch 006Ch 006Ch 006Ch 0071h 0071h 0072h	CAN0 Message Box 0: Data Field CAN0 Message Box 0: Time Stamp		-
0061h 0062h 0063h 0064h 0065h 0066h 0067h 0068h 0068h 0068h 006Bh 006Ch 006Ch 006Ch 006Ch 006Ch 006Ch 006Ch 0070h 0072h 0073h 0073h	CAN0 Message Box 0: Data Field CAN0 Message Box 0: Time Stamp		-
0061h 0062h 0063h 0064h 0065h 0067h 0068h 0069h 0068h 0068h 006Bh 006Ch 006Eh 006Eh 006Fh 0070h 0071h 0072h 0073h 0074h 0075h	CAN0 Message Box 0: Data Field CAN0 Message Box 0: Time Stamp		-
0061h 0062h 0063h 0065h 0066h 0067h 0068h 0069h 0068h 0068h 006Bh 006Bh 006Eh 006Fh 006Fh 0071h 0072h 0073h 0074h 0075h 0075h	CAN0 Message Box 0: Data Field CAN0 Message Box 0: Time Stamp		-
0061h 0062h 0063h 0065h 0066h 0067h 0068h 0069h 0068h 0068h 006Bh 006Eh 006Eh 006Fh 0071h 0072h 0072h 0073h 0074h 0075h 0076h 0077h	CAN0 Message Box 0: Data Field CAN0 Message Box 0: Time Stamp CAN0 Message Box 1: Identifier / DLC		-
0061h 0062h 0063h 0064h 0066h 0067h 0068h 0069h 0068h 0068h 0068h 006Ch 006Fh 006Fh 0071h 0072h 0073h 0074h 0073h 0074h 0075h 0077h 0077h	CAN0 Message Box 0: Data Field CAN0 Message Box 0: Time Stamp		-
0061h 0062h 0063h 0064h 0065h 0066h 0068h 0068h 0068h 0068h 0068h 0066h 0066h 0066h 0076h 0071h 0072h 0073h 0074h 0075h 0077h 0078h 0078h	CAN0 Message Box 0: Data Field CAN0 Message Box 0: Time Stamp CAN0 Message Box 1: Identifier / DLC		-
0061h 0062h 0063h 0064h 0065h 0066h 0068h 0068h 0068h 006Bh 006Bh 006Bh 006Ch 006Eh 006Ch 0070h 0071h 0072h 0073h 0074h 0075h 0076h 0077h	CAN0 Message Box 0: Data Field CAN0 Message Box 0: Time Stamp CAN0 Message Box 1: Identifier / DLC		-
0061h 0062h 0063h 0064h 0065h 0066h 0068h 0068h 0068h 0068h 0068h 0066h 0066h 0066h 0076h 0071h 0072h 0073h 0074h 0075h 0077h 0078h 0078h	CAN0 Message Box 0: Data Field CAN0 Message Box 0: Time Stamp CAN0 Message Box 1: Identifier / DLC		-

Address	Register	Symbol	Page
0080h	Ŧ	-	
0081h			
0082h	CANO Magagage Box 2: Identifier / DLC		
0083h	CAN0 Message Box 2: Identifier / DLC		
0084h			
0085h			
0086h			
0087h			
0088h			
0089h	CAN0 Message Box 2: Data Field		
008Ah	CANO Message Dox 2. Data Tield		
008Bh			
008Ch			
008Dh			
008Eh	CAN0 Message Box 2: Time Stamp		
008Fh			
0090h			
0091h			
0092h	CAN0 Message Box 3: Identifier / DLC		
0093h			
0094h			
0095h			
0096h			
0097h			
0098h			
0099h	CAN0 Message Box 3: Data Field		
009Ah	-		
009Bh			
009Ch			
009Dh 009Eh			
009Eh	CAN0 Message Box 3: Time Stamp		216
00A0h			217
00A1h			
00A2h			
00A3h	CAN0 Message Box 4: Identifier / DLC		
00A4h			
00A5h			
00A6h			
00A7h			
00A8h			
00A9h	CANO Magagara Day 4: Data Field		
00AAh	CAN0 Message Box 4: Data Field		
00ABh			
00ACh			
00ADh			
00AEh	CAN0 Message Box 4: Time Stamp		
00AFh	S. To Moosage Dox 4. Time Stamp		
00B0h			
00B1h			
00B2h	CAN0 Message Box 5: Identifier / DLC		
00B3h			
00B4h			
00B5h			
00B6h			
00B7h			
00B8h			
00B9h 00BAh	CAN0 Message Box 5: Data Field		
00BAn 00BBh	-		
00BBh 00BCh			
00BCh 00BDh			
00BDh			
00BEh	CAN0 Message Box 5: Time Stamp		
		L	

Address	Register	Symbol	Page
00C0h			T
00C1h			
00C2h	CANO Magazara Day & Identifiar / DI C		
00C3h	CAN0 Message Box 6: Identifier / DLC		
00C4h			
00C5h			
00C6h			
00C7h			
00C8h			
00C9h	CAN0 Message Box 6: Data Field		
00CAh	CANU Message Box 6: Data Field		
00CBh			
00CCh			
00CDh			
00CEh	CAN0 Message Box 6: Time Stamp		
00CFh	CANO Message Box 6: Time Stamp		
00D0h			
00D1h			
00D2h	CAN0 Message Box 7: Identifier / DLC		
00D3h	Onite Message Dox 7. Identilier / DEC		
00D4h			
00D5h			
00D6h			
00D7h			
00D8h			
00D9h	CAN0 Message Box 7: Data Field		
00DAh	OANO Message Box 7. Bala Field		
00DBh			
00DCh			
00DDh			
00DEh	CAN0 Message Box 7: Time Stamp		
00DFh			216
00E0h			217
00E1h			
00E2h	CAN0 Message Box 8: Identifier / DLC		
00E3h	j. i i i j		
00E4h			
00E5h			
00E6h			
00E7h			
00E8h			
00E9h 00EAh	CAN0 Message Box 8: Data Field		
	-		
00EBh 00ECh			
00ECh			
00EDh			
00EEn	CAN0 Message Box 8: Time Stamp		
00E111			
00F1h			
00F2h			
00F3h	CAN0 Message Box 9: Identifier / DLC		
00F4h			
00F5h			
00F6h			
00F7h			
00F8h			
00F9h			
00FAh	CAN0 Message Box 9: Data Field		
00FBh			
00FCh			
00FDh			
00FEh	OANIO MARKAR D. O. T. O.		
00FFh	CAN0 Message Box 9: Time Stamp		

Address	Register	Symbol	Page
0100h			
0101h			
0102h	CAN0 Message Box 10: Identifier / DLC		
0103h	5		
0104h			
0105h 0106h			
0100h			
0108h			
0109h			
010Ah	CAN0 Message Box 10: Data Field		
010Bh			
010Ch			
010Dh			
010Eh	CAN0 Message Box 10: Time Stamp		
010Fh			
0110h			
0111h			
0112h 0113h	CAN0 Message Box 11: Identifier / DLC		
0113h			
0114h			
0116h			
0117h			
0118h			
0119h	CAN0 Message Box 11: Data Field		
011Ah	CANU Message Box 11. Data Fleid		
011Bh			
011Ch			
011Dh			
011Eh 011Fh	CAN0 Message Box 11: Time Stamp		216
0120h			217
0121h			
0122h	OANIO Marca na Davido, klavička (DLO		
0123h	CAN0 Message Box 12: Identifier / DLC		
0124h			
0125h			
0126h			
0127h			
0128h			
0129h 012Ah	CAN0 Message Box 12: Data Field		
012An			
012Dh			
012Dh			
012Eh	CANO Moooogo Doy 10: Time Otom		
012Fh	CAN0 Message Box 12: Time Stamp		
0130h			
0131h			
0132h	CAN0 Message Box 13: Identifier / DLC		
0133h 0134h	-		
0134n 0135h			
0136h			
0137h			
0138h			
0139h	CANO Moooogo Doy 10: Data Field		
013Ah	CAN0 Message Box 13: Data Field		
013Bh			
013Ch			
013Dh			
013Eh 013Fh	CAN0 Message Box 13: Time Stamp		
UISTI	- '		

Address	Register	Symbol	Page
0140h			
0141h			
0142h	CAN0 Message Box 14: Identifier /DLC		
0143h	of the message box 14. Identifier / DEC		
0144h			
0145h			
0146h			
0147h			
0148h			
0149h	CAN0 Message Box 14: Data Field		
014Ah			
014Bh			
014Ch			
014Dh			
014Eh 014Fh	CAN0 Message Box 14: Time Stamp		010
-			216 217
0150h 0151h			217
0151h			
0152n 0153h	CAN0 Message Box 15: Identifier /DLC		
0153h			
0154n			
0156h			
0157h			
0158h			
0159h			
015Ah	CAN0 Message Box 15: Data Field		
015Bh			
015Ch			
015Dh			
015Eh	CANO Massaga Bay 15: Timo Stamp		1
015Fh	CAN0 Message Box 15: Time Stamp		
0160h			
0161h			
0162h	CAN0 Global Mask Register	COGMR	218
0163h		Cocamit	210
0164h			
0165h			
0166h			
0167h			
0168h	CAN0 Local Mask A Register	COLMAR	218
0169h 016Ah	-		
016Bh 016Ch			
016Dh			
016Eh			
016Eh	CAN0 Local Mask B Register	COLMBR	218
0170h			
0171h			
0172h			
0173h			
0174h			
0175h			
0176h			
0177h			
0178h			
0179h			
017Ah			
017Bh			
017Ch			
017Dh			
017Eh			<u> </u>
017Fh			

Address	Register	Symbol	Page	Address	Register	Symbol	Page
0180h	riegister	Cymbol	i ugo	01C0h		TBSR	124
0181h				01C1h	Timer Bo, B4, Bo obtain ofairt hag		
0182h				01C2h		-	105
0183h				01C3h	Timer A1-1 Register	TA11	135
0184h				01C4h	T AG (D))	TA 01	105
0185h				01C5h	Timer A2-1 Register	TA21	135
0186h				01C6h	Timer A4 1 Desister	TA41	135
0187h				01C7h	Timer A4-1 Register		155
0188h					Three-Phase PWM Control Register 0	INVC0	132
0189h					Three-Phase PWM Control Register 1	INVC1	133
018Ah					Three-Phase Output Buffer Register 0	IDB0	134
018Bh					Three-Phase Output Buffer Register 1	IDB1	134
018Ch					Dead Time Timer	DTT	134
018Dh					Timer B2 Interrupt Generation Frequency Set Counter	ICTB2	136
018Eh				01CEh			
018Fh				01CFh			
0190h				01D0h	Timer B3 Register	ТВЗ	123
0191h				01D1h		100	120
0192h				01D2h	Timer B4 Register	TB4	123
0193h				01D3h			
0194h				01D4h	Timer B5 Register	TB5	123
0195h				01D5h			
0196h				01D6h			
0197h				01D7h			
0198h				01D8h			
0199h				01D9h			
019Ah				01DAh	Ti Dont - D	TRAME	102
019Bh					Timer B3 Mode Register	TB3MR	123 125
019Ch					Timer B4 Mode Register	TB4MR	126
019Dh				01DDh	Timer B5 Mode Register	TB5MR	128
019Eh					Interrupt Source Select Register 0	IFSR0	89
019Fh					Interrupt Source Select Register 1	IFSR1	89
01A0h 01A1h					SI/O3 Transmit/Receive Register	S3TRR	189
				01E1h	Ol/OD Control Desister	000	100
01A2h					SI/O3 Control Register	S3C	189
01A3h 01A4h				01E3h	SI/O3 Bit Rate Register	S3BRG	189
01A4n				01E4n			
01A5h				01E5h			
01A0h				01E0h			
01A7h				01E7h			
01A9h				01E9h			+
01AAh				01EAh			
01ABh				01EBh			
01ACh					UART0 Special Mode Register 4	U0SMR4	150
01ADh					UART0 Special Mode Register 3	U0SMR3	149
01AEh			<u> </u>		UARTO Special Mode Register 3	U0SMR2	149
01AFh			+		UARTO Special Mode Register	U0SMR	143
01B0h					UART1 Special Mode Register 4	U1SMR4	150
01B1h					UART1 Special Mode Register 3	U1SMR3	149
01B2h					UART1 Special Mode Register 2	U1SMR2	149
01B3h				01F3h		U1SMR	148
01B4h					UART2 Special Mode Register 4	U2SMR4	150
01B5h	Flash Memory Control Register 1	FMR1	257		UART2 Special Mode Register 3	U2SMR3	149
01B6h				01F6h		U2SMR2	149
01B7h	Flash Memory Control Register 0	FMR0	257		UART2 Special Mode Register	U2SMR	148
01B8h				01F8h		U2MR	146
01B9h	Address Match Interrupt Register 2	RMAD2	92	01F9h	UART2 Bit Rate Register	U2BRG	145
01BAh	· .			01FAh			
01BBh	Address Match Interrupt Enable Register 2	AIER2	92	01FBh	UART2 Transmit Buffer Register	U2TB	145
01BCh				01FCh	UART2 Transmit/Receive Control Register 0	U2C0	146
01BDh	Address Match Interrupt Register 3	RMAD3	92	01FDh		U2C1	147
01BEh				01FEh			145
01BFh				01FFh	UART2 Receive Buffer Register	U2RB	145
Diamiran	aces are reserved. No access is allowed.						

Address	Pogistor	Sumbol	Page
Address 0200h	Register CAN0 Message Control Register 0	Symbol	Page
0200n 0201h	CANO Message Control Register 0 CANO Message Control Register 1	COMCTL0 COMCTL1	
0201h	CANO Message Control Register 2	COMCTL2	
0202h	CANO Message Control Register 3	COMCTL3	
0200h	CANO Message Control Register 3	COMCTL3	
020411 0205h	CANO Message Control Register 5	COMCTL5	
0205h	CANO Message Control Register 5	COMCTLS COMCTL6	
0200h	CANO Message Control Register 7	COMCTLO COMCTL7	
0207h 0208h	CANO Message Control Register 8	COMCTL7	219
02081 0209h	CANO Message Control Register 9	COMCTL8	
020911 020Ah		COMCTL9	
020An	CAN0 Message Control Register 10 CAN0 Message Control Register 11	COMCTL10	
020Bn	,	COMCTL12	
	CANO Message Control Register 12	COMCTL12	
020Dh	CANO Message Control Register 13		
020Eh	CANO Message Control Register 14	COMCTL14	
020Fh	CAN0 Message Control Register 15	C0MCTL15	
0210h 0211h	CAN0 Control Register	COCTLR	220
0212h 0213h	CAN0 Status Register	COSTR	221
0214h 0215h	CAN0 Slot Status Register	COSSTR	222
0216h 0217h	CAN0 Interrupt Control Register	COICR	222
0218h	CAN0 Extended ID Register	COIDR	222
0219h 021Ah	CAN0 Configuration Register	COCONR	223
021Bh 021Ch	CAN0 Receive Error Count Register	CORECR	224
021Dh	CAN0 Transmit Error Count Register	COTECR	224
021Eh 021Fh	CAN0 Time Stamp Register	COTSR	224
0220h	CAN1 Message Control Register 0	C1MCTL0	
0221h	CAN1 Message Control Register 1	C1MCTL1	
0222h	CAN1 Message Control Register 2	C1MCTL2	
0223h	CAN1 Message Control Register 3	C1MCTL3	
0224h	CAN1 Message Control Register 4	C1MCTL4	
0225h	CAN1 Message Control Register 5	C1MCTL5	
0226h	CAN1 Message Control Register 6	C1MCTL6	
0227h	CAN1 Message Control Register 7	C1MCTL7	
0228h	CAN1 Message Control Register 8	C1MCTL8	219
0229h	CAN1 Message Control Register 9	C1MCTL9	
022Ah	CAN1 Message Control Register 10	C1MCTL10	
022Bh	CAN1 Message Control Register 11	C1MCTL11	
022Ch	CAN1 Message Control Register 12	C1MCTL12	
022Dh	CAN1 Message Control Register 13	C1MCTL13	
022Dh	CAN1 Message Control Register 14		
022En	CAN1 Message Control Register 14 CAN1 Message Control Register 15	C1MCTL14 C1MCTL15	
0230h	CAN1 Message Control Register 15	C1CTLR	220
0231h 0232h		C1STR	221
0233h 0234h	CAN1 Status Register		
0235h 0236h	CAN1 Slot Status Register	C1SSTR	222
0237h	CAN1 Interrupt Control Register	C1ICR	222
0238h 0239h	CAN1 Extended ID Register	C1IDR	222
023Ah 023Bh	CAN1 Configuration Register	C1CONR	223
023Ch	CAN1 Receive Error Count Register	C1RECR	224
	CAN1 Transmit Error Count Register	C1TECR	224
023Dh			
023Dh 023Eh 023Fh	CAN1 Time Stamp Register	C1TSR	224

Address	Register	Symbol	Page
0240h		- ,	
0241h			
0242h		00450	004
0243h	CAN0 Acceptance Filter Support Register	COAFS	224
0244h		01450	004
0245h	CAN1 Acceptance Filter Support Register	C1AFS	224
0246h			
0247h			
0248h			
0249h			
024Ah			
024Bh			
024Ch			
024Dh			
024Eh			
024Fh			
0250h			
0251h			
0252h			
0253h			
0254h			
0255h			
0256h			
0257h			
0258h			
0259h			
025Ah			
025Bh			
025Ch			
025Dh			
025Eh	Peripheral Clock Select Register	PCLKR	56
025Fh	CAN0/1 Clock Select Register	CCLKR	56
0260h		002	
0261h			
0262h			
0263h	CAN1 Message Box 0: Identifier / DLC		
0264h			
0265h			
0266h			
0267h			
0268h			
0269h	OANIA Maaaana David Data Fistal		
026Ah	CAN1 Message Box 0: Data Field		
026Bh			
026Ch			
026Dh			
026Eh			
026Fh	CAN1 Message Box 0:Time Stamp		216
0270h			217
0271h			
0272h	CANIT Magazara Davida Islandifian (DLO		
0273h	CAN1 Message Box 1: Identifier / DLC		
0274h			
0275h			
0276h			
0277h			
0278h			
0279h			
027Ah	CAN1 Message Box 1: Data Field		
027Bh			
027Bh 027Ch 027Dh			
027Bh 027Ch	CAN1 Message Box 1:Time Stamp		

Address	Register	Symbol	Page
0280h	-		
0281h			
0282h	CAN1 Message Box 2: Identifier / DLC		
0283h	C DEC		
0284h			
0285h			
0286h			
0287h			
0288h 0289h			
028911 028Ah	CAN1 Message Box 2: Data Field		
028Bh			
028Ch			
028Dh			
028Eh			
028Fh	CAN1 Message Box 2: Time Stamp		
0290h			
0291h			
0292h	CAN1 Message Box 3: Identifier / DLC		
0293h	CANT Message box 5. Identifier / DEC		
0294h			
0295h			
0296h			
0297h			
0298h			
0299h	CAN1 Message Box 3: Data Field		
029Ah 029Bh			
029Dh			
0290h			
029Eh			
029Fh	CAN1 Message Box 3: Time Stamp		216
02A0h			217
02A1h			
02A2h	CANIA Magagage Boy 4: Identifier / DI C		
02A3h	CAN1 Message Box 4: Identifier / DLC		
02A4h			
02A5h			
02A6h			
02A7h			
02A8h			
02A9h 02AAh	CAN1 Message Box 4: Data Field		
02AAn 02ABh	-		
02ABh 02ACh			
02ADh			
02AEh			
02AFh	CAN1 Message Box 4: Time Stamp		
02B0h			
02B1h			
02B2h	CAN1 Message Box 5: Identifier / DLC		
02B3h	On a message box 5. Identiller / DEC		
02B4h			
02B5h			
02B6h			
02B7h			
02B8h			
02B9h 02BAh	CAN1 Message Box 5: Data Field		
02BAn 02BBh			
02BBh			
02BDh			
02BEh			
02BFh	CAN1 Message Box 5: Time Stamp		

Address	Register	Symbol	Page
02C0h	5		<u> </u>
02C1h			
02C2h CAN	Message Box 6: Identifier / DLC		
0203h	i message box o. identilier / DEC		
02C4h			
02C5h			
02C6h			
02C7h			
02C8h			
02C9h 02C4h CAN	I Message Box 6: Data Field		
02CAh	-		
02CBh 02CCh			
02CDh			
02CEh			
02CFh CAN	I Message Box 6: Time Stamp		
02D0h			
02D1h			
02D2h	Maaaaaa Daviz Ida 200 - 101 O		
02D3h CAN	Message Box 7: Identifier / DLC		
02D4h			
02D5h			
02D6h			
02D7h			
02D8h			
02D9h CAN	I Message Box 7: Data Field		
UZDAN	message box 7. Bala Field		
02DBh			
02DCh			
02DDh			
02DEh 02DFh CAN	1 Message Box 7: Time Stamp		216
02E0h			210
02E1h			217
02E2h			
02E3h CAN	Message Box 8: Identifier / DLC		
02E4h			
02E5h			
02E6h			
02E7h			
02E8h			
02E9h	Message Box 8: Data Field		
UZEAN	. meesage box o. Dala Field		
02EBh			
02ECh			
02EDh			
02EEh 02EFh CAN	I Message Box 8: Time Stamp		
02EFn 02F0h	· ·		
02F01			
02E2h			
02F3h CAN	1 Message Box 9: Identifier / DLC		
02F4h			
02F5h			
02F6h			
02F7h			
02F8h			
02F9h	Massaga Roy & Data Field		
02LAIT	1 Message Box 9: Data Field		
02FBh			
02FCh			
02FDh			
02FEh 02FFh CAN	Message Box 9: Time Stamp		

Address	Register	Symbol	Page
0300h			
0301h			
0302h	CAN1 Message Box 10: Identifier / DLC		
0303h			
0304h			
0305h			
0306h			
0307h 0308h			
0309h			
030Ah	CAN1 Message Box 10: Data Field		
030Bh			
030Ch			
030Dh			
030Eh			
030Fh	CAN1 Message Box 10: Time Stamp		
0310h			
0311h			
0312h	CANII Massage Roy 11: Identifier / DI C		
0313h	CAN1 Message Box 11: Identifier / DLC		
0314h			
0315h			
0316h			
0317h			
0318h			
0319h	CAN1 Message Box 11: Data Field		
031Ah			
031Bh			
031Ch 031Dh			
031Dh			
031Eh	CAN1 Message Box 11: Time Stamp		216
0320h			217
0321h			217
0322h			
0323h	CAN1 Message Box 12: Identifier / DLC		
0324h			
0325h			
0326h			
0327h			
0328h			
0329h	CAN1 Message Box 12: Data Field		
032Ah	UNIT MESSAYE DUX 12. Dala FIElu		
032Bh			
032Ch			
032Dh			
032Eh	CAN1 Message Box 12: Time Stamp		
032Fh			
0330h			
0331h			
0332h	CAN1 Message Box 13: Identifier / DLC		
0333h 0334h	-		
0334n 0335h			
0336h			
0337h			
0338h			
0339h			
033Ah	CAN1 Message Box 13: Data Field		
033Bh			
033Ch			
033Dh			
033Eh	CANIT Magazara Davi 10, Time Oliver		
033Fh	CAN1 Message Box 13: Time Stamp		
	aces are reserved. No access is allowed.		

Address	Register	Symbol	Page
0340h			
0341h			
0342h	CAN1 Message Box 14: Identifier / DLC		
0343h	DAINT Message box 14. Identifier / DEC		
0344h			
0345h			
0346h			
0347h			
0348h			
0349h	CAN1 Message Box 14: Data Field		
034Ah	er i tri Mocougo Box I II. Bula I Iola		
034Bh			
034Ch			
034Dh			
034Eh	CAN1 Message Box 14: Time Stamp		
034Fh			216
0350h			217
0351h			
0352h	CAN1 Message Box 15: Identifier / DLC		
0353h	<u> </u>		
0354h			
0355h			
0356h			
0357h			
0358h			
0359h	CAN1 Message Box 15: Data Field		
035Ah	5		
035Bh			
035Ch 035Dh			
035Dh 035Eh			
035Eh	CAN1 Message Box 15: Time Stamp		
0360h			
0361h			
0362h			
0363h	CAN1 Global Mask Register	C1GMR	218
0364h			
0365h			
0366h			
0367h			
0368h			
0369h	CAN1 Local Mask A Register	C1LMAR	218
036Ah			
036Bh			
036Ch			
036Dh			
036Eh			0.10
036Fh	CAN1 Local Mask B Register	C1LMBR	218
0370h			
0371h			
0372h			
0373h			
0374h			
0375h			
0376h			
0377h			
0378h			
0379h			
037Ah			
037Bh			
037Bh 037Ch			
037Bh 037Ch 037Dh			
037Bh 037Ch			

Address	Register	Symbol	Page
	Count Start Flag	TABSR	109,124,137
	Clock Prescaler Reset Flag	CPSRF	110,124
0382h	One-Shot Start Flag	ONSF	110
	Trigger Select Register	TRGSR	110,137
0384h	Up/Down Flag	UDF	109
0385h	<u>- 06, 200111 lag</u>		
0386h			
0387h	Timer A0 Register	TA0	108
0388h			108
0389h	Timer A1 Register	TA1	135
038Ah			108
038Bh	Timer A2 Register	TA2	135
038Ch			100
038Dh	Timer A3 Register	TA3	108
			109
038Eh 038Fh	Timer A4 Register	TA4	108
	-		135
0390h	Timer B0 Register	TB0	123
0391h			
0392h	Timer B1 Register	TB1	123
03930			
0394h	Timer B2 Register	TB2	123
03950			135
0396h	Timer A0 Mode Register	TAOMR	108
	Timer A1 Mode Register	TA1MR	111 138
0398h	Timer A2 Mode Register	TA2MR	113 115,138
0399h	Timer A3 Mode Register	TA3MR	118 115
039Ah	Timer A4 Mode Register	TA4MR	120 115,138
039Bh	Timer B0 Mode Register	TB0MR	123,125
	Timer B1 Mode Register	TB1MR	126,128
	Timer B2 Mode Register	TB2MR	138
039Eh	Timer B2 Special Mode Register	TB2SC	136
039Fh		TBLOO	100
	UART0 Transmit/Receive Mode Register	U0MR	146
	UARTO Bit Rate Register	U0BRG	145
03A2h	OATTO BIL Hale Hegister	OODING	145
03A3h	UART0 Transmit Buffer Register	U0TB	145
	UART0 Transmit/Receive Control Register 0	U0C0	146
	UARTO Transmit/Receive Control Register 1	U0C0	146 147
	OARTO Transmit/Receive Control Register T	0001	147
03A6h	UART0 Receive Buffer Register	UORB	145
03A7h			
	UART1 Transmit/Receive Mode Register	U1MR	
03A9h	I I A D I 1 Bit Data Dogistor		146
	UART1 Bit Rate Register	U1BRG	146 145
03AAh			145
03ABh	UART1 Transmit Buffer Register	U1TB	145 145
03ABh 03ACh	UART1 Transmit Buffer Register UART1 Transmit/Receive Control Register 0	U1TB U1C0	145 145 146
03ABh 03ACh 03ADh	UART1 Transmit Buffer Register	U1TB	145 145
03ABh 03ACh 03ADh 03AEh	UART1 Transmit Buffer Register UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1	U1TB U1C0 U1C1	145 145 146 147
03ABh 03ACh 03ADh 03AEh 03AFh	UART1 Transmit Buffer Register UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1 UART1 Receive Buffer Register	U1TB U1C0 U1C1 U1RB	145 145 146
03ABh 03ACh 03ADh 03AEh 03AFh 03B0h	UART1 Transmit Buffer Register UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1	U1TB U1C0 U1C1	145 145 146 147
03ABh 03ACh 03ADh 03AEh 03AFh	UART1 Transmit Buffer Register UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1 UART1 Receive Buffer Register	U1TB U1C0 U1C1 U1RB	145 145 146 147 145
03ABh 03ACh 03ADh 03AEh 03AFh 03B0h 03B1h 03B2h	UART1 Transmit Buffer Register UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1 UART1 Receive Buffer Register	U1TB U1C0 U1C1 U1RB	145 145 146 147 145
03ABh 03ACh 03ADh 03AEh 03AFh 03B0h 03B1h	UART1 Transmit Buffer Register UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1 UART1 Receive Buffer Register	U1TB U1C0 U1C1 U1RB	145 145 146 147 145
03ABh 03ACh 03ADh 03AEh 03AFh 03B0h 03B1h 03B2h	UART1 Transmit Buffer Register UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1 UART1 Receive Buffer Register	U1TB U1C0 U1C1 U1RB	145 145 146 147 145
03ABh 03ACh 03ADh 03AEh 03AFh 03B0h 03B1h 03B2h 03B3h	UART1 Transmit Buffer Register UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1 UART1 Receive Buffer Register	U1TB U1C0 U1C1 U1RB	145 145 146 147 145
03ABh 03ACh 03ADh 03AEh 03AFh 03B0h 03B1h 03B2h 03B3h 03B4h	UART1 Transmit Buffer Register UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1 UART1 Receive Buffer Register	U1TB U1C0 U1C1 U1RB	145 145 146 147 145
03ABh 03ACh 03ADh 03AEh 03AFh 03B0h 03B1h 03B2h 03B3h 03B4h 03B5h	UART1 Transmit Buffer Register UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1 UART1 Receive Buffer Register	U1TB U1C0 U1C1 U1RB	145 145 146 147 145
03ABh 03ACh 03ADh 03AEh 03B0h 03B1h 03B2h 03B3h 03B4h 03B5h 03B6h	UART1 Transmit Buffer Register UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1 UART1 Receive Buffer Register UART Transmit/Receive Control Register 2	U1TB U1C0 U1C1 U1RB	145 145 146 147 145
03ABh 03ACh 03ADh 03AEh 03B0h 03B1h 03B2h 03B3h 03B4h 03B5h 03B6h 03B7h	UART1 Transmit Buffer Register UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1 UART1 Receive Buffer Register	U1TB U1C0 U1C1 U1RB UCON	145 145 146 147 145 148
03ABh 03ACh 03ADh 03AEh 03B0h 03B1h 03B2h 03B3h 03B4h 03B5h 03B6h 03B7h 03B8h 03B9h	UART1 Transmit Buffer Register UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1 UART1 Receive Buffer Register UART Transmit/Receive Control Register 2 DMA0 Request Source Select Register	U1TB U1C0 U1C1 U1RB UCON DM0SL	145 145 146 147 145 148 97
03ABh 03ACh 03ADh 03AEh 03B0h 03B1h 03B2h 03B3h 03B4h 03B5h 03B6h 03B7h 03B8h 03B9h 03BAh	UART1 Transmit Buffer Register UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1 UART1 Receive Buffer Register UART Transmit/Receive Control Register 2	U1TB U1C0 U1C1 U1RB UCON	145 145 146 147 145 148
03ABh 03ACh 03ADh 03AEh 03B0h 03B1h 03B2h 03B3h 03B4h 03B5h 03B6h 03B6h 03B7h 03B8h 03B9h 03BAh 03BAh 03BAh	UART1 Transmit Buffer Register UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1 UART1 Receive Buffer Register UART Transmit/Receive Control Register 2 DMA0 Request Source Select Register DMA1 Request Source Select Register	U1TB U1C0 U1C1 U1RB UCON DM0SL DM1SL	145 145 146 147 145 148
03ABh 03ACh 03ADh 03AEh 03B0h 03B1h 03B2h 03B3h 03B4h 03B5h 03B6h 03B7h 03B8h 03B9h 03BAh 03BBh 03BCh	UART1 Transmit Buffer Register UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1 UART1 Receive Buffer Register UART Transmit/Receive Control Register 2 DMA0 Request Source Select Register	U1TB U1C0 U1C1 U1RB UCON DM0SL	145 145 146 147 145 148 97
03ABh 03ACh 03ADh 03AEh 03B0h 03B1h 03B2h 03B3h 03B4h 03B5h 03B6h 03B7h 03B8h 03B9h 03BAh 03B0h	UART1 Transmit Buffer Register UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1 UART1 Receive Buffer Register UART Transmit/Receive Control Register 2 UART Transmit/Receive Control Register 2 DMA0 Request Source Select Register DMA1 Request Source Select Register CRC Data Register	U1TB U1C0 U1C1 U1RB UCON UCON DM0SL DM1SL CRCD	145 145 146 147 145 148 97 97 98 212
03ABh 03ACh 03ADh 03AEh 03B0h 03B1h 03B2h 03B3h 03B4h 03B5h 03B6h 03B7h 03B8h 03B9h 03BAh 03BBh 03BDh	UART1 Transmit Buffer Register UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1 UART1 Receive Buffer Register UART Transmit/Receive Control Register 2 DMA0 Request Source Select Register DMA1 Request Source Select Register	U1TB U1C0 U1C1 U1RB UCON DM0SL DM1SL	145 145 146 147 145 148

Address	Register	Symbol	Page
03C0h			9-
03C1h	A/D Register 0	AD0	
03C2h		4.04	
03C3h	A/D Register 1	AD1	
03C4h	A/D Register 2	AD2	
03C5h	A/D Register 2	ADZ	
03C6h	A/D Register 3	AD3	
03C7h	A/D Register 5	1.00	196
03C8h	A/D Register 4	AD4	
03C9h			
03CAh 03CBh	A/D Register 5	AD5	
03CBn 03CCh			
03CCh	A/D Register 6	AD6	
03CEh			
03CFh	A/D Register 7	AD7	
03D0h			
03D1h			
03D2h			
03D3h			
03D4h	A/D Control Register 2	ADCON2	196
03D5h			
03D6h	A/D Control Register 0	ADCON0	195,198,200
03D7h	A/D Control Register 1	ADCON1	202,204,206
03D8h	D/A Register 0	DA0	211
03D9h			
03DAh	D/A Register 1	DA1	211
03DBh	D/A Control Dogistor	DACON	011
03DCh 03DDh	D/A Control Register	DACON	211
03DDh 03DEh			
03DFh			
03E0h	Port P0 Register	P0	246
03E1h	Port P1 Register	P1	246
03E2h	Port P0 Direction Register	PD0	245
03E3h	Port P1 Direction Register	PD1	245
03E4h	Port P2 Register	P2	246
03E5h	Port P3 Register	P3	246
03E6h	Port P2 Direction Register	PD2	245
03E7h	Port P3 Direction Register	PD3	245
03E8h	Port P4 Register	P4	246
03E9h	Port P5 Register	P5	246
	Port P4 Direction Register	PD4	245
03EBh	Port P5 Direction Register	PD5	245
03ECh		P6	246
	Port P7 Register	P7	246
03EEh	Port P6 Direction Register	PD6	245
03EFh	Port P7 Direction Register	PD7	245
03F0h	Port P8 Register	P8	246
03F1h 03F2h	Port P9 Register Port P8 Direction Register	P9 PD8	246 245
03F2n 03F3h	Port P8 Direction Register	PD8 PD9	245
03F3h	Port P10 Register	PD9 P10	245
03F5h			240
03F6h	Port P10 Direction Register	PD10	245
03F7h			240
03F8h		1	
03F9h			
03FAh			
03FBh			
03FCh	Pull-up Control Register 0	PUR0	247
03FDh	Pull-up Control Register 1	PUR1	247
03FEh	Pull-up Control Register 2	PUR2	247
03FFh	Port Control Register	PCR	248

RENESAS

M16C/6N Group (M16C/6N4) Renesas MCU

1. Overview

The M16C/6N Group (M16C/6N4) of MCUs are built using the high-performance silicon gate CMOS process using the M16C/60 Series CPU core and are packaged in 100-pin plastic molded QFP and LQFP. These MCUs operate using sophisticated instructions featuring a high level of instruction efficiency. With 1 Mbyte of address space, they are capable of executing instructions at high speed. Being equipped with two CAN (Controller Area Network) modules in the M16C/6N Group (M16C/6N4), the MCU is suited to drive automotive and industrial control systems. The CAN modules comply with the 2.0B specification. In addition, this MCU contains a multiplier and DMAC which combined with fast instruction processing capability, makes it suitable for control of various OA, communication, and industrial equipment which requires high-speed arithmetic/ logic operations.

1.1 Applications

- Automotive, industrial control systems and other automobile, other (T/V-ver. product)
- Car audio and industrial control systems, other (Normal-ver. product)

1.2 Performance Overview

Table 1.1 lists the Functions and Specifications for M16C/6N Group (M16C/6N4).

Table 1.1 Functions and Specifications for M16C/6N Group (M16C/6N4)	Table 1.1	Functions and S	Specifications	for M16C/6N	Group ((M16C/6N4)
---	-----------	-----------------	----------------	-------------	---------	------------

Item			Specifi			
			Normal-ver.	T/V-ver.		
CPU			91 instructions			
	instructions					
	Minimum inst		41.7 ns (f(BCLK) = 24 MHz,	50.0 ns (f(BCLK) = 20 MHz,		
	execution time		1/1 prescaler, without software wait)			
	Operating mo		Single-chip, memory expansion, and microprocessor modes			
	Address space		1 Mbyte			
	Memory capa	acity	Refer to Table 1.2 Product In			
Peripheral	Ports		Input/Output: 87 pins, Input: 1			
Function	Multifunction	timers	Timer A: 16 bits \times 5 channels			
			Timer B: 16 bits \times 6 channels			
			Three-phase motor control cir	cuit		
	Serial interfa	ces	3 channels			
			Clock synchronous, UART,	I ² C-bus ⁽¹⁾ , IEBus ⁽²⁾		
			1 channel			
			Clock synchronous			
	A/D converte	r	10-bit A/D converter: 1 circuit,	26 channels		
	D/A converte	r	8 bits \times 2 channels			
	DMAC		2 channels			
	CRC calculat	tion circuit	CRC-CCITT			
	CAN module		2 channels with 2.0B specification			
	Watchdog tin	ner	15 bits \times 1 channel (with prescaler)			
	Interrupts		Internal: 31 sources, External: 9 sources			
			Software: 4 sources, Priority le			
	Clock genera	ation circuits	4 circuits			
	0		Main clock oscillation circuit (*)			
			• Sub clock oscillation circuit (*)			
			On-chip oscillator			
			PLL frequency synthesizer			
			(*) Equipped with on-chip feedback resistor			
	Oscillation-sto	opped detector				
Electrical	Supply voltage		VCC = 3.0 to 5.5 V (f(BCLK) = 24 MHz,			
Characteristics				1/1 prescaler, without software wait)		
	Consumption	Mask BOM	20 mA (f(BCLK) = 24 MHz,	18 mA (f(BCLK) = 20 MHz,		
	current		PLL operation, no division)	PLL operation, no division)		
		Flash memory	22 mA (f(BCLK) = 24 MHz,	20 mA (f(BCLK) = 20 MHz,		
		i laon memory	PLL operation, no division)	PLL operation, no division)		
		Mask ROM	$3 \mu A$ (f(BCLK) = 32 kHz, Wait mode, Oscillation capacity Low)			
		Flash memory	$0.8 \ \mu\text{A}$ (Stop mode, Topr = 25°C)			
Flash Memory	Programming an	d erasure voltage	3.0 ± 0.3 V or 5.0 ± 0.5 V	5.0 ± 0.5 V		
Version Programming and erasure endurance			5.0 ± 0.5 V			
1/0	I/O withstand voltage		5.0 V			
Characteristics Output current Operating Ambient Temperature			5 mA			
			-40 to 85°C	T version: -40 to 85°C		
				V version: -40 to 125°C (option)		
			CMOS high-performance silic			
Device Configuration			100-pin molded-plastic QFP, I			
Package NOTES:			roo-pin molded-plastic QFP, I			

NOTES:

1. I²C-bus is a trademark of Koninklijke Philips Electronics N.V.

2. IEBus is a trademark of NEC Electronics Corporation.

option: All options are on request basis.

1.3 Block Diagram

Figure 1.1 shows a Block Diagram.

Figure 1.1 Block Diagram

1.4 Product Information

Table 1.2 lists the Product Information and Figure 1.2 shows the Type Number, Memory Size, and Packages.

Table 1.2 Product Inform	ation			As	of Apr. 2006
Type No.	ROM Capacity	RAM Capacity	Package Type (2)	Re	marks
M306N4FCFP	128 K + 4 Kbytes	5 Kbytes	PRQP0100JB-A	Flash	Normal-ver.
M306N4FCGP			PLQP0100KB-A	memory	
M306N4FGFP	256 K + 4 Kbytes	10 Kbytes	PRQP0100JB-A	version (1)	
M306N4FGGP			PLQP0100KB-A		
M306N4FCTFP	128 K + 4 Kbytes	5 Kbytes	PRQP0100JB-A		T-ver.
M306N4FCTGP			PLQP0100KB-A		
M306N4FGTFP	256 K + 4 Kbytes	10 Kbytes	PRQP0100JB-A		
M306N4FGTGP			PLQP0100KB-A		
M306N4FCVFP	128 K + 4 Kbytes	5 Kbytes	PRQP0100JB-A		V-ver.
M306N4FCVGP			PLQP0100KB-A		
M306N4FGVFP	256 K + 4 Kbytes	10 Kbytes	PRQP0100JB-A		
M306N4FGVGP			PLQP0100KB-A		
M306N4MC-XXXGP	128 Kbytes	5 Kbytes	PLQP0100KB-A	Mask	Normal-ver.
M306N4MG-XXXGP	256 Kbytes	10 Kbytes	PLQP0100KB-A	ROM	
M306N4MCT-XXXFP	128 Kbytes	5 Kbytes	PRQP0100JB-A	version	T-ver.
M306N4MCT-XXXGP			PLQP0100KB-A		
M306N4MGT-XXXFP	256 Kbytes	10 Kbytes	PRQP0100JB-A		
M306N4MGT-XXXGP			PLQP0100KB-A		
M306N4MCV-XXXFP	128 Kbytes	5 Kbytes	PRQP0100JB-A		V-ver.
M306N4MCV-XXXGP			PLQP0100KB-A		
M306N4MGV-XXXFP	256 Kbytes	10 Kbytes	PRQP0100JB-A		
M306N4MGV-XXXGP			PLQP0100KB-A		

NOTES:

1. Data flash memory provides an additional 4 Kbytes of ROM capacity (block A).

2. The correspondence between new and old package types is as follows. PRQP0100JB-A: 100P6S-A

PLQP0100KB-A: 100P6Q-A

1.5 Pin Assignments

Figures 1.3 and 1.4 show the Pin Assignment (Top View). Tables 1.3 and 1.4 list the List of Pin Names.

Figure 1.3 Pin Assignments (Top View) (1)

Figure 1.4 Pin Assignments (Top View) (2)

Table 1.3 List of Pin Names (1)

	No.	Control	Port	Interrupt	Timer Pin	UART Pin	Analog	CAN Module	Bus Control Pir
FP	GP	Pin	1 011	Pin		0/111111	Pin	Pin	
1	99		P9_6				ANEX1	CTX0	
2	100		P9_5				ANEX0	CRX0	
3	1		P9_4		TB4IN		DA1		
4	2		P9_3		TB3IN		DA0		
5	3		P9_2		TB2IN	SOUT3			
6	4		P9_1		TB1IN	SIN3			
7	5		P9_0		TB0IN	CLK3			
8	6	BYTE							
9	7	CNVSS							
10	8	XCIN	P8_7						
11	9	XCOUT	P8_6						
12	10	RESET							
13	11	XOUT							
14	12	VSS							
15	13	XIN							
16	14	VCC1							
17	15		P8_5	NMI					
18	16		P8_4	INT2	ZP				
19	17		P8_3	INT1					
20	18		P8_2	INT0					
21	19		P8_1		TA4IN/U				
22	20		P8_0		TA4OUT/U				
23	21		P7_7		TA3IN			CRX1	
24	22		P7_6		TA3OUT			CTX1	
25	23		P7_5		TA2IN/W				
26	24		P7_4		TA2OUT/W				
27	25		P7_3		TA1IN/V	CTS2/RTS2			
28	26		P7_2		TA1OUT/V	CLK2			
29	27		P7_1		TA0IN/TB5IN	RXD2/SCL2			
30	28		P7_0		TA0OUT	TXD2/SDA2			
31	29		P6_7			TXD1/SDA1			
32	30		P6_6			RXD1/SCL1			
33	31		P6_5			CLK1			
34	32		P6_4			CTS1/RTS1/CTS0/CLKS	1		
35	33		P6_3			TXD0/SDA0			
36	34		P6_2			RXD0/SCL0			
37	35		P6_1			CLK0			
38	36		P6_0			CTS0/RTS0			
39	37		P5_7						RDY/CLKOUT
40	38		P5_6						ALE
41	39		P5_5						HOLD
42	40		P5_4						HLDA
43	41		P5_3						BCLK
44	42		P5_2						RD
45	43		P5_1						WRH/BHE
46	44		P5_0						WRL/WR
47	45		P4_7					1	CS3
48	46		P4_6						CS2
49	47		 P4_5					1	CS1
50	48		 P4_4					1	CS0

FP: PRQP0100JB-A (100P6S-A), GP: PLQP0100KB-A (100P6Q-A)

Table 1.4List of Pin Names (2)

	No.	Control		Interrupt			Analog	CAN Module	
FP	GP	Pin	Port	Pin	Timer Pin	UART Pin	Pin	Pin	Bus Control Pin
51	49		P4_3						A19
52	50		P4_2						A18
53	51		P4_1						A17
54	52		P4_0						A16
55	53		P3_7						A15
56	54		P3_6						A14
57	55		P3_5						A13
58	56		P3_4						A12
59	57		P3_3						A11
60	58		P3_2						A10
61	59		P3_1						A9
62		VCC2	10_1						///
63	61	1002	P3_0						A8(/-/D7)
64		VSS	10_0						
65	63	V00	P2_7				AN2_7		A7(/D7/D6)
66	64		P2_6				AN2_7		A6(/D6/D5)
67	65		P2_5				AN2_0		A5(/D5/D4)
68	66		P2_3				AN2_3		A3(/D3/D4) A4(/D4/D3)
69	67								
69 70			P2_3				AN2_3		A3(/D3/D2)
	68		P2_2				AN2_2		A2(/D2/D1)
71 72	69		P2_1				AN2_1		A1(/D1/D0)
	70		P2_0				AN2_0		A0(/D0/-)
73	71		P1_7	INT5					D15
74	72		P1_6	INT4					D14
75	73		P1_5	INT3					D13
76	74		P1_4						D12
77	75		P1_3						D11
78	76		P1_2						D10
79	77		P1_1						D9
80	78		P1_0						D8
81	79		P0_7				AN0_7		D7
82	80		P0_6				AN0_6		D6
83	81		P0_5				AN0_5		D5
84	82		P0_4				AN0_4		D4
85	83		P0_3				AN0_3		D3
86	84		P0_2				AN0_2		D2
87	85		P0_1				AN0_1		D1
88	86		P0_0				AN0_0		D0
89	87		P10_7	KI3			AN7		
90	88		P10_6	KI2			AN6		
91	89		P10_5	KI1			AN5		
92	90		P10_4	KI0			AN4		
93	91		P10_3				AN3		
94	92		P10_2				AN2		
95	93		P10_1				AN1		
96		AVSS							
97	95		P10_0				AN0		
98		VREF							
99		AVCC							
100	98		P9_7				ADTRG		

FP: PRQP0100JB-A (100P6S-A), GP: PLQP0100KB-A (100P6Q-A)

1.6 Pin Functions

Tables 1.5 to 1.7 list the Pin Functions.

Signal Name	Pin Name	I/O Type	Description
Power supply	VCC1, VCC2,	1	Apply 4.2 to 5.5 V (T/V-ver.), 3.0 to 5.5 V (Normal-ver.) to the VCC1
input	VSS		and VCC2 pins and 0 V to the VSS pin. The VCC apply condition is
			that VCC2 = VCC1 $^{(1)}$.
Analog power	AVCC, AVSS	I	Applies the power supply for the A/D converter. Connect the AVCC
supply input	,		pin to VCC1. Connect the AVSS pin to VSS.
Reset input	RESET	I	The MCU is in a reset state when applying "L" to the this pin.
CNVSS	CNVSS		Switches processor mode. Connect this pin to VSS to when afte
			a reset to start up in single-chip mode. Connect this pin to VCC1
			to start up in microprocessor mode.
External data	BYTE	I	Switches the data bus in external memory space. The data bus
bus width			is 16-bit long when the this pin is held "L" and 8-bit long wher
select input			the this pin is held "H". Set it to either one. Connect this pin to
			VSS when single-chip mode.
Bus control	D0 to D7	I/O	Inputs and outputs data (D0 to D7) when these pins are set as
pins			the separate bus.
pine	D8 to D15	I/O	Inputs and outputs data (D8 to D15) when external 16-bit data
	2010 210		bus is set as the separate bus.
	A0 to A19	0	Output address bits (A0 to A19).
	A0/D0 to A7/D7	I/O	Input and output data (D0 to D7) and output address bits (A0 to
		1// 0	A7) by time-sharing when external 8-bit data bus are set as the
			multiplexed bus.
	A1/D0 to A8/D7	I/O	Input and output data (D0 to D7) and output address bits (A1 to
		1/0	A8) by time-sharing when external 16-bit data bus are set as the
			multiplexed bus.
	CS0 to CS3	0	Output $\overline{\text{CS0}}$ to $\overline{\text{CS3}}$ signals. $\overline{\text{CS0}}$ to $\overline{\text{CS3}}$ are chip-select signals
	000100000		to specify an external space.
	WRL/WR	0	Output WRL, WRH, (WR, BHE), RD signals. WRL and WRH o
	WRH/BHE	Ŭ	BHE, and WR can be switched by program.
	RD		• WRL, WRH, and RD are selected
			The WRL signal becomes "L" by writing data to an even address
			in an external memory space.
			The WRH signal becomes "L" by writing data to an odd address
			in an external memory space.
			The RD pin signal becomes "L" by reading data in an externa
			memory space.
			• WR, BHE, and RD are selected
			The WR signal becomes "L" by writing data in an externa
			memory space.
			The RD signal becomes "L" by reading data in an externa
			memory space.
			The BHE signal becomes "L" by accessing an odd address.
			Select WR, BHE, and RD for an external 8-bit data bus.
	ALE	0	ALE is a signal to latch the address.
		0	While the HOLD pin is held "L", the MCU is placed in a hold
	HOLD		state.
		0	In a hold state, HLDA outputs a "L" signal.
	HLDA	0	While applying a "L" signal to the RDY pin, the MCU is placed in
	RDY		a wait state.
		1	a wan slate.

NOTE:

1. In this manual, hereafter, VCC refers to VCC1 unless otherwise noted.

Table 1.6 Pin Functions (2)

			I
Signal Name	Pin Name	I/O Type	
Main clock	XIN	I	I/O pins for the main clock oscillation circuit. Connect a ceramic
input			resonator or crystal oscillator between XIN and XOUT ⁽¹⁾ .
Main clock	XOUT	0	To use the external clock, input the clock from XIN and leave
output			XOUT open.
Sub clock	XCIN	I	I/O pins for a sub clock oscillation circuit. Connect a crystal
input			oscillator between XCIN and XCOUT ⁽¹⁾ .
Sub clock	XCOUT	0	To use the external clock, input the clock from XCIN and leave
output			XCOUT open.
BCLK output	BCLK	0	Outputs the BCLK signal.
Clock output	CLKOUT	0	The clock of the same cycle as fC, f8, or f32 is output.
INT interrupt input	INT0 to INT5	I	Input pins for the INT interrupt.
NMI interrupt	NMI	I	Input pin for the NMI interrupt.
input			
Key input	KI0 to KI3	I	Input pins for the key input interrupt.
interrupt input			
Timer A	TA0OUT to TA4OUT	I/O	These are timer A0 to timer A4 I/O pins.
	TA0IN to TA4IN	I	These are timer A0 to timer A4 input pins.
	ZP	I	Input pin for the Z-phase.
Timer B	TB0IN to TB5IN		These are timer B0 to timer B5 input pins.
Three-phase motor	$\overline{U, \overline{U}, V, \overline{V}, W, \overline{W}}$	0	These are Three-phase motor control output pins.
control output			
Serial interface	CTS0 to CTS2		These are transmit control input pins.
	RTS0 to RTS2	0	These are receive control output pins.
	CLK0 to CLK3	I/O	These are transfer clock I/O pins.
	RXD0 to RXD2		These are serial data input pins.
	SIN3		These are serial data input pins.
	TXD0 to TXD2	0	These are serial data output pins.
	SOUT3	0	These are serial data output pins.
	CLKS1	0	This is output pin for transfer clock output from multiple pins
			function.
I ² C mode	SDA0 to SDA2	I/O	These are serial data I/O pins.
	SCL0 to SCL2	I/O	These are transfer clock I/O pins. (however, SCL2 for the
			N-channel open drain output.)
Reference	VREF	1	Applies the reference voltage for the A/D converter and D/A
voltage input			converter.
A/D converter	AN0 to AN7	1	Analog input pins for the A/D converter.
AD converter		I	
	AN0_0 to AN0_7 AN2_0 to AN2_7		
	ADTRG		This is an A/D trigger input pin.
	ANEX0	I/O	This is the extended analog input pin for the A/D converter,
			and is the output in external op-amp connection mode.
	ANEX1	I	This is the extended analog input pin for the A/D converter.
D/A converter	DA0, DA1	0	These are the output pins for the D/A converter.
CAN module	CRX0, CRX1	I	These are the input pins for the CAN module.
	CTX0, CTX1	0	These are the output pins for the CAN module.
: Input O:		put/Outpu	

I: Input O: Output I/O: Input/Output

NOTE:

1. Ask the oscillator maker the oscillation characteristic.

Signal Name	Pin Name	I/O Type	Description
I/O port	P0_0 to P0_7	I/O	8-bit I/O ports in CMOS, having a direction register to select
	P1_0 to P1_7		an input or output.
	P2_0 to P2_7		Each pin is set as an input port or output port. An input port
	P3_0 to P3_7		can be set for a pull-up or for no pull-up in 4-bit unit by
	P4_0 to P4_7		program.
	P5_0 to P5_7		(however, P7_1 and P9_1 for the N-channel open drain
	P6_0 to P6_7		output.)
	P7_0 to P7_7		
	P8_0 to P8_4		
	P8_6, P8_7		
	P9_0 to P9_7		
	P10_0 to P10_7		
Input port	P8_5	I	Input pin for the NMI interrupt.
			Pin states can be read by the P8_5 bit in the P8 register.

Table 1.7 Pin Functions (3)

I: Input O: Output I/O: Input/Output

2. Central Processing Unit (CPU)

Figure 2.1 shows the CPU Registers. The CPU has 13 registers. Of these, R0, R1, R2, R3, A0, A1, and FB configure a register bank. There are two register banks.

Figure 2.1 CPU Registers

2.1 Data Registers (R0, R1, R2, and R3)

The R0 register consists of 16 bits, and is used mainly for transfers and arithmetic/logic operations. R1 to R3 are the same as R0.

The R0 register can be separated between high (R0H) and low (R0L) for use as two 8-bit data registers. R1H and R1L are the same as R0H and R0L. Conversely R2 and R0 can be combined for use as a 32-bit data register (R2R0). R3R1 is analogous to R2R0.

2.2 Address Registers (A0 and A1)

The A0 register consists of 16 bits, and is used for address register indirect addressing and address register relative addressing. They also are used for transfers and arithmetic/logic operations. A1 is the same as A0.

In some instructions, A1 and A0 can be combined for use as a 32-bit address register (A1A0).
2.3 Frame Base Register (FB)

FB is configured with 16 bits, and is used for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB is configured with 20 bits, indicating the start address of an interrupt vector table.

2.5 Program Counter (PC)

PC is configured with 20 bits, indicating the address of an instruction to be executed.

2.6 User Stack Pointer (USP), Interrupt Stack Pointer (ISP)

Stack pointer (SP) comes in two types: USP and ISP, each configured with 16 bits. Your desired type of stack pointer (USP or ISP) can be selected by the U flag of FLG.

2.7 Static Base Register (SB)

SB is configured with 16 bits, and is used for SB relative addressing.

2.8 Flag Register (FLG)

FLG consists of 11 bits, indicating the CPU status.

2.8.1 Carry Flag (C Flag)

This flag retains a carry, borrow, or shift-out bit that has occurred in the arithmetic/logic unit.

2.8.2 Debug Flag (D Flag)

This flag is used exclusively for debugging purpose. During normal use, set to 0.

2.8.3 Zero Flag (Z Flag)

This flag is set to 1 when an arithmetic operation resulted in 0; otherwise, it is 0.

2.8.4 Sign Flag (S Flag)

This flag is set to 1 when an arithmetic operation resulted in a negative value; otherwise, it is 0.

2.8.5 Register Bank Select Flag (B Flag)

Register bank 0 is selected when this flag is 0; register bank 1 is selected when this flag is 1.

2.8.6 Overflow Flag (O Flag)

This flag is set to 1 when the operation resulted in an overflow; otherwise, it is 0.

2.8.7 Interrupt Enable Flag (I Flag)

This flag enables a maskable interrupt. Maskable interrupts are disabled when the I flag is 0, and are enabled when the I flag is 1. The I flag is set to 0 when the interrupt request is accepted.

2.8.8 Stack Pointer Select Flag (U Flag)

ISP is selected when the U flag is 0; USP is selected when the U flag is 1. The U flag is set to 0 when a hardware interrupt request is accepted or an INT instruction for software interrupt Nos. 0 to 31 is executed.

2.8.9 Processor Interrupt Priority Level (IPL)

IPL is configured with three bits, for specification of up to eight processor interrupt priority levels from level 0 to level 7.

If a requested interrupt has priority greater than IPL, the interrupt request is enabled.

2.8.10 Reserved Area

When white to this bit, write 0. When read, its content is undefined.

3. Memory

Figure 3.1 shows a Memory Map. The address space extends the 1 Mbyte from address 00000h to FFFFh. The internal ROM is allocated in a lower address direction beginning with address FFFFh. For example, a 128-Kbyte internal ROM is allocated to the addresses from E0000h to FFFFFh.

As for the flash memory version, 4-Kbyte space (block A) exists in 0F000h to 0FFFFh. 4-Kbyte space is mainly for storing data. In addition to storing data, 4-Kbyte space also can store programs.

The fixed interrupt vector table is allocated to the addresses from FFFDCh to FFFFFh. Therefore, store the start address of each interrupt routine here.

The internal RAM is allocated in an upper address direction beginning with address 00400h. For example, a 5-Kbyte internal RAM is allocated to the addresses from 00400h to 017FFh. In addition to storing data, the internal RAM also stores the stack used when calling subroutines and when interrupts are generated.

The Special Function Registers (SFRs) are allocated to the addresses from 00000h to 003FFh. Peripheral function control registers are located here. Of the SFR, any area which has no functions allocated is reserved for future use and cannot be accessed by user.

The special page vector table is allocated to the addresses from FFE00h to FFFDBh. This vector is used by the JMPS or JSRS instruction. For details, refer to **M16C/60**, **M16C/20**, **M16C/Tiny Series Software Manual**. In memory expansion and microprocessor modes, some areas are reserved for future use and cannot be used by users.

NOTES:

1. During memory expansion mode or microprocessor mode, cannot be used.

2. In memory expansion mode, cannot be used.

3. As for the flash memory version, 4-Kbyte space (block A) exists.

4. When using the masked ROM version, write nothing to internal ROM area.

5. Shown here is a memory map for the case where the PM10 bit in the PM1 register is 1 (block A enabled, addresses 10000h to 26FFFh for CS2 area) and the PM13 bit in the PM1 register is 1 (internal RAM area is expanded over 192 Kbytes).

Figure 3.1 Memory Map

4. Special Function Registers (SFRs)

An SFR (Special Function Register) is a control register for a peripheral function. Tables 4.1 to 4.16 list the SFR Information.

Table 4.1	SFR	Information	(1) ⁽³⁾
-----------	-----	-------------	----	------------------

Address	Register	Symbol	After Reset
0000h		Cynibol	
0001h			
0002h			
0003h			
0004h	Processor Mode Register 0 ⁽¹⁾	PM0	00000000b (CNVSS pin is "L") 00000011b (CNVSS pin is "H")
0005h	Processor Mode Register 1	PM1	00001000b
0006h	System Clock Control Register 0	CM0	01001000b
0007h	System Clock Control Register 1	CM1	0010000b
0008h	Chip Select Control Register	CSR	0000001b
0009h	Address Match Interrupt Enable Register	AIER	XXXXXX00b
000Ah	Protect Register	PRCR	XX00000b
000Bh			
000Ch	Oscillation Stop Detection Register (2)	CM2	0X00000b
000Dh			
000Eh	Watchdog Timer Start Register	WDTS	XXh
000Fh	Watchdog Timer Control Register	WDC	00XXXXXb
0010h			00h
0011h	Address Match Interrupt Register 0	RMAD0	00h
0012h		J	X0h
0013h		4	005
0014h	Address Motob Interrupt Decister 1	DMAD	00h
0015h	Address Match Interrupt Register 1	RMAD1	00h
0016h 0017h		<u> </u>	X0h
0018h 0019h			
0019h 001Ah		1 1	
001Ah 001Bh	Chip Select Expansion Control Register	CSE	00h
001Bh 001Ch	PLL Control Register 0	PLC0	0001X010b
001Ch 001Dh		1 200	000170100
001Dh 001Eh	Processor Mode Register 2	PM2	XXX00000b
001En		1 1112	
001FI 0020h		1 1	XXh
002011 0021h	DMA0 Source Pointer	SAR0	XXh
0021h			XXh
0022h		1	
0020h			XXh
0025h	DMA0 Destination Pointer	DAR0	XXh
0026h			XXh
0027h			
0028h	DMA0 Transfer Counter	TCR0	XXh
0029h		10110	XXh
002Ah			
002Bh			
002Ch	DMA0 Control Register	DM0CON	00000X00b
002Dh		I]	
002Eh		4	
002Fh		J	
0030h	DMA1 Course Deinter	04.54	XXh
0031h	DMA1 Source Pointer	SAR1	XXh
0032h		4	XXh
0033h			
0034h	DMA1 Destination Pointer		XXh
0035h	DMA1 Destination Pointer	DAR1	XXh XXh
0036h 0037h		1 1	XXh
0037h 0038h		1 1	XXh
0038h 0039h	DMA1 Transfer Counter	TCR1	XXn XXh
0039n 003Ah		1 1	
003An 003Bh		1 1	h
003Bh	DMA1 Control Register	DM1CON	00000X00b
003Ch			00000000
003Eh		1 1	
003Eh		1 1	
		•	

X: Undefined

NOTES:

Bits PM00 and PM01 in the PM0 register do not change at software reset, watchdog timer reset and oscillation stop detection reset.
 Bits CM20, CM21, and CM27 in the CM2 register do not change at oscillation stop detection reset.
 Blank spaces are reserved. No access is allowed.

Table 4.2 SFR Information (2) ⁽¹⁾

Address	Register	Symbol	After Reset
0040h	CAN0/1 Wake-up Interrupt Control Register	C01WKIC	XXXXX000b
0041h	CAN0/1 Wake-up Interrupt Control Register	CORECIC	XXXXX000b
0042h 0043h	CANO Successful Transmission Interrupt Control Register	COTRMIC	XXXXX000b
004311 0044h	INT3 Interrupt Control Register	INT3IC	XX00X000b
0044h	Timer B5 Interrupt Control Register	TB5IC	XXXXX000b
	Timer B4 Interrupt Control Register	TB4IC	
0046h	UART1 Bus Collision Detection Interrupt Control Register	U1BCNIC	XXXXX000b
0047h	Timer B3 Interrupt Control Register	TB3IC	XXXXX000h
004711	UART0 Bus Collision Detection Interrupt Control Register	U0BCNIC	XXXXX000b
0048h	CAN1 Successful Reception Interrupt Control Register	C1RECIC	XX00X000b
004011	INT5 Interrupt Control Register	INT5IC	
	CAN1 Successful Transmission Interrupt Control Register	C1TRMIC	
0049h	SI/O3 Interrupt Control Register	S3IC	XX00X000b
	INT4 Interrupt Control Register	INT4IC	
004Ah	UART2 Bus Collision Detection Interrupt Control Register	U2BCNIC	XXXXX000b
004Bh	DMA0 Interrupt Control Register	DM0IC	XXXXX000b
004Ch	DMA1 Interrupt Control Register	DM1IC C01ERRIC	XXXXX000b
004Dh	CAN0/1 Error Interrupt Control Register		XXXXX000b
004Eh	A/D Conversion Interrupt Control Register Key Input Interrupt Control Register	ADIC KUPIC	XXXXX000b
004Fh	UART2 Transmit Interrupt Control Register	S2TIC	XXXXX000b
004Fn 0050h	UART2 Receive Interrupt Control Register	S2RIC	XXXXX000b
0050h 0051h	UARTO Transmit Interrupt Control Register	SOTIC	XXXXX000b
0051h 0052h	UARTO Receive Interrupt Control Register	SORIC	XXXXX000b
0052h 0053h	UART1 Transmit Interrupt Control Register	SITIC	XXXXX000b
0053h 0054h	UART1 Receive Interrupt Control Register	S1RIC	XXXXX000b
0055h	Timer A0 Interrupt Control Register	TAOIC	XXXXX000b
0056h	Timer A1 Interrupt Control Register	TA1IC	XXXXX000b
0057h	Timer A2 Interrupt Control Register	TA2IC	XXXXX000b
0058h	Timer A3 Interrupt Control Register	TA3IC	XXXXX000b
0059h	Timer A4 Interrupt Control Register	TA4IC	XXXXX000b
005Ah	Timer B0 Interrupt Control Register	TBOIC	XXXXX000b
005Bh	Timer B1 Interrupt Control Register	TB1IC	XXXXX000b
005Ch	Timer B2 Interrupt Control Register	TB2IC	XXXXX000b
005Dh	INT0 Interrupt Control Register	INTOIC	XX00X000b
005Eh	INT1 Interrupt Control Register	INT1IC	XX00X000b
005Fh	INT2 Interrupt Control Register	INT2IC	XX00X000b
0060h			XXh
0061h			XXh
0062h	CAN0 Message Box 0: Identifier / DLC		XXh
0063h			XXh
0064h			XXh
0065h			XXh
0066h			XXh
0067h			XXh
0068h			XXh
0069h	CAN0 Message Box 0: Data Field		XXh
006Ah 006Bh			XXh XXh
006Bh			XXh
006Ch			XXh
006Eh		<u> </u>	XXh
006Fh	CAN0 Message Box 0: Time Stamp		XXh
0070h		<u> </u>	XXh
0070h			XXh
0072h			XXh
0073h	CAN0 Message Box 1: Identifier / DLC		XXh
0074h			XXh
0075h			XXh
0076h			XXh
0077h			XXh
0078h			XXh
0079h	CAN0 Message Box 1: Data Field		XXh
007Ah	or the message box 1. Data Fleid		XXh
007Bh			XXh
007Ch			XXh
00704			XXh
007Dh			
007Dh 007Eh 007Fh	CAN0 Message Box 1: Time Stamp		XXh XXh

X: Undefined

NOTE:

1. Blank space is reserved. No access is allowed.

Table 4.3 SFR Information (3)

Address	Register	Symbol	After Reset
0080h	<u>_</u>		XXh
0081h			XXh
0082h	CAN0 Message Box 2: Identifier / DLC		XXh
0083h			XXh
0084h			XXh XXh
0085h			XXn XXh
0086h 0087h			XXh
0088h			XXh
0089h	CANO Massaga Day Or Data Field		XXh
008Ah	CAN0 Message Box 2: Data Field		XXh
008Bh			XXh
008Ch			XXh
008Dh			XXh
008Eh	CAN0 Message Box 2: Time Stamp		XXh XXh
008Fh 0090h			XXh
00901h			XXh
0092h			XXh
0093h	CAN0 Message Box 3: Identifier / DLC		XXh
0094h			XXh
0095h			XXh
0096h			XXh
0097h			XXh
0098h			XXh XXh
0099h 009Ah	CAN0 Message Box 3: Data Field		XXn XXh
009An			XXh
009Ch			XXh
009Dh			XXh
009Eh	CAN0 Message Box 3: Time Stamp		XXh
009Fh	CANO Message Box 3. Time Stamp		XXh
00A0h			XXh
00A1h			XXh
00A2h	CAN0 Message Box 4: Identifier / DLC		XXh
00A3h 00A4h	-		XXh XXh
00A411 00A5h			XXh
00A6h			XXh
00A7h			XXh
00A8h			XXh
00A9h	CAN0 Message Box 4: Data Field		XXh
00AAh	CANO Message Dox 4. Data Fleid		XXh
00ABh			XXh
00ACh			XXh
00ADh 00AEh			XXh XXh
00AEn 00AFh	CAN0 Message Box 4: Time Stamp		XXn XXh
00AFI			XXh
00B0h			XXh
00B2h	CANO Massaga Bay E. Identifiar / DI C		XXh
00B3h	CAN0 Message Box 5: Identifier / DLC		XXh
00B4h			XXh
00B5h			XXh
00B6h			XXh
00B7h			XXh
00B8h 00B9h			XXh XXh
00B9h 00BAh	CAN0 Message Box 5: Data Field		XXh
00BAn 00BBh			XXh
00BCh			XXh
00BDh			XXh
00BEh	CANO Magagage Bay E: Timo Stomp		XXh
00BFh	CAN0 Message Box 5: Time Stamp		XXh
X: Undofin			

Table 4.4 SFR Information (4)

Address	Register	Symbol	After Reset
00C0h			XXh
00C1h			XXh
00C2h	CAN0 Message Box 6: Identifier / DLC		XXh
00C3h 00C4h			XXh XXh
00C4n 00C5h			XXh
00C6h			XXh
00C7h			XXh
00C8h			XXh
00C9h	CAN0 Message Box 6: Data Field		XXh
00CAh			XXh
00CBh 00CCh			XXh XXh
00CCh			XXh
00CEh			XXh
00CFh	CAN0 Message Box 6: Time Stamp		XXh
00D0h			XXh
00D1h			XXh
00D2h	CAN0 Message Box 7: Identifier / DLC		XXh
00D3h 00D4h			XXh XXh
00D4n 00D5h			XXh
00D6h			XXh
00D7h			XXh
00D8h			XXh
00D9h	CAN0 Message Box 7: Data Field		XXh
00DAh			XXh XXh
00DBh 00DCh			XXn XXh
00DDh			XXh
00DEh	CANO Magaga Day 7: Tima Stamp		XXh
00DFh	CAN0 Message Box 7: Time Stamp		XXh
00E0h			XXh
00E1h			XXh
00E2h 00E3h	CAN0 Message Box 8: Identifier / DLC		XXh XXh
00E3n			XXh
00E5h			XXh
00E6h			XXh
00E7h			XXh
00E8h			XXh
00E9h 00EAh	CAN0 Message Box 8: Data Field		XXh XXh
00EAn 00EBh			XXn XXh
00ECh			XXh
00EDh			XXh
00EEh	CAN0 Message Box 8: Time Stamp		XXh
00EFh			XXh
00F0h			XXh XXh
00F1h 00F2h			XXn XXh
00F2h	CAN0 Message Box 9: Identifier / DLC		XXh
00F4h			XXh
00F5h			XXh
00F6h			XXh
00F7h			XXh
00F8h 00F9h			XXh XXh
00F9h	CAN0 Message Box 9: Data Field		XXh
00FBh			XXh
00FCh			XXh
00FDh			XXh
00FEh	CAN0 Message Box 9: Time Stamp		XXh
00FFh	· ·		XXh

Table 4.5 SFR Information (5)

Address	Register	Symbol	After Reset
0100h			XXh
0101h			XXh
0102h	CAN0 Message Box 10: Identifier / DLC		XXh
0103h			XXh
0104h			XXh XXh
0105h 0106h			XXh
0100h			XXh
0108h			XXh
0109h	CAN0 Message Box 10: Data Field		XXh
010Ah	CANO MESSAGE DOX TO. Data Field		XXh
010Bh			XXh
010Ch			XXh XXh
010Dh 010Eh			XXh
010En	CAN0 Message Box 10: Time Stamp		XXh
0110h			XXh
0111h			XXh
0112h	CAN0 Message Box 11: Identifier / DLC		XXh
0113h	OANO Message Dox 11. Identilier / DEO		XXh
0114h			XXh
0115h			XXh
0116h 0117h			XXh XXh
0117h			XXh
0119h			XXh
011Ah	CAN0 Message Box 11: Data Field		XXh
011Bh			XXh
011Ch			XXh
011Dh			XXh
011Eh	CAN0 Message Box 11: Time Stamp		XXh XXh
011Fh 0120h			XXh
012011 0121h			XXh
0122h	CANO Massage Day 10: Identifier / DLO		XXh
0123h	CAN0 Message Box 12: Identifier / DLC		XXh
0124h			XXh
0125h			XXh
0126h			XXh XXh
0127h 0128h			XXh
0128h			XXh
012Ah	CAN0 Message Box 12: Data Field		XXh
012Bh			XXh
012Ch			XXh
012Dh			XXh
012Eh	CAN0 Message Box 12: Time Stamp		XXh
012Fh 0130h			XXh XXh
0130n 0131h			XXh
0132h			XXh
0133h	CAN0 Message Box 13: Identifier / DLC		XXh
0134h			XXh
0135h			XXh
0136h			XXh
0137h			XXh XXh
0138h 0139h			XXh
0139h	CAN0 Message Box 13: Data Field		XXh
013Bh			XXh
013Ch			XXh
013Dh			XXh
013Eh	CAN0 Message Box 13: Time Stamp		XXh
013Fh			XXh

Table 4.6 SFR Information (6) ⁽¹⁾

Address	Register	Symbol	After Reset
0140h			XXh
0141h			XXh
0142h	CAN0 Message Box 14: Identifier /DLC		XXh
0143h 0144h	-		XXh XXh
0144n 0145h			XXh
0146h			XXh
0147h			XXh
0148h			XXh
0149h	CAN0 Message Box 14: Data Field		XXh
014Ah 014Bh	-		XXh XXh
014Bh			XXh
014Dh			XXh
014Eh	CAN0 Message Box 14: Time Stamp		XXh
014Fh	OANO Message Dox 14. Time Stamp		XXh
0150h			XXh
0151h 0152h			XXh XXh
0152h	CAN0 Message Box 15: Identifier /DLC		XXh
0154h			XXh
0155h			XXh
0156h			XXh
0157h			XXh
0158h 0159h			XXh XXh
0159h	CAN0 Message Box 15: Data Field		XXh
015Bh			XXh
015Ch			XXh
015Dh			XXh
015Eh	CAN0 Message Box 15: Time Stamp		XXh XXh
015Fh 0160h			XXh
0161h			XXh
0162h	CAN0 Global Mask Register	COGMR	XXh
0163h	CANO GIODAI MASK REGISIEI	COGINIA	XXh
0164h			XXh
0165h 0166h			XXh XXh
0167h			XXh
0168h	OANIA Local Mark A Decision		XXh
0169h	CAN0 Local Mask A Register	COLMAR	XXh
016Ah			XXh
016Bh			XXh
016Ch 016Dh			XXh XXh
016Eh			XXh
016Fh	CAN0 Local Mask B Register	COLMBR	XXh
0170h			XXh
0171h			XXh
0172h			
0173h 0174h			
0174n 0175h			
0176h			
0177h			
0178h			
0179h			
017Ah 017Bh			
017Bh			
017Dh			
017Dh 017Eh 017Fh			

X: Undefined

NOTE:

1. Blank spaces are reserved. No access is allowed.

Table 4.7 SFR Information (7) (2)

Address	Register	Symbol	After Reset
0180h			
0181h			
0182h			
0183h			
0184h			
0185h			
0186h			
0187h			
0188h 0189h			
018Ah			
018Bh			
018Ch			
018Dh			
018Eh			
018Fh			
0190h			
0191h			
0192h			
0193h			
0194h			
0195h			
0196h			
0197h 0198h			
0198h			
0199h			
019Bh			
019Ch			
019Dh			
019Eh			
019Fh			
01A0h			
01A1h			
01A2h			
01A3h			
01A4h			
01A5h			
01A6h			
01A7h 01A8h			
01A8h			
01AAh			
01ABh			
01ACh			
01ADh			
01AEh			
01AFh			
01B0h			
01B1h			
01B2h			
01B3h			
01B4h 01B5h	Flash Memory Control Register 1 (1)	FMR1	0X00XX0Xb
01B5h 01B6h			αλυλλυυλυ
01B6h	Flash Memory Control Register 0 (1)	FMR0	0000001b
01B8h			00h
01B9h	Address Match Interrupt Register 2	RMAD2	00h
01BAh			X0h
01BBh	Address Match Interrupt Enable Register 2	AIER2	XXXXXX00b
01BCh	. ×		00h
01BDh	Address Match Interrupt Register 3	RMAD3	00h
01BEh			X0h
01BFh			
X. I Indefine			

X: Undefined

NOTES:

These registers are included in the flash memory version. Cannot be accessed by users in the mask ROM version.
 Blank spaces are reserved. No access is allowed.

Table 4.8 SFR Information (8) (1)

Address	Register	Symbol	After Reset
01C0h	Timer B3, B4, B5 Count Start Flag	TBSR	000XXXXb
01C1h	Timer Bo, B4, Bo count ofart hag	1bon	
01C2h			XXh
01C3h	Timer A1-1 Register	TA11	XXh
01C4h			XXh
01C5h	Timer A2-1 Register	TA21	XXh
01C6h			XXh
01C0h	Timer A4-1 Register	TA41	XXh
01C7h	Three-Phase PWM Control Register 0	INVC0	00h
01C8h	Three-Phase PWM Control Register 1	INVC1	00h
01C3h	Three-Phase Output Buffer Register 0	IDB0	0011111b
01CAn	Three-Phase Output Buffer Register 1	IDB0	0011111b
01CDh	Dead Time Timer	DTT	XXh
01CDh	Timer B2 Interrupt Generation Frequency Set Counter	ICTB2	XXh
01CDh	Timer b2 interrupt deneration rifequency bet obunter	10162	
01CFh			XXh
01D0h	Timer B3 Register	TB3	XXh
01D1h			
01D2h	Timer B4 Register	ТВ4	XXh
01D3h	-		XXh
01D4h	Timer B5 Register	ТВ5 —	XXh
01D5h	-	 	XXh
01D6h			
01D7h			
01D8h			
01D9h			
01DAh			
01DBh	Timer B3 Mode Register	TB3MR	00XX0000b
01DCh	Timer B4 Mode Register	TB4MR	00XX0000b
01DDh	Timer B5 Mode Register	TB5MR	00XX0000b
01DEh	Interrupt Source Select Register 0	IFSR0	00XXX000b
01DFh	Interrupt Source Select Register 1	IFSR1	00h
01E0h	SI/O3 Transmit/Receive Register	S3TRR	XXh
01E1h			
01E2h	SI/O3 Control Register	S3C	0100000b
01E3h	SI/O3 Bit Rate Register	S3BRG	XXh
01E4h			
01E5h			
01E6h			
01E7h			
01E8h			
01E9h			
01EAh			
01EBh			
01ECh	UART0 Special Mode Register 4	U0SMR4	00h
01EDh	UART0 Special Mode Register 3	U0SMR3	000X0X0Xb
01EEh	UART0 Special Mode Register 2	U0SMR2	X000000b
01EFh	UART0 Special Mode Register	U0SMR	X000000b
01F0h	UART1 Special Mode Register 4	U1SMR4	00h
01F1h	UART1 Special Mode Register 3	U1SMR3	000X0X0Xb
01F2h	UART1 Special Mode Register 2	U1SMR2	X000000b
01F3h	UART1 Special Mode Register	U1SMR	X000000b
01F4h	UART2 Special Mode Register 4	U2SMR4	00h
01F5h	UART2 Special Mode Register 3	U2SMR3	000X0X0Xb
01F6h	UART2 Special Mode Register 2	U2SMR2	X000000b
01F7h	UART2 Special Mode Register	U2SMR	X000000b
01F8h	UART2 Transmit/Receive Mode Register	U2MR	00h
01F9h	UART2 Bit Rate Register	U2BRG	XXh
01FAh			XXh
01FBh	UART2 Transmit Buffer Register	U2TB	XXh
01FCh	UART2 Transmit/Receive Control Register 0	U2C0	00001000b
01FDh	UART2 Transmit/Receive Control Register 1	U2C1	00000010b
01FEh			XXh
01FEn	UART2 Receive Buffer Register	U2RB	XXh
VIFEII			771

X: Undefined

NOTE:

1. Blank spaces are reserved. No access is allowed.

Table 4.9 SFR Information (9)

0200hCAN0 Message Control Register 0COMCTL00201hCAN0 Message Control Register 1COMCTL10202hCAN0 Message Control Register 2COMCTL20203hCAN0 Message Control Register 3COMCTL30204hCAN0 Message Control Register 4COMCTL40205hCAN0 Message Control Register 5COMCTL50206hCAN0 Message Control Register 6COMCTL50206hCAN0 Message Control Register 7COMCTL60207hCAN0 Message Control Register 7COMCTL70208hCAN0 Message Control Register 9COMCTL90208hCAN0 Message Control Register 9COMCTL90208hCAN0 Message Control Register 10COMCTL100208hCAN0 Message Control Register 11COMCTL100208hCAN0 Message Control Register 12COMCTL110200hCAN0 Message Control Register 13COMCTL140200hCAN0 Message Control Register 13COMCTL140207hCAN0 Message Control Register 15COMCTL150210hCAN0 Message Control Register 15COMCTL140211hCAN0 Status RegisterCOCTLR0214hCAN0 Status RegisterCOSTR0214hCAN0 Interrupt Control RegisterCOICR0218hCAN0 Extended ID RegisterCOIDR0218hCAN0 Configuration RegisterCOIDR0218hCAN0 Configuration RegisterCOIDR0218hCAN0 Configuration RegisterCOIDR0219hCAN0 Configuration RegisterCOIDR	00h 00h
O202hCAN0 Message Control Register 2COMCTL20203hCAN0 Message Control Register 3COMCTL30204hCAN0 Message Control Register 4COMCTL40205hCAN0 Message Control Register 5COMCTL50206hCAN0 Message Control Register 7COMCTL60207hCAN0 Message Control Register 7COMCTL70208hCAN0 Message Control Register 8COMCTL70208hCAN0 Message Control Register 9COMCTL90209hCAN0 Message Control Register 10COMCTL100208hCAN0 Message Control Register 11COMCTL100208hCAN0 Message Control Register 12COMCTL100208hCAN0 Message Control Register 12COMCTL110208hCAN0 Message Control Register 12COMCTL120208hCAN0 Message Control Register 13COMCTL140208hCAN0 Message Control Register 15COMCTL140208hCAN0 Message Control Register 15COMCTL140208hCAN0 Message Control Register 15COMCTL140208hCAN0 Message Control Register 15COMCTL140218hCAN0 Status RegisterCOSTR0214hCAN0 Status RegisterCOSTR0214hCAN0 Interrupt Control RegisterCOICR0218hCAN0 Extended ID RegisterCOIDR0218hCAN0 Configuration BegisterCOIDR0218hCAN0 Configuration BegisterCOIDR0218hCAN0 Configuration BegisterCOIDR	00h 00h 00h 00h 00h 00h 00h 00h 00h 00h
O203hCAN0 Message Control Register 3COMCTL30203hCAN0 Message Control Register 4COMCTL40205hCAN0 Message Control Register 5COMCTL50206hCAN0 Message Control Register 6COMCTL50207hCAN0 Message Control Register 7COMCTL70208hCAN0 Message Control Register 7COMCTL70208hCAN0 Message Control Register 9COMCTL80209hCAN0 Message Control Register 9COMCTL9020AhCAN0 Message Control Register 10COMCTL10020BhCAN0 Message Control Register 11COMCTL11020ChCAN0 Message Control Register 12COMCTL12020DhCAN0 Message Control Register 13COMCTL12020DhCAN0 Message Control Register 14COMCTL14020FhCAN0 Message Control Register 15COMCTL140210hCAN0 Control RegisterCOMCTL150210hCAN0 Status RegisterCOSTR0213hCAN0 Status RegisterCOSTR0216hCAN0 Extended ID RegisterCOICR0218hCAN0 Extended ID RegisterCOIDR0214hCAN0 Configuration BegisterCOIDR0214hCAN0 Configuration BegisterCOIDR0214hCAN0 Configuration BegisterCOIDR0214hCAN0 Configuration BegisterCOIDR	00h 00h 00h 00h 00h 00h 00h 00h 00h 00h
D204hCAN0 Message Control Register 4COMCTL40204hCAN0 Message Control Register 5COMCTL50206hCAN0 Message Control Register 6COMCTL60207hCAN0 Message Control Register 7COMCTL70208hCAN0 Message Control Register 7COMCTL70208hCAN0 Message Control Register 9COMCTL80209hCAN0 Message Control Register 9COMCTL90204hCAN0 Message Control Register 10COMCTL100208hCAN0 Message Control Register 11COMCTL110208hCAN0 Message Control Register 12COMCTL120209hCAN0 Message Control Register 13COMCTL120200hCAN0 Message Control Register 14COMCTL14020FhCAN0 Message Control Register 15COMCTL150210hCAN0 Control RegisterCOMCTL150214hCAN0 Status RegisterCOSTR0216hCAN0 Status RegisterCOICR0218hCAN0 Extended ID RegisterCOIDR0214hCAN0 Extended ID RegisterCOIDR0214hCAN0 Configuration RegisterCOIDR0214hCAN0 Configuration RegisterCOIDR0214hCAN0 Configuration RegisterCOIDR0214hCAN0 Configuration RegisterCOIDR0214hCAN0 Configuration RegisterCOIDR0214hCAN0 Configuration RegisterCOIDR	00h 00h 00h 00h 00h 00h 00h 00h 00h 00h
O205hCAN0 Message Control Register 5COMCTL50205hCAN0 Message Control Register 6COMCTL60207hCAN0 Message Control Register 7COMCTL70208hCAN0 Message Control Register 8COMCTL80209hCAN0 Message Control Register 9COMCTL90208hCAN0 Message Control Register 9COMCTL90208hCAN0 Message Control Register 10COMCTL100208hCAN0 Message Control Register 11COMCTL110208hCAN0 Message Control Register 12COMCTL120208hCAN0 Message Control Register 13COMCTL120208hCAN0 Message Control Register 13COMCTL140208hCAN0 Message Control Register 14COMCTL140207hCAN0 Message Control Register 15COMCTL150210hCAN0 Control RegisterCOTLR0212hCAN0 Status RegisterCOSTR0214hCAN0 Interrupt Control RegisterCOICR0218hCAN0 Extended ID RegisterCOIDR0214hCAN0 Configuration BegisterCOIDR0214hCAN0 Configuration BegisterCOIDR0214hCAN0 Extended ID RegisterCOIDR0214hCAN0 Configuration BegisterCOIDR0214hCAN0 Configuration BegisterCOIDR0214hCAN0 Configuration BegisterCOIDR	00h 00h 00h 00h 00h 00h 00h 00h 00h 00h
0206hCAN0 Message Control Register 6COMCTL60206hCAN0 Message Control Register 7COMCTL70208hCAN0 Message Control Register 8COMCTL80209hCAN0 Message Control Register 9COMCTL90208hCAN0 Message Control Register 10COMCTL90208hCAN0 Message Control Register 10COMCTL100208hCAN0 Message Control Register 11COMCTL1100208hCAN0 Message Control Register 12COMCTL1120208hCAN0 Message Control Register 13COMCTL120208hCAN0 Message Control Register 13COMCTL130208hCAN0 Message Control Register 14COMCTL140208hCAN0 Message Control Register 15COMCTL150210hCAN0 Control RegisterCOMCTL150213hCAN0 Status RegisterCOSTR0214hCAN0 Interrupt Control RegisterCOICR0218hCAN0 Extended ID RegisterCOIDR0219hCAN0 Configuration BegisterCOIDR0214hCAN0 Configuration BegisterCOIDR0214hCAN0 Extended ID RegisterCOIDR0214hCAN0 Configuration BegisterCOIDR	00h 00h 00h 00h 00h 00h 00h 00h 00h
0206hCAN0 Message Control Register 6COMCTL60207hCAN0 Message Control Register 7COMCTL70208hCAN0 Message Control Register 8COMCTL80209hCAN0 Message Control Register 9COMCTL9020AhCAN0 Message Control Register 10COMCTL10020BhCAN0 Message Control Register 11COMCTL11020ChCAN0 Message Control Register 12COMCTL12020DhCAN0 Message Control Register 13COMCTL13020EhCAN0 Message Control Register 13COMCTL14020FhCAN0 Message Control Register 14COMCTL14020FhCAN0 Message Control Register 15COMCTL150210hCAN0 Control RegisterCOCTLR0213hCAN0 Status RegisterCOSTR0214hCAN0 Interrupt Control RegisterCOICR0218hCAN0 Extended ID RegisterCOIDR0219hCAN0 Configuration BegisterCOIDR021AhCAN0 Configuration BegisterCOIDR021AhCAN0 Configuration BegisterCOIDR021AhCAN0 Configuration BegisterCOIDR	00h 00h 00h 00h 00h 00h 00h 00h
0207hCAN0 Message Control Register 7COMCTL70208hCAN0 Message Control Register 8COMCTL80209hCAN0 Message Control Register 9COMCTL9020AhCAN0 Message Control Register 10COMCTL10020BhCAN0 Message Control Register 11COMCTL11020ChCAN0 Message Control Register 11COMCTL12020DhCAN0 Message Control Register 12COMCTL12020DhCAN0 Message Control Register 13COMCTL13020EhCAN0 Message Control Register 14COMCTL14020FhCAN0 Message Control Register 15COMCTL150210hCAN0 Control RegisterCOCTLR0212hCAN0 Status RegisterCOSTR0214hCAN0 Slot Status RegisterCOSTR0216hCAN0 Interrupt Control RegisterCOICR0218hCAN0 Extended ID RegisterCOIDR0218hCAN0 Configuration BegisterCOIDR0218hCAN0 Configuration BegisterCOIDR	00h 00h 00h 00h 00h 00h 00h
0208hCAN0 Message Control Register 8COMCTL80209hCAN0 Message Control Register 9COMCTL9020AhCAN0 Message Control Register 10COMCTL10020BhCAN0 Message Control Register 11COMCTL11020ChCAN0 Message Control Register 12COMCTL12020DhCAN0 Message Control Register 12COMCTL13020EhCAN0 Message Control Register 13COMCTL13020EhCAN0 Message Control Register 14COMCTL14020FhCAN0 Message Control Register 15COMCTL150210hCAN0 Control RegisterCOTLR0212hCAN0 Status RegisterCOSTR0213hCAN0 Status RegisterCOSTR0216hCAN0 Interrupt Control RegisterCOICR0218hCAN0 Extended ID RegisterCOIDR0214hCAN0 Extended ID RegisterCOIDR0214hCAN0 Configuration BegisterCOIDR0214hCAN0 Configuration BegisterCOIDR0214hCAN0 Extended ID RegisterCOIDR0214hCAN0 Configuration BegisterCOIDR0214hCAN0 Extended ID RegisterCOIDR0214hCAN0 Configuration BegisterCOIDR	00h 00h 00h 00h 00h 00h
O209hCAN0 Message Control Register 9COMCTL90209hCAN0 Message Control Register 10COMCTL100208hCAN0 Message Control Register 11COMCTL110200hCAN0 Message Control Register 12COMCTL120200hCAN0 Message Control Register 13COMCTL130202hCAN0 Message Control Register 13COMCTL140202hCAN0 Message Control Register 14COMCTL14020FhCAN0 Message Control Register 15COMCTL150210hCAN0 Control RegisterCOMCTL70211hCAN0 Control RegisterCOSTR0213hCAN0 Status RegisterCOSTR0216hCAN0 Interrupt Control RegisterCOICR0218hCAN0 Extended ID RegisterCOIDR0218hCAN0 Extended ID RegisterCOIDR0218hCAN0 Configuration BegisterCOIDR0218hCAN0 Configuration BegisterCOIDR0218hCAN0 Extended ID RegisterCOIDR0218hCAN0 Configuration BegisterCOIDR0218hCAN0 Configuration BegisterCOIDR0218hCAN0 Configuration BegisterCOIDR	00h 00h 00h 00h 00h 00h
020AhCAN0 Message Control Register 10COMCTL10020BhCAN0 Message Control Register 11COMCTL11020ChCAN0 Message Control Register 12COMCTL12020DhCAN0 Message Control Register 13COMCTL13020EhCAN0 Message Control Register 14COMCTL14020FhCAN0 Message Control Register 15COMCTL150210hCAN0 Control RegisterCOMCTL150211hCAN0 Status RegisterCOSTR0213hCAN0 Status RegisterCOSTR0214hCAN0 Status RegisterCOSTR0216hCAN0 Interrupt Control RegisterCOICR0218hCAN0 Extended ID RegisterCOIDR0219hCAN0 Extended ID RegisterCOIDR021AhCAN0 Configuration BegisterCOIDR	00h 00h 00h 00h 00h
020Bh CAN0 Message Control Register 11 COMCTL11 020Ch CAN0 Message Control Register 12 COMCTL12 020Dh CAN0 Message Control Register 13 COMCTL13 020Eh CAN0 Message Control Register 13 COMCTL14 020Eh CAN0 Message Control Register 14 COMCTL14 020Eh CAN0 Message Control Register 15 COMCTL15 0210h CAN0 Control Register COCTLR 0212h CAN0 Status Register COSTR 0213h CAN0 Status Register COSTR 0216h CAN0 Interrupt Control Register COICR 0218h CAN0 Extended ID Register COIDR 0219h CAN0 Extended ID Register COIDR 021Ah CAN0 Configuration Begister COIDR	00h 00h 00h 00h
020Ch CAN0 Message Control Register 12 COMCTL12 020Dh CAN0 Message Control Register 13 COMCTL13 020Eh CAN0 Message Control Register 14 COMCTL14 020Fh CAN0 Message Control Register 15 COMCTL15 0210h CAN0 Control Register COCTLR 0212h CAN0 Status Register COSTR 0213h CAN0 Slot Status Register COSSTR 0214h CAN0 Interrupt Control Register COICR 0215h CAN0 Interrupt Control Register COICR 0217h CAN0 Extended ID Register COIDR 0218h CAN0 Extended ID Register COIDR 0219h CAN0 Configuration Register COIDR	00h 00h 00h
020Dh CAN0 Message Control Register 13 COMCTL13 020Dh CAN0 Message Control Register 14 COMCTL14 020Fh CAN0 Message Control Register 15 COMCTL15 0210h CAN0 Control Register COCTLR 0212h CAN0 Status Register COSTR 0213h CAN0 Status Register COSTR 0214h CAN0 Slot Status Register COSSTR 0215h CAN0 Interrupt Control Register COICR 0218h CAN0 Extended ID Register COIDR 0219h CAN0 Configuration Begister COIDR	00h 00h
O20Eh CAN0 Message Control Register 14 COMCTL14 020Fh CAN0 Message Control Register 15 COMCTL15 0210h CAN0 Control Register COCTLR 0212h CAN0 Status Register COSTR 0213h CAN0 Status Register COSTR 0214h CAN0 Slot Status Register COSTR 0214h CAN0 Slot Status Register COSTR 0215h CAN0 Interrupt Control Register COICR 0218h CAN0 Extended ID Register COIDR 0219h CAN0 Configuration Begister COIDR	00h
020Fh CAN0 Message Control Register 15 COMCTL15 0210h CAN0 Control Register COCTLR 0211h CAN0 Status Register COSTR 0212h CAN0 Status Register COSTR 0214h CAN0 Slot Status Register COSSTR 0215h CAN0 Interrupt Control Register COICR 0216h CAN0 Interrupt Control Register COICR 0218h CAN0 Extended ID Register COIDR 0219h CAN0 Configuration Begister COIDR	
O210h CANO Control Register COCTLR O211h CANO Control Register COSTR O212h CANO Status Register COSTR O213h CANO Slot Status Register COSTR O214h CANO Slot Status Register COSTR O215h CANO Interrupt Control Register COICR O217h CANO Extended ID Register COIDR O218h CANO Extended ID Register COIDR O21Ah CANO Configuration Begister COIDR	
0211h CANO Control Register COUTER 0212h CANO Status Register COSTR 0213h CANO Slot Status Register COSTR 0214h CANO Slot Status Register COSTR 0215h CANO Interrupt Control Register COICR 0217h CANO Extended ID Register COIDR 0218h CANO Extended ID Register COIDR 0214h CANO Configuration Begister COIDR	X000001b
0212h CAN0 Status Register C0STR 0213h CAN0 Status Register C0STR 0214h CAN0 Slot Status Register C0SSTR 0216h CAN0 Interrupt Control Register C0ICR 0219h CAN0 Extended ID Register C0IDR 0219h CAN0 Configuration Begister C0IDR	X0X0000b
0213h CANO Status Register COSTR 0214h CANO Slot Status Register COSSTR 0215h CANO Interrupt Control Register COICR 0217h CANO Extended ID Register COIDR 0218h CANO Extended ID Register COIDR 021Ah CANO Configuration Begister COIDR	00h
0214h CANO Slot Status Register COSSTR 0215h CANO Interrupt Control Register COICR 0216h CANO Interrupt Control Register COICR 0218h CANO Extended ID Register COIDR 0219h CANO Configuration Begister COIDR	
0215h CANO Stot Status Register COSSTR 0216h CANO Interrupt Control Register COICR 0217h CANO Extended ID Register COIDR 0219h CANO Extended ID Register COIDR 021Ah CANO Configuration Begister COCONB	X000001b
0215h ColCR 0216h CAN0 Interrupt Control Register 0217h ColCR 0218h CAN0 Extended ID Register 0219h ColDR 021Ah CAN0 Configuration Begister	00h
0217h CANO Interrupt Control Register COICH 0218h CANO Extended ID Register COIDR 0219h CANO Configuration Begister COCONB	00h
0217h Call 0218h CAN0 Extended ID Register 0219h ColDR 021Ah CAN0 Configuration Begister	00h
0219h CANO Extended ID Register CODA	00h
0219h CANO Configuration Begister COCONB	00h
	00h
ood Dh	XXh
021Bh	XXh
021Ch CAN0 Receive Error Count Register CORECR	00h
021Dh CAN0 Transmit Error Count Register C0TECR	00h
021Eh CANO Time Stamp Register COTSR	00h
021Fn	00h
0220h CAN1 Message Control Register 0 C1MCTL0	00h
0221h CAN1 Message Control Register 1 C1MCTL1	00h
0222h CAN1 Message Control Register 2 C1MCTL2	00h
0223h CAN1 Message Control Register 3 C1MCTL3	00h
0224h CAN1 Message Control Register 4 C1MCTL4	00h
0225h CAN1 Message Control Register 5 C1MCTL5	00h
0226h CAN1 Message Control Register 6 C1MCTL6	00h
0227h CAN1 Message Control Register 7 C1MCTL7	00h
0228h CAN1 Message Control Register 8 C1MCTL8	00h
0229h CAN1 Message Control Register 9 C1MCTL9	00h
022Ah CAN1 Message Control Register 10 C1MCTL10	00h
022Bh CAN1 Message Control Register 11 C1MCTL11	00h
022Ch CAN1 Message Control Register 12 C1MCTL12	00h
022Dh CAN1 Message Control Register 13 C1MCTL13	00h
022Eh CAN1 Message Control Register 14 C1MCTL14	00h
022Eh CANT Message Control Register 15 C1MCTL15	00h
0220b	X000001b
023011 CAN1 Control Register C1CTLR	XX0X0000b
0232h CAN1 Status Register C1STR	00h
0233h	X000001b
0234h CAN1 Slot Status Register C1SSTR	00h
0235h	00h
0236h CAN1 Interrupt Control Register C1ICR	00h
0237h	00h
0238h CAN1 Extended ID Register C1IDR	00h
0239h	00h
023Ah CAN1 Configuration Register C1CONR	XXh
023Bh	
023Ch CAN1 Receive Error Count Register C1RECR	XXh
023Dh CAN1 Transmit Error Count Register C1TECR	
023Eb	XXh
023Fh CAN1 Time Stamp Register C1TSR	XXh 00h

Table 4.10 SFR Information (10) (1)

Address	Register	Symbol	After Reset
0240h			
0241h			
0242h	CAN0 Acceptance Filter Support Register	COAFS	XXh XXh
0243h 0244h			XXn XXh
0244h 0245h	CAN1 Acceptance Filter Support Register	C1AFS	XXh
0245h			
0247h			
0248h			
0249h			
024Ah			
024Bh			
024Ch 024Dh			
024Dh 024Eh			
024En			
0250h			
0251h			
0252h			
0253h			
0254h			
0255h			
0256h 0257h			
0258h			
0259h			
025Ah			
025Bh			
025Ch			
025Dh			
025Eh	Peripheral Clock Select Register	PCLKR	00h
025Fh	CAN0/1 Clock Select Register	CCLKR	00h XXh
0260h 0261h			XXh
0262h			XXh
0263h	CAN1 Message Box 0: Identifier / DLC		XXh
0264h			XXh
0265h			XXh
0266h			XXh
0267h			XXh
0268h			XXh
0269h 026Ah	CAN1 Message Box 0: Data Field		XXh XXh
026Bh			XXh
026Ch			XXh
026Dh			XXh
026Eh	CAN1 Message Box 0:Time Stamp		XXh
026Fh	Unit message bux u. Time stamp		XXh
0270h			XXh
0271h			XXh
0272h	CAN1 Message Box 1: Identifier / DLC		XXh
0273h 0274h			XXh XXh
02741 0275h			XXh
0276h			XXh
0277h			XXh
0278h			XXh
0279h	CAN1 Message Box 1: Data Field		XXh
027Ah			XXh
027Bh			XXh
027Ch			XXh XXh
027Dh 027Eh			XXn XXh
027Eh	CAN1 Message Box 1:Time Stamp		XXh
X: Undefine	and a second sec	-	

X: Undefined

NOTE:

1. Blank spaces are reserved. No access is allowed.

Table 4.11 SFR Information (11)

Address	Register	Symbol	After Reset
0280h			XXh
0281h			XXh
0282h	CAN1 Message Box 2: Identifier / DLC		XXh
0283h	J. J		XXh
0284h			XXh XXh
0285h 0286h			XXh
0287h			XXh
0288h			XXh
0289h	CAN1 Message Box 2: Data Field		XXh
028Ah	CANT Message Dox 2. Data Field		XXh
028Bh			XXh
028Ch			XXh
028Dh			XXh XXh
028Eh 028Fh	CAN1 Message Box 2: Time Stamp		XXh
0290h			XXh
0291h			XXh
0292h	CAN1 Message Box 3: Identifier / DLC		XXh
0293h	CANT Message box 3. Identifier / DEC		XXh
0294h			XXh
0295h			XXh
0296h			XXh XXh
0297h 0298h			XXh
0299h			XXh
029Ah	CAN1 Message Box 3: Data Field		XXh
029Bh			XXh
029Ch			XXh
029Dh			XXh
029Eh	CAN1 Message Box 3: Time Stamp		XXh
029Fh			XXh XXh
02A0h 02A1h			XXh
02A1h			XXh
02A3h	CAN1 Message Box 4: Identifier / DLC		XXh
02A4h			XXh
02A5h			XXh
02A6h			XXh
02A7h			XXh XXh
02A8h 02A9h			XXh
02A9h	CAN1 Message Box 4: Data Field		XXh
02ABh			XXh
02ACh			XXh
02ADh		[XXh
02AEh	CAN1 Message Box 4: Time Stamp		XXh
02AFh			XXh
02B0h			XXh XXh
02B1h 02B2h			XXn XXh
02B2h	CAN1 Message Box 5: Identifier / DLC	1 F	XXh
02B4h			XXh
02B5h		_ _ ľ	XXh
02B6h			XXh
02B7h			XXh
02B8h			XXh
02B9h 02BAh	CAN1 Message Box 5: Data Field		XXh XXh
02BAn 02BBh			XXh
02BCh			XXh
02BDh		f	XXh
02BEh	CAN1 Message Box 5: Time Stamp		XXh
02BFh	Oravi message box 5. Time olamp		XXh
X · I Indefin			

Table 4.12SFR Information (12)

Address	Register	Symbol	After Reset
02C0h		- ,	XXh
02C1h			XXh
02C2h	CAN1 Message Box 6: Identifier / DLC		XXh
02C3h			XXh
02C4h			XXh
02C5h			XXh XXh
02C6h 02C7h			XXh
02C7h			XXh
02C9h	OANIA Maaaaa Baala Dala Fiala		XXh
02CAh	CAN1 Message Box 6: Data Field		XXh
02CBh			XXh
02CCh			XXh
02CDh			XXh
02CEh	CAN1 Message Box 6: Time Stamp		XXh XXh
02CFh 02D0h			XXh
02D011			XXh
02D2h			XXh
02D3h	CAN1 Message Box 7: Identifier / DLC		XXh
02D4h			XXh
02D5h			XXh
02D6h			XXh
02D7h			XXh
02D8h			XXh XXh
02D9h 02DAh	CAN1 Message Box 7: Data Field		XXh
02DAn 02DBh			XXh
02DDh			XXh
02DDh			XXh
02DEh	CAN1 Message Box 7: Time Stamp		XXh
02DFh	OANT Message box 7. Time stamp		XXh
02E0h			XXh
02E1h			XXh XXh
02E2h 02E3h	CAN1 Message Box 8: Identifier / DLC		XXh
02E3h			XXh
02E5h			XXh
02E6h			XXh
02E7h			XXh
02E8h			XXh
02E9h	CAN1 Message Box 8: Data Field		XXh
02EAh 02EBh			XXh XXh
02EBN 02ECh			XXh
02ECh			XXh
02EEh	CANIA Massage Day 9: Time Clame		XXh
02EFh	CAN1 Message Box 8: Time Stamp		XXh
02F0h			XXh
02F1h			XXh
02F2h	CAN1 Message Box 9: Identifier / DLC		XXh
02F3h	с С		XXh
02F4h 02F5h			XXh XXh
02F5h			XXh
02F7h			XXh
02F8h			XXh
02F9h	CAN1 Message Box 9: Data Field		XXh
02FAh	Univi messaye Dux a. Dala i lelu		XXh
02FBh			XXh
02FCh			XXh
02FDh			XXh
02FEh 02FFh	CAN1 Message Box 9: Time Stamp		XXh XXh
X. Undefine			

Table 4.13 SFR Information (13)

Address	Register	Symbol	After Reset
0300h		-,	XXh
0301h			XXh
0302h	CAN1 Message Box 10: Identifier / DLC		XXh
0303h			XXh
0304h			XXh
0305h			XXh XXh
0306h 0307h			XXn XXh
0307h 0308h			XXh
0309h	CANIA Massage Day 40: Data Field		XXh
030Ah	CAN1 Message Box 10: Data Field		XXh
030Bh			XXh
030Ch			XXh
030Dh			XXh
030Eh	CAN1 Message Box 10: Time Stamp		XXh XXh
030Fh 0310h			XXh
0311h			XXh
0312h			XXh
0313h	CAN1 Message Box 11: Identifier / DLC		XXh
0314h			XXh
0315h			XXh
0316h			XXh
0317h			XXh XXh
0318h 0319h			XXn XXh
0319h	CAN1 Message Box 11: Data Field		XXh
031Bh			XXh
031Ch			XXh
031Dh			XXh
031Eh	CAN1 Message Box 11: Time Stamp		XXh
031Fh			XXh
0320h			XXh XXh
0321h 0322h			XXn XXh
0323h	CAN1 Message Box 12: Identifier / DLC		XXh
0324h			XXh
0325h			XXh
0326h			XXh
0327h			XXh
0328h			XXh
0329h 032Ah	CAN1 Message Box 12: Data Field		XXh XXh
032An 032Bh			XXh
032Bh			XXh
032Dh			XXh
032Eh	CAN1 Message Box 12: Time Stamp		XXh
032Fh	CAN1 Message Box 12: Time Stamp		XXh
0330h			XXh
0331h			XXh
0332h 0333h	CAN1 Message Box 13: Identifier / DLC		XXh XXh
0333h 0334h			XXn XXh
0335h			XXh
0336h			XXh
0337h			XXh
0338h			XXh
0339h	CAN1 Message Box 13: Data Field		XXh
033Ah	e message box to. bala tiola		XXh
033Bh			XXh
033Ch			XXh XXh
033Dh 033Eh			XXn XXh
033Fh	CAN1 Message Box 13: Time Stamp		XXh
X: Undefine			

Table 4.14 SFR Information (14)

Address	Register	Symbol	After Reset
0340h			XXh
0341h			XXh
0342h	CAN1 Message Box 14: Identifier / DLC		XXh
0343h			XXh
0344h			XXh
0345h			XXh XXh
0346h 0347h			XXh
0348h			XXh
0349h			XXh
034Ah	CAN1 Message Box 14: Data Field		XXh
034Bh			XXh
034Ch			XXh
034Dh			XXh
034Eh	CAN1 Message Box 14: Time Stamp		XXh
034Fh			XXh
0350h			XXh XXh
0351h 0352h			XXh
0353h	CAN1 Message Box 15: Identifier / DLC		XXh
0354h			XXh
0355h			XXh
0356h			XXh
0357h			XXh
0358h			XXh
0359h	CAN1 Message Box 15: Data Field		XXh
035Ah	Onivi Message Dox 10. Data Field		XXh
035Bh			XXh
035Ch			XXh
035Dh 035Eh			XXh XXh
035Eh	CAN1 Message Box 15: Time Stamp		XXh
0360h			XXh
0361h			XXh
0362h	CAN1 Global Mask Register	C1GMR	XXh
0363h	CAN'T Global Mask negister	CIGWIN	XXh
0364h			XXh
0365h			XXh
0366h			XXh
0367h			XXh XXh
0368h 0369h	CAN1 Local Mask A Register	C1LMAR	XXh
036Ah			XXh
036Bh			XXh
036Ch			XXh
036Dh			XXh
036Eh	CAN1 Local Mask B Register	C1LMBR	XXh
036Fh			XXh
0370h			XXh
0371h			XXh
0372h 0373h			
0373h 0374h			
0374h			
0376h			
0377h			
0378h			
0379h			
037Ah			Į
037Bh			l
037Ch			
037Dh 037Eh			
037En			
00/111		I	

X: Undefined

NOTE:

1. Blank spaces are reserved. No access is allowed.

Table 4.15 SFR Information (15) (2)

038th Court Start Flag Oh 038th Cock Prescient Reag CPSAF 00XXXXXXX 038th Cock Prescient Reag ON 00A 038th Cock Prescient Reag ON 00A 038th Tidos Prescient Reag 00A 00A 038th UpDeven Flag 00A 00A 038th Tidos Start Flag 00A 00A 038th Timer A Register TA1 XXh 038th Timer A Register TA4 Xh 038th Timer A Register TB0 XXh 038th Timer B Register TB1 XXh 038th Timer A Register TB2 XXh 038th Timer A Register TA4 Xh 038th Timer A Register TA4M Xh 039th Tim	Address	Register	Symbol	After Reset
OBSHClock Prescaler Resel FlagCPSPFØXXXXXX000382hOn-Short Start FlagONSFOOh0383hTringer Select RegisterTRGSROOh0384hUDOPOOh''0OOh''00384hUDOPOOh''0OOh''00384hUDOPNANX0h0384hUDORTAQXXh0384hTimer AD RegisterTAQXXh0384hTimer AD RegisterTAQXXh0384hTimer AD RegisterTAQXXh0384hTimer AD RegisterTAQXXh0384hTimer AD RegisterTAQXXh0384hTimer AD RegisterTAAXXh0384hTimer BD RegisterTBDXXh0384hTimer BD RegisterTBDXXh0384hTimer BD RegisterTBUXXh0394hTimer AD Mode RegisterTAUMFOOh0394hTimer AD Mode RegisterTAUMFOOh <tr< td=""><td></td><td></td><td></td><td></td></tr<>				
0383bCons.Shu SigarOth0383bTinger Select RegisterTRGSROth0383bUDF00h (1)0383bTiner AD RegisterTA0XXh0383bTiner AD RegisterTA0XXh0383bTimer AT RegisterTA1XXh0383bTimer A2 RegisterTA1XXh0383bTimer A2 RegisterTA2XXh0383bTimer A2 RegisterTA3XXh0383bTimer A3 RegisterTA3XXh0383bTimer A4 RegisterTA4XXh0384bTimer B0 RegisterTB0XXh0394bTimer B0 RegisterTB1XXh0394bTimer B0 RegisterTB1XXh0394bTimer A3 RegisterTB2XXh0394bTimer A3 Mode RegisterTA4XXh0394bTimer A4 Mode RegisterTA4XXh0394bTimer A4 Mode RegisterTA4MR00h0394bTimer A4 Mode RegisterTA4MR00h0394b <td></td> <td></td> <td></td> <td>0XXXXXXb</td>				0XXXXXXb
Op/Down Flag Op/III 0386h Timer A0 Register TA0 XKh 0387h Timer A0 Register TA0 XKh 0388h Timer A1 Register TA1 XKh 0388h Timer A1 Register TA2 XKh 0388h Timer A2 Register TA3 XKh 0388h Timer A3 Register TA3 XKh 0388h Timer A3 Register TA4 XKh 0388h Timer B0 Register TA4 XKh 0388h Timer B0 Register TB1 XKh 0388h Timer B1 Register TA0MR COh 0388h Timer B2 Register TA0MR COh 0388h Timer A3 Mode Register TA0MR COh 0388h Timer A4 Mode Register TA0MR COh 0388h </td <td></td> <td>One-Shot Start Flag</td> <td></td> <td>00h</td>		One-Shot Start Flag		00h
0388h Timer AO Register YAO XXh 0389h Timer A1 Register TA1 XXh 0389h Timer A2 Register TA1 XXh 0389h Timer A3 Register TA2 XXh 0389h Timer A3 Register TA3 XXh 0389h Timer A4 Register TA4 XXh 0389h Timer A4 Register TB0 XXh 0389h Timer A0 Register TB0 XXh 0389h Timer B0 Register TB1 XXh 0389h Timer B1 Register TB2 XXh 0389h Timer A0 Mode Register TAMR 00h 0389h Timer A3 Mode Register TAMR 00h 0389h Timer A4 Mode Register TAMR 00h 0389h Timer A3 Mode Register TAMR 00h 0389h Timer A4 Mode Register TAMR 00h 0389h Timer A4 Mode Register TAMR 00h 0389h Timer B1 Mode Register TAMR <t< td=""><td></td><td>Trigger Select Register</td><td></td><td>00h</td></t<>		Trigger Select Register		00h
0388h Tmar AO Register TA0 XXh 0387h Tmar A1 Register TA1 XXh 0388h Tmar A2 Register TA2 XXh 0388h Tmer A2 Register TA3 XXh 0388h Tmer A3 Register TA3 XXh 0388h Tmer A4 Register TA3 XXh 0388h Tmer A4 Register TA3 XXh 0388h Tmer A4 Register TA4 XXh 0389h Tmer A4 Register TB0 XXh 0389h Tmer B1 Register TB1 XXh 0393h Tmer B1 Register TB1 XXh 0393h Tmer A0 Mode Register TAMR 00h 0393h Tmer A1 Mode Register TAMR 00h 0393h Tmer A2 Mode Register TAMR 00h 0393h				00h (1)
Immer AJ Register IAD XXh 0388h Timer A1 Register TA1 XXh 0384h Timer A2 Register TA2 XXh 0384h Timer A2 Register TA3 XXh 0385h Timer A3 Register TA3 XXh 0385h Timer A4 Register TA4 XXh 0385h Timer B0 Register TA4 XXh 0387h Timer B0 Register TB0 XXh 0387h Timer B1 Register TB1 XXh 0387h Timer B2 Register TA4M XXh 0387h Timer B2 Register TA0MR Ooh 0387h Timer A2 Mode Register TA0MR Ooh 0387h Timer A2 Mode Register TA0MR Ooh 0389h Timer A4 Mode Register TA0MR Ooh				
(388/h) Timer A1 Register TA1 XAh (388/h) Timer A2 Register TA1 XXh (388/h) Timer A2 Register TA2 XXh (388/h) Timer A3 Register TA3 XXh (388/h) Timer A4 Register TA3 XXh (388/h) Timer A4 Register TA4 XXh (388/h) Timer A4 Register TB0 XXh (388/h) Timer A5 Register TB2 XXh (388/h) Timer A5 Register TB2 XXh (388/h) Timer A5 Register TAM Obh (388/h) Timer A5 Register TAM Obh <td></td> <td>Timer AO Decister</td> <td>74.0</td> <td>XXh</td>		Timer AO Decister	74.0	XXh
0388h Timer A1 Register TA1 XXh 0388h Timer A2 Register TA2 XXh 0388h Timer A2 Register TA3 XXh 0387h Timer A3 Register TA3 XXh 0387h Timer A3 Register TA3 XXh 0387h Timer A4 Register TA4 XXh 0398h Timer B0 Register TB0 XXh 0398h Timer B1 Register TB1 XXh 0398h Timer B1 Register TB2 XXh 0398h Timer A1 Mode Register TAMR 00h 0398h Timer A1 Mode Register TBMR 00XX0000h 0398h Timer B1 Mode Register TBMR 00XX0000h 0398h Timer B2 Model Register T	0387h	limer AU Register	IAO	XXh
Imbr A Hegister IAI XXh 038Ah Tmer A2 Register TA2 XXh 038Ch Tmer A3 Register TA3 XXh 038Ch Tmer A3 Register TA3 XXh 038Ch Tmer A3 Register TA3 XXh 038Ch Tmer A4 Register TA4 XXh 038Ch Tmer B0 Register TA4 XXh 039Ch Tmer B1 Register XXh XXh 039Ch Tmer B1 Register TB1 XXh 039Ch Tmer A0 Mode Register TA0MR 00h 039Ch Tmer A1 Mode Register TA0MR 00h 039Ch Tmer A2 Mode Register TA0MR 00h 039Ch Tmer A3 Mode Register TA0MR 00h 039Ch Tmer A4 Mode Register TA0MR 00h 039Ch Tmer B1 Mode Register TA0MR 00h 039Ch Tmer B1 Mode Register TA0MR 00h 039Ch Tmer B1 Mode Register TA0MR 00h <t< td=""><td></td><td></td><td></td><td>XXh</td></t<>				XXh
0388h 0386h 0386hTmer A2 RegisterXAh XAh0386h 0386h 0386hTmer A3 RegisterTA3XXh0386h 0386hTmer A4 RegisterTA4XXh0386h 0387h 0387hTmer B0 RegisterTA4XXh0393h 0393hTmer B1 RegisterTB0XXh0393h 0393hTmer B1 RegisterTB1XXh0393h 0393hTmer B1 RegisterTB2XXh0393h 0393hTmer A0 Mode RegisterTA0MR00h0393h 0393hTmer A0 Mode RegisterTA0MR00h0393h 0393hTimer A0 Mode RegisterTAMR00h0393h 0393hTimer A0 Mode RegisterTAMR00h0393h 0393hTimer A0 Mode RegisterTAMR00h0393h 0393hTimer A0 Mode RegisterTBMR00XX0000b0393h 0393hTimer A0 Mode RegisterTBMR00XX0000b0393hTimer A0 Mode RegisterU0BRGXXh034hUARTO Transmit/Receive Control RegisterU0BRGXXh034hUARTO Trans		limer A1 Register	TA1	
O38BD 038DD 				XXh
O38DD O38DD O38DF O38DF Timer A4 RegisterTA3XXhO38DF O38DF O38FF Timer B0 RegisterTA4XXhO38DF O38FF O38DFTimer B0 RegisterTB0XXhO39DF O39DFTimer B1 RegisterTB0XXhO39DF O39DFTimer B1 RegisterTB1XXhO39DF O39DFTimer B1 RegisterTB2XXhO39DF O39DFTimer A0 Mode RegisterTAUMRO0hO39DF O39DFTimer A0 Mode RegisterTAUMRO0hO39DF O39DFTimer A2 Mode RegisterTAUMRO0hO39DF O39DFTimer A2 Mode RegisterTAUMRO0hO39DF O39DFTimer A2 Mode RegisterTAUMRO0hO39DF O39DFTimer B1 Mode RegisterTBUMR00XX0000bO39DF O39DFTimer B2 Mode RegisterTBUMR00XX0000bO39DF O39DFTimer B2 Mode RegisterTBUMR00XX0000bO39DF O30DFTimer B2 Mode RegisterUOBRGXXhO3ADF O3ATHUARTO Transmit/Receive Mode RegisterUOBRGXXhO3ADF O3ADFUARTO Transmit/Receive Control RegisterUOBRGXXhO3ADF O3ADFUARTO Transmit/Receive Control RegisterUOBRGXXhO3ADF O3ADFUARTO Transmit/Receive Control RegisterUORBXXhO3ADF O3ADFUARTO Transmit/Receive Control RegisterUORBXXhO3ADF O3ADFUARTO Transmit/Receive Control RegisterUIBRGXXhO3ADF O3ADFUARTO Trans		limer A2 Register	TA2	
OBBED OBBED COMPANDEDInter As RegisterXAXXh038ED 039D				XXh
Case Tail XXh Case <td></td> <td>Limer A3 Register</td> <td>TA3</td> <td></td>		Limer A3 Register	TA3	
Inter AA Hegister IAA XXh 0390h Timer B0 Register TB0 XXh 0392h Timer B1 Register TB1 XXh 0393h Timer B2 Register TB1 XXh 0393h Timer A2 Mode Register TAMR 0.0h 0393h Timer A2 Mode Register TAMR 0.0h 0393h Timer A2 Mode Register TAMR 0.0h 0393h Timer A3 Mode Register TAMR 0.0h 0393h Timer A4 Mode Register TAMR 0.0h 0393h Timer A4 Mode Register TAMR 0.0h 0393h Timer A4 Mode Register TBMR 0.0X00000b 0393h Timer B4 Mode Register TBMR 0.0X0000b 0393bn Timer B2 Mode Register TBMR 0.0X0000b 0393bh Timer B2 Mode Register UBRG XXh 034bh UARTO Transmit/Receive Mode Register UOMR 0.0h 034bh UARTO Transmit/Receive Control Register 0 UOC1 0.0XXh 034bh<				
03901. Timer B1 Register TB0 XXh 03931. Timer B1 Register TB1 XXh 03937. Timer B1 Register TB1 XXh 03937. Timer B2 Register TB2 XXh 03937. Timer A0 Mode Register TA0MR 00h 03936. Timer A0 Mode Register TA0MR 00h 03936. Timer A2 Mode Register TA2MR 00h 03936. Timer A2 Mode Register TA2MR 00h 03936. Timer A2 Mode Register TA2MR 00h 03936. Timer A2 Mode Register TA3MR 00h 03936. Timer B2 Mode Register TB4MR 00X0000b 03936. Timer B2 Mode Register TB2MR 00X0000b 03936. Timer B2 Mode Register TB2KR 00X0000b 0394. Timer B2 Mode Register TB2KR 00XX0000b 0394. Timer B2 Mode Register TB2KR 00XX000b 0394. UARTO Transmit/Receive Control Register 0 UOMR 00h		Timer A4 Register	TA4	
Gastn (3932h)Imor B1 RegisterIB0XXh(3932h)Timor B1 RegisterTB1XXh(3934h)Timor B2 RegisterTB2XXh(3934h)Timor A2 Mode RegisterTAMR00h(3937h)Timer A4 Mode RegisterTAMR00h(3938h)Timer A3 Mode RegisterTAMR00h(3938h)Timer A4 Mode RegisterTAMR00h(3938h)Timer A4 Mode RegisterTAMR00h(3938h)Timer A5 Mode RegisterTAMR00h(3938h)Timer A4 Mode RegisterTBMR00XX0000b(3938h)Timer A5 Mode RegisterTBMR00XX0000b(3938h)Timer B5 Mode RegisterTBMR00XX0000b(3938h)Timer B2 Mode RegisterTBEMR00XX0000b(3938h)Timer B2 Mode RegisterUOBRGXXh(3934h)UARTO Transmit/Receive Mode RegisterUOBRGXXh(394h)UARTO Transmit/Receive Control Register 0UOC000001000b(394h)UARTO Transmit/Receive Control RegisterUIMBXXh(394h)UARTO Transmit/Receive Control RegisterUIMBXXh(394h)UARTO Transmit/Receive Control RegisterUIMBXXh(394h)UARTO Transmit/Receive Control RegisterUIMBXXh(394h)UARTI Transmit/Receive Control Register 1UOC1000X0010b(394h)UARTI Transmit/Receive Control Register 2UIMBXXh(394h)UARTI Transmit/Receive Control Register 2UIRGXXh				
1332h Timer B1 Register TB1 XXh 0333h Timer B2 Register TB2 XXh 0334h Timer A0 Mode Register TAMR 00h 0396h Timer A0 Mode Register TAMR 00h 0396h Timer A0 Mode Register TAMR 00h 0398h Timer A2 Mode Register TAMR 00h 0398h Timer A2 Mode Register TAMR 00h 0398h Timer A3 Mode Register TAMR 00h 0398h Timer B1 Mode Register TBMR 00XX0000b 0398h Timer B2 Special Mode Register TBMR 00XX0000b 0398h Timer B2 Special Mode Register TBMR 00XX000b 0398h UARTO Transmit/Peceive Mode Register UOMR 00h 0340h UARTO Transmit/Peceive Control Register 0 UOC0 0000100b 0345h UARTO Transmit/Peceive Control Register 0 UOC1 00XX000b 0345h UARTO Transmit/Peceive Control Register 0 UOR8 XXh 0345h UARTO Transmit/Peceive		Timer B0 Register	ТВО	
108931h Limfer B1 Hegister 1B1 XXh 03941h Timer A2 Register TAOMR 00h 03951h Timer A0 Mode Register TAIMR 00h 03967h Timer A3 Mode Register TAIMR 00h 03989h Timer A3 Mode Register TAIMR 00h 03999h Timer A3 Mode Register TAMR 00h 03989h Timer A3 Mode Register TBMR 00Xx000b 03989h Timer B3 Mode Register TBMR 00Xx000b 03990h Timer B2 Mode Register TBMR 00Xx000b 03991h Timer B2 Mode Register TB2MR 00Xx000b 03929h Timer B2 Mode Register TB2MR 00Xx000b 03929h Timer B2 Mode Register U0BRG XXh 0340h UARTO Transmit/Receive Mode Register U0BRG XXh 034Ah UARTO Transmit/Receive Control Register 0 U0C0 0000100b 034Ah UARTO Transmit/Receive Control Register 1 U0C1 00XX0010b 034Ah UARTO Transmit/Receive Control Register 0 U0C2 00000100b 034Ah UARTO Transmit/Receive Control Register 0 U0C1 00XX010b 034Ah UARTO Transmit/Receive Control Register 0 U1MR 00h<				
1334h Timer B2 Register XXh 0395h Timer A0 Mode Register TA0MR 00h 0395h Timer A1 Mode Register TA1MR 00h 0395h Timer A2 Mode Register TA2MR 00h 0398h Timer A2 Mode Register TA2MR 00h 0398h Timer A3 Mode Register TA3MR 00h 0398h Timer A4 Mode Register TA3MR 00h 0398h Timer A4 Mode Register TB0MR 00XX000b 0398ch Timer B1 Mode Register TB1MR 00XX000b 0398h Timer B2 Special Mode Register U0MR 00h 03A2h UART0 Transmit/Receive Mode Register U0MR 00h 03A4h UART0 Transmit/Receive Control Register 0 U0C0 00x0010b 03A5h UART0 Transmit/Receive Control Register U0RB XXh 03A5h UART0 Transmit/Receive Control Register U0RB XXh 03A5h UART0 Transmit/Receive Control Register U0RB XXh 03A5h UART1 Transmit/Receive Control Regis		Timer B1 Register	TB1	
Immer 2b Mode Register IB2 XXh 0396h Timer AD Mode Register TA0MR 00h 0397h Timer AD Mode Register TA1MR 00h 0398h Timer AD Mode Register TA1MR 00h 0398h Timer AD Mode Register TA3MR 00h 0398h Timer AD Mode Register TA3MR 00h 0398h Timer AD Mode Register TA3MR 00h 0398h Timer BD Mode Register TB1MR 00XX0000b 0398h Timer BD Mode Register TB2MR 00XX0000b 0398h Timer BD Mode Register TB2MR 00XX0000b 0398h Timer BD Mode Register UOBRG XXh 0398h UARTO Transmit/Receive Mode Register UOBRG XXh 034h UARTO Transmit/Receive Control Register UOBG XXh 03A4h UARTO Transmit/Receive Control Register UOC 000000b 03A4h UARTO Transmit/Receive Control Register UIBR XXh 03A4h UARTO Transmit/Receive Control Register				
Timer AD Mode Register TAMR 00h 0397h Timer A1 Mode Register TA1MR 00h 0398h Timer A2 Mode Register TA2MR 00h 0398h Timer A2 Mode Register TA3MR 00h 0398h Timer A3 Mode Register TA4MR 00h 0398h Timer A5 Mode Register TA4MR 00h 0398h Timer A5 Mode Register TB0MR 00XX0000b 0398ch Timer B1 Mode Register TB1MR 00XX0000b 0398ch Timer B2 Mode Register TB2SC XXXXX00b 0398ch Timer B2 Special Mode Register UOBR XXh 034Ah UARTO Transmit/Receive Mode Register UOBR XXh 03Aah UARTO Transmit/Receive Control Register 0 UOC0 0000100b 03Aah UARTO Transmit/Receive Control Register 0 UOC1 00Xx0010b 03Aah UARTO Transmit/Receive Control Register UIRB XXh 03Aah UARTO Transmit/Receive Control Register UIC0 00X00100b 03Aah UARTO Tra		Timer B2 Register	ТВ2	
Timer A1 Mode RegisterTA1MROoh039ehTimer A2 Mode RegisterTA2MROoh039ehTimer A3 Mode RegisterTA3MROoh039ahTimer A4 Mode RegisterTA4MROoh039ahTimer B1 Mode RegisterTB0MR00XX0000b039abTimer B1 Mode RegisterTB1MR00XX0000b039abTimer B2 Mode RegisterTB2MR00XX0000b039abTimer B2 Mode RegisterTB2MR00XX0000b039abTimer B2 Mode RegisterUOMR00h039abUARTO Transmit/Receive Mode RegisterUOBRXXh03AbUARTO Transmit/Receive Control Register 0UOBC000h03AbhUARTO Transmit/Receive Control Register 1UOC00000100b03AbhUARTO Transmit/Receive Control Register 1UOC100XX0010b03AbhUARTO Transmit/Receive Control RegisterUIMRXh03AbhUARTI Transmit/Receive Control RegisterUIMRXh03AbhUARTI Transmit/Receive Control RegisterUIMRXh03AbhUARTI Transmit/Receive Control RegisterUIMR00h03AbhUARTI Transmit/Receive Control RegisterUIRGXXh03AbhUARTI Transmit/Receive Control RegisterUIC000000100b03AchUARTI Transmit/Receive Control RegisterUIC000000100b03AbhUARTI Transmit/Receive Control Register 2UCONX000000b03AbhUARTI Transmit/Receive Control Register 3UIC000000100b03AbhU		Timer A0 Mode Begister	TAOMB	
Timer A2 Mode Register TA2MR O0h 0399h Timer A3 Mode Register TA3MR 00h 0394h Timer A4 Mode Register TA4MR 00h 0394h Timer A4 Mode Register TB1MR 00XX0000b 0395ch Timer B1 Mode Register TB1MR 00XX0000b 0395ch Timer B2 Mode Register TB2MR 00XX0000b 0395ch Timer B2 Special Mode Register TB2SC XXXXX00b 0395ch Timer B2 Special Mode Register U0MR 00h 0395ch Timer B2 Special Mode Register U0MR 00h 0395ch UARTO Transmit/Receive Mode Register U0MR 00h 034Ah UARTO Transmit/Receive Control Register U0TB XXh 034Ah UARTO Transmit/Receive Control Register U0C0 00001000b 034Ah UARTO Transmit/Receive Control Register U0RB XXh 034Ah UARTO Transmit/Receive Control Register U0RB XXh 034Ah UARTO Transmit/Receive Control Register U1MR 00h 034Ah<				
Timer A3 Mode Register TA3MR O0h 0393h1 Timer A4 Mode Register TA4MR 00h 0394h Timer B0 Mode Register TB0MR 00XX0000b 0394b1 Timer B1 Mode Register TB1MR 00XX0000b 0394b1 Timer B2 Mode Register TB2MR 00XX0000b 0394b1 Timer B2 Mode Register TB2MR 00XX0000b 0394b1 Timer B2 Mode Register TB2MR 00XX0000b 0394b1 UMRTO Transmit/Receive Mode Register UOMR 00h 03441 UARTO Transmit/Receive Control Register UOEG XXh 03A4h UARTO Transmit/Receive Control Register 0 UOC0 000X0100b 03A4h UARTO Transmit/Receive Control Register UOBB XXh 03A4h UARTO Transmit/Receive Control Register UOBB XXh 03A4h UARTO Transmit/Receive Mode Register UOBB XXh 03A4h UARTO Transmit/Receive Mode Register UHR 00h 03A4h UARTO Transmit/Receive Control Register UHR Xh				
O39Ah Timer At Mode Register TA4MR Obh 039Bh Timer B0 Mode Register TB0MR 00XX0000b 039Ch Timer B1 Mode Register TB1MR 00XX0000b 039Dh Timer B2 Mode Register TB2MR 00XX0000b 039Eh Timer B2 Mode Register TB2MR 00XX0000b 039Eh Timer B2 Special Mode Register UOMR 00XX0000b 039Eh Timer B2 Special Mode Register UOMR 00h 03Ah UARTO Transmit/Receive Mode Register UOMB XXh 03Ash UARTO Transmit/Receive Control Register 0 UOC0 0000100b 03Ash UARTO Transmit/Receive Control Register 1 UOC1 00XX0010b 03Ash UARTO Transmit/Receive Control Register 1 UORB XXh 03Ash UARTO Receive Buffer Register UIMR 00h 03Ash UARTI Transmit/Receive Control Register UIMR 00h 03Ash UARTI Transmit/Receive Control Register UIMR 00h 03Ash UARTI Transmit/Receive Control Register 1 UIC0				
Timer BD Mode Register TBOMR 000XX0000b 039Ch Timer B1 Mode Register TB1MR 00XX0000b 039Dh Timer B2 Mode Register TB2MR 00XX0000b 039Dh Timer B2 Special Mode Register TB2MR 00XX0000b 039Fh Timer B2 Special Mode Register U0BRG XXXXXX00b 039Fh UARTO Transmit/Receive Mode Register U0BRG XXh 03A0h UARTO Transmit/Receive Control Register U0BRG XXh 03A3h UARTO Transmit/Receive Control Register 0 U0C0 00001000b 03A6h UARTO Transmit/Receive Control Register 1 U0C1 00XX010b 03A6h UARTO Transmit/Receive Control Register 0 U0RB XXh 03A6h UARTO Transmit/Receive Mode Register U1MR 00h 03A6h UARTI Transmit/Receive Mode Register U1BRG XXh 03A6h UARTI Transmit/Receive Control Register 0 U1MR 00h 03A6h UARTI Transmit/Receive Control Register 1 U1C0 00001000b 03A6h UARTI Transmit/Receive Control Register 2				
O33Ch Timer B1 Mode Register TB1MR 00XX0000b 039Dh Timer B2 Mode Register TB2MR 00XX0000b 039Eh Timer B2 Special Mode Register TB2SC XXXXX00b 039Eh UMR 00h 00h 03A0h UARTO Transmit/Receive Mode Register U0BRG XXXh 03A0h UARTO Transmit/Receive Control Register U0TB XXh 03A3h UARTO Transmit/Receive Control Register 0 U0CO 0000100b 03A6h UARTO Transmit/Receive Control Register 1 U0C1 00XXh 03A6h UARTO Transmit/Receive Mode Register U1MR 00h 03A6h UARTO Receive Buffer Register U1MR 00h 03A6h UARTT I Transmit/Receive Control Register U1MR 00h 03A6h UARTT I Transmit/Receive Control Register 0 U10C1 000X0010b 03A6h UART1 Transmit/Receive Control Register 1 U1C1 00XXh 03A6h UART1 Transmit/Receive Control Register 1 U1C1 00XXh 03A6h UART1 Transmit/Receive Control Register 2				
039DhTimer B2 Mode RegisterTB2MR00XX000b039FhTimer B2 Special Mode RegisterTB2SCXXXXX00b039FhTimer B2 Special Mode RegisterUOMROth03A0hUART0 Transmit/Receive Mode RegisterUOBRGXXh03A1hUART0 Transmit/Receive Control Register 0UOC00000100b03A4hUART0 Transmit/Receive Control Register 0UOC00000100b03A5hUART0 Transmit/Receive Control Register 1UOC100XX0010b03A6hUART0 Receive Control Register 1UOC100XX0010b03A7hUART1 Transmit/Receive Control RegisterUIRBXXh03A8hUART1 Transmit/Receive Control RegisterUITBXXh03A8hUART1 Transmit/Receive Control RegisterUITBXXh03A8hUART1 Transmit/Receive Control Register 0UIC00000100b03A6hUART1 Transmit/Receive Control Register 0UIC00000100b03A6hUART1 Transmit/Receive Control Register 0UIC00000100b03A6hUART1 Transmit/Receive Control Register 1UIC100Xx0010b03A6hUART1 Transmit/Receive Control Register 2UCONX0000000b03A6hUART1 Transmit/Receive Control Register 2UCONX0000000b03A6hUART1 Transmit/Receive Control Register 2UCONX0000000b03A6hUART1 Transmit/Receive Control Register 2UCONX0000000b03A6hUART1 Transmit/Receive Control Register 2UCONX0000000b03B6hIIII				
039Eh Timer B2 Special Mode Register TB2SC XXXXXX00b 039Abh UART0 Transmit/Receive Mode Register U0MR 00h 03A0h UART0 Transmit/Receive Mode Register U0BRG XXh 03A2h UART0 Transmit Buffer Register U0TB XXh 03A3h UART0 Transmit/Receive Control Register 0 U0C0 00001000b 03A4h UART0 Transmit/Receive Control Register 1 U0C1 00XX0010b 03A5h UART0 Transmit/Receive Mode Register U0RB XXh 03A4h UART0 Transmit/Receive Mode Register U0RB XXh 03A4h UART1 Transmit/Receive Mode Register U1MR 00h 03A9h UART1 Transmit/Receive Mode Register U1BRG XXh 03A9h UART1 Transmit/Receive Control Register 0 U1TB XXh 03A8h UART1 Transmit/Receive Control Register 0 U1C0 0000000b0 03A9h UART1 Transmit/Receive Control Register 1 U1C1 00XX010b 03A6h UART1 Transmit/Receive Control Register 2 U1C0 0000000b0 03A6h UART1 Transmit/Receive Control Register 2 UCON X000000b0 03A6h UART1 Transmit/Receive Control Register 2 UCON X0000000b0 03A6h UART1 Transmit/Receive Con				
O39Fh UMR UMR 03A0h UART0 Transmit/Receive Mode Register U0BRG XXh 03A1h UART0 Bit Rate Register U0BRG XXh 03A3h UART0 Transmit Buffer Register U0TB XXh 03A3h UART0 Transmit/Receive Control Register 0 U0C0 00001000b 03A5h UART0 Transmit/Receive Control Register 1 U0C1 00XX0010b 03A6h UART0 Receive Control Register 1 U0C2 00001000b 03A6h UART0 Transmit/Receive Control Register 1 U0C1 00XX0010b 03A6h UART0 Transmit/Receive Control Register 1 U0RB XXh 03A8h UART1 Transmit/Receive Mode Register U1BRG XXh 03A8h UART1 Transmit/Receive Control Register 0 U1C0 00001000b 03A0h UART1 Transmit/Receive Control Register 1 U1C0 00001000b 03A0h UART1 Transmit/Receive Control Register 1 U1C0 00000100b 03A0h UART1 Transmit/Receive Control Register 2 UCON X000000b 03A0h UART1 Transmit/Receive Control Register 2<				
03A0hUARTO transmit/Receive Mode RegisterUOMR00h03A1hUARTO Bit Rate RegisterU0BRGXXh03A2hUARTO transmit Buffer RegisterU0TBXXh03A3hUARTO transmit/Receive Control Register 0U0C000001000b03A6hUARTO transmit/Receive Control Register 1U0C100XX0010b03A6hUARTO transmit/Receive Control Register 1U0C100XX0010b03A6hUARTO Receive Buffer RegisterU0RBXXh03A7hUARTO Receive Mode RegisterU1MR00h03A8hUART1 transmit/Receive Mode RegisterU1MR00h03A8hUART1 transmit/Receive Control RegisterU1BRGXXh03A8hUART1 transmit/Receive Control Register 0U1C000001000b03A8hUART1 transmit/Receive Control Register 0U1C000001000b03A2hUART1 transmit/Receive Control Register 0U1C100XX0010b03A2hUART1 ransmit/Receive Control Register 1U1C100XX0010b03A2hUART1 ransmit/Receive Control Register 2UCONX000000b03B1hIIII03B3hIIII03B3hIIII03B3hIIII03B3hIIII03B3hIIII03B3hIIII03B3hIIII03B3hIII <tdi< td="">I03B3</tdi<>		Timer B2 Special Mode Register	TB2SC	XXXXXXUUD
03A1hUART0 Bit Rate RegisterU0BRGXXh03A2hUART0 Transmit Buffer RegisterU0TBXXh03A3hUART0 Transmit/Receive Control Register 0U0C000001000b03A5hUART0 Transmit/Receive Control Register 1U0C100XX0010b03A6hUART0 Receive Buffer RegisterU0RBXXh03A8hUART0 Receive Mode Register 1U0RBXXh03A8hUART1 Rate RegisterU1MR00h03A9hUART1 It ransmit/Receive Mode RegisterU1BRGXXh03A9hUART1 Bit Rate RegisterU1TBXXh03A9hUART1 It ransmit/Receive Control Register 0U1C00000100b03A0hUART1 Transmit/Receive Control Register 0U1C00000100b03A0hUART1 Transmit/Receive Control Register 1U1C100XX0010b03A2hUART1 Transmit/Receive Control Register 1U1C100XX0010b03A2hUART1 Receive Buffer RegisterU1RBXXh03B0hUART1 Receive Control Register 2UCONX0000000b03B1hIII03B3hIII03B3hIII03B3hIII03B3hIII03B3hIII03B3hIII03B3hIII03B3hIII03B3hIII03B3hIII03B3hIII<		LIADTO Transmit/Dessive Made Desister		001
03A2h 03A3h UART0 Transmit Buffer Register U0TB XXh XXh 03A4h UART0 Transmit/Receive Control Register 0 U0C0 00001000b 03A4h UART0 Transmit/Receive Control Register 1 U0C1 00XX0010b 03A4h UART0 Receive Buffer Register U0RB XXh 03A7h UART0 Receive Buffer Register U0RB XXh 03A8h UART1 Transmit/Receive Mode Register U1MR 00h 03A8h UART1 Transmit/Receive Mode Register U1BRG XXh 03A8h UART1 Transmit/Receive Control Register U1BR XXh 03AAh UART1 Transmit/Receive Control Register 0 U1C0 0000100b 03Abh UART1 Transmit/Receive Control Register 1 U1C0 000X0010b 03Abh UART1 Transmit/Receive Control Register 2 UCON X0000000b 03Abh UART1 Transmit/Receive Control Register 2 UCON X0000000b 03B1h 03B2h 03B3h				
OAR10 Transmit/Receive Control Register 0U015XXh03A3hUART0 Transmit/Receive Control Register 0U0C000001000b03A6hUART0 Receive Buffer RegisterU0RBXXh03A7hUART0 Receive Buffer RegisterU0RBXXh03A8hUART1 Transmit/Receive Mode RegisterU1MR00h03A9hUART1 Transmit/Receive Mode RegisterU1BRGXXh03A8hUART1 Transmit/Receive Control RegisterU1BRGXXh03A8hUART1 Transmit/Receive Control Register 0U1C000001000b03A2hUART1 Transmit/Receive Control Register 1U1C100XX0010b03A2hUART1 Transmit/Receive Control Register 1U1C100XX0010b03A2hUART1 Transmit/Receive Control Register 2UCONXXh03B4hUART Transmit/Receive Control Register 2UCONX0000000b03B4h00003B4h00003B4h00003B4h00003B4h00003B4h00003B4h00003B4h00003B4h00003B4h00003B4h00003B4h00003B4h00003B4h00003B4h00003B4h00003B5h00		UARTO BIT Rate Register	UOBRG	
1334h VARTO Transmit/Receive Control Register 0 UOCO 00001000b 03A4h UARTO Transmit/Receive Control Register 1 UOC1 00XX0010b 03A5h UARTO Receive Buffer Register UORB XXh 03A8h UARTI Receive Buffer Register UORB XXh 03A8h UARTI Transmit/Receive Mode Register U1MR 00h 03A8h UARTI Transmit/Receive Mode Register U1BRG XXh 03A8h UARTI Transmit/Receive Control Register 0 U1TB XXh 03A8h UARTI Transmit/Receive Control Register 0 U1C0 00001000b 03Abh UARTI Transmit/Receive Control Register 0 U1C1 00XX0010b 03AFh UARTI Transmit/Receive Control Register 1 U1C1 00XX0010b 03AFh UARTI Transmit/Receive Control Register 2 UCON XXh 03BAFh UART Transmit/Receive Control Register 2 UCON X0000000b 03BAFh UART Transmit/Receive Control Register 2 UCON X0000000b 03BAFh UART Transmit/Receive Control Register 2 UCON X0000000b 03BAFh UART Transmit/Receive Control Register UCON X0000000b 03BAFh UART Transmit/Receive Control Register UCON X0000000b 03BAFh UA		UART0 Transmit Buffer Register	U0ТВ —	
03A6h 03A6h 03A7hUART0 Transmit/Receive Control Register 1U0C100XX0010b03A7h 03A7hUART0 Receive Buffer RegisterU0RBXXh03A7h 03A8hUART1 Transmit/Receive Mode RegisterU1MR00h03A9hUART1 Transmit/Receive Mode RegisterU1BRGXXh03A8h 03A8h 03A8hUART1 Transmit/Receive Control Register 0U10200001000b03A0h 		0		
03A6h 03A7hUART0 Receive Buffer RegisterU0RBXXh03A8h 03A8hUART1 Transmit/Receive Mode RegisterU1MR00h03A9h 03A9hUART1 Bit Rate RegisterU1BRGXXh03AAh 03A8hUART1 Transmit Buffer RegisterU1BRGXXh03AAh 03ABhUART1 Transmit Buffer RegisterU1TBXXh03AAh 03AAhUART1 Transmit/Receive Control Register 0U1C0000001000b03ADhUART1 Transmit/Receive Control Register 1U1C100XX0010b03AEh 03AFhUART1 Receive Buffer RegisterU1RBXXh03BAhUART Transmit/Receive Control Register 2UCONX0000000b03B1h03B1h				
OAAThOARD Heddeve builter RegisterOURBXXh03A8hUART1 Transmit/Receive Mode RegisterU1MR00h03A9hUART1 Bit Rate RegisterU1BRGXXh03AAhUART1 Transmit Buffer RegisterU1TBXXh03AAhUART1 Transmit/Receive Control Register 0U1C000001000b03ADhUART1 Transmit/Receive Control Register 1U1C100XX0010b03AFhUART1 Receive Buffer RegisterU1RBXXh03AFhUART1 Receive Control Register 2UCONX000000b03B1h03B2h03B3h03B4h03B5h03B6h03B8hDMAO Request Source Select RegisterDMOSL00h03B9h </td <td></td> <td>UARIO Transmit/Receive Control Register 1</td> <td>U0C1</td> <td></td>		UARIO Transmit/Receive Control Register 1	U0C1	
O3A7hCalculationXXh03A8hUART1 Transmit/Receive Mode RegisterU1MR00h03A9hUART1 Bit Rate RegisterU1BRGXXh03A8hUART1 Transmit Buffer RegisterU1TBXXh03AAhUART1 Transmit/Receive Control Register 0U1C000001000b03ADhUART1 Transmit/Receive Control Register 1U1C000001000b03AEhUART1 Receive Buffer RegisterU1RBXXh03AFhUART1 Receive Buffer RegisterU1RBXXh03BAFhUART Transmit/Receive Control Register 2UCONX000000b03B1h03B1h03B2h </td <td></td> <td>UART0 Receive Buffer Register</td> <td>U0RB</td> <td></td>		UART0 Receive Buffer Register	U0RB	
O3A9hUART1 Bit Rate RegisterU1BRGXXh03AAhUART1 Transmit Buffer RegisterU1TBXXh03AAhUART1 Transmit/Receive Control Register 0U1C000001000b03ADhUART1 Transmit/Receive Control Register 1U1C100XX0010b03AEhUART1 Receive Buffer RegisterU1RBXXh03AFhUART1 Receive Buffer RegisterU1RBXXh03B0hUART Transmit/Receive Control Register 2UCONX0000000b03B1h000003B2h00003B3h000003B6h000003B7h000003B8hDMA0 Request Source Select RegisterDMOSL00h00h03B8h0MA1 Request Source Select RegisterDMOSL00h003B8h0MA1 Request Source Select RegisterDMISL00h003B2h0000003B8h0000003B8h0000003B8h0000003B9h0000003B9h0000003B9h0000003B9h0000003B9h0000003B9h0000003B9h00 <td< td=""><td></td><td></td><td></td><td></td></td<>				
03AAh 03ABhUART1 Transmit Buffer RegisterU1TBXXh03ABh03AChUART1 Transmit/Receive Control Register 001C000001000b03ADhUART1 Transmit/Receive Control Register 101C100XX010b03AEh 03AFhUART1 Receive Buffer Register01C100XX010b03AEh 03B0hUART Transmit/Receive Control Register 2UCONXXh03B0hUART Transmit/Receive Control Register 2UCONX000000b03B1h				
O3ABhOARTT transmit Builter RegisterOTTBXXh03AChUARTT Transmit/Receive Control Register 0U1C000001000b03ADhUARTT transmit/Receive Control Register 1U1C100XX0010b03AEhUART1 Receive Buffer RegisterU1RBXXh03BChUART Transmit/Receive Control Register 2UCONX0000000b03B1hImage: Control Register 2UCONX0000000b03B2hImage: Control Register 2Image: Control Register 2Image: Control Register 203B2hImage: Control Register 2Image: Control Register 2Image: Control Register 203B2hImage: Control Register 2Image: Control Register 2Image: Control Register 203B2hImage: Control Register 2Image: Control Register 2Image: Control Register 203B2hImage: Control Register 2Image: Control Register 2Image: Control Register 203B2hImage: Control Register 2Image: Control Register 2Image: Control Register 203B5hImage: Control Register 2Image: Control Register 2Image: Control Register 203B6hImage: Control Register 2Image: Control Register 2Image: Control Register 203B6hImage: Control Register 2Image: Control Register 2Image: Control Register 203B6hImage: Control Register 2Image: Control Register 2Image: Control Register 203B6hImage: Control Register 2Image: Control Register 2Image: Control Register 203B6hImage: Control Register 2Image: Control Register 2	03A9h	UART1 Bit Rate Register	U1BRG	
03ABhCarl Market Control Register 0U1C000001000b03AChUART1 Transmit/Receive Control Register 1U1C100XX0010b03AEhUART1 Receive Buffer RegisterU1RBXXh03AFhUART Transmit/Receive Control Register 2UCONX0000000b03B1hIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		LIABT1 Transmit Buffer Begister	U1TB	
03ADhUART1 Transmit/Receive Control Register 1U1C100XX0010b03AEhUART1 Receive Buffer RegisterU1RBXXh03B0hUART Transmit/Receive Control Register 2UCONX000000b03B1h00003B2h0003B3h00003B4h0003B5h0003B5h0003B6h0003B6h0003B8h00 <t< td=""><td></td><td></td><td></td><td></td></t<>				
03AEh 03AFhUART1 Receive Buffer RegisterU1RBXXh03B0hUART Transmit/Receive Control Register 2UCONX000000b03B1h				
OART Heceive Builter HegisterOTRBXXh03B0hUART Transmit/Receive Control Register 2UCONX0000000b03B1h	03ADh	UART1 Transmit/Receive Control Register 1	U1C1	
03AFhXXh03B0hUART Transmit/Receive Control Register 2UCONX0000000b03B1h		LIABT1 Beceive Buffer Begister	LI1BB	
03B1h	03AFh	0	0110	XXh
03B2hImage: constraint of the second sec	03B0h	UART Transmit/Receive Control Register 2	UCON	X000000b
03B3hImage: constraint of the second sec	03B1h			
03B3hImage: constraint of the second sec	03B2h			
03B4hImage: constraint of the second sec				
03B5hImage: constraint of the system03B5hImage: constraint of the system03B6hImage: constraint of the system03B7hImage: constraint of the system03B8hDMA0 Request Source Select Register03B9hImage: constraint of the system03B6hImage: constraint of the system03B6h				
03B6h Image: constraint of the second seco				
03B7h				
03B8h DMA0 Request Source Select Register DM0SL 00h 03B9h 00h 00h 03BAh DMA1 Request Source Select Register DM1SL 00h 03BBh 00h 00h 00h 03BCh CRC Data Register CRCD XXh 03BEh CRC Input Register CRCIN XXh 03BFh CRC Input Register CRCIN XXh				
03B9h DM1 Request Source Select Register DM1SL 00h 03BAh DM1SL 00h 03BBh CRC Data Register XXh 03BDh CRC Input Register CRCIN 03BFh CRC Input Register XXh		DMA0 Request Source Select Register	DM0SL	00h
03BAh DMA1 Request Source Select Register DM1SL 00h 03BBh				
03BBh 03BCh CRC Data Register XXh 03BDh CRC Input Register CRCIN XXh 03BEh CRC Input Register CRCIN XXh 03BFh CRC Input Register CRCIN XXh		DMA1 Request Source Select Register	DM1SL	00h
03BCh CRC Data Register XXh 03BDh CRC Input Register XXh 03BEh CRC Input Register CRCIN 03BFh CRC Input Register CRCIN				
O3BDh CRC Data Hegister XXh 03BEh CRC Input Register CRCIN XXh 03BFh CRC Input Register CRCIN XXh				XXh
03BEh CRC Input Register CRCIN XXh 03BFh		CRC Data Register	CRCD	
03BFh		CBC Input Begister	CBCIN	
			ONOIN	
			I I	

X: Undefined

NOTES:

Bits TA2P to TA4P in the UDF register are set to 0 after reset. However, the contents in these bits are undefined when read.
 Blank spaces are reserved. No access is allowed.

Table 4.16 SFR Information (16)⁽²⁾

AddressProjectSymbolAddressAD Register 0AD Register 1AD Register 1AD Register 1AD Register 1AD Register 1AD Register 2XN hADG2DAD Register 2AD Register 3XN hADG3DhAD Register 3AD Register 3XN hADG2DhAD Register 3AD Register 3XN hADG2DhAD Register 4AD 4XX hADG2DhAD Register 5AD Register 5XN hADG2DhAD Register 6AD 6XN hADG2DhAD Register 6AD 6XN hADG2DhAD Register 7AD 7XN hADG2DhAD Register 7AD 7XN hADG1DhAD Register 7AD 7XN hADG2DhAD Register 7AD 7XN hADG2DhAD Register 7AD 7XN hADG2DhAD Control Register 2AD CON2AD hADG3DhAD Control Register 2AD CON2AD hADG3DhAD Control Register 1AD CON1AD hADG3DhAD Register 1AD CON1AD hADG3DhAD An Register 1AD CON1AD hADG3DhAD An Register 1AD CON1AD hADG3DhAD Control Register 1AD CON1AD hADG3DhAD An Register 1AD CON1AD hADG3DhAD Control Register 3AD hAD hADSD4DhAD Register 1AD CON1AD hADSD5DhAD Register 1AD AD HAD hA			Oursels al	After Deset
AD Register 0 ADD XXh 03C2h 03C2h 03C2h 03C2h 03C2h 03C2h AD Register 1 AD I XXh 03C2h 03C2h 03C2h 03C2h 03C2h 03C2h 03C2h 03C2h AD Register 2 AD 2 XXh 03C3h 03C3h 03C2h 03C2h 03C2h 03C2h 03C2h 03C2h 03C2h AD Register 4 AD 4 00 Xh 03C3h 03C2h 03C2h 03C2h 03C2h 03C2h 03C2h 03C2h 03C2h AD Register 5 AD 4 00 Xh 03C3h 03C2h 03C3h 03C3h 03C3h 03C3h 03C3h AD Register 6 AD 4 00 Xh 03C3h 04C cartrol Register 1 AD 2 00h 000000XXb 000h 000h 000h 000h 000h	Address	Register	Symbol	After Reset
Jog2an (393b) AD Register 1 XNn 393b) AD Register 2 XNn 393b) AD Register 2 XNn 393b) AD Register 3 AD2 XNn 393b) AD Register 3 AD3 XNn 393b) AD Register 3 AD3 XNn 393b) AD Register 4 AD4 XNn 393b) AD Register 5 AD5 XNn 393b) AD Register 6 AD6 XNn 393b) AD Register 7 AD7 XNn 393b) AD Register 7 AD7 XNn 393b) AD Control Register 7 AD7 XNn 393b) AD Control Register 0 ADCON2 ON 393b) AD Control Register 1 ADCON2 ON 393b) AD Control Register 1 ADCON1 ON 393b) AD Control Register 1 ADCON1 ON 393b) AD Control Register 1 ADCON1 ON 393b) AD Control Register ADCON		A/D Register 0	AD0	
AD Register 1 AD - XXh 03C4h AD Register 2 XXh 03C5h AD Register 3 AD 2 XXh 03C5h AD Register 3 AD 3 XXh 03C5h AD Register 4 AD 4 XXh 03C5h AD Register 5 AD 5 XDh 03C5h AD Register 6 AD 6 XXh 03C5h AD Register 7 AD 7 XXh 03C5h AD Register 7 AD 7 XXh 03C5h AD Register 7 XDh XDh 03C5h AD Control Register 2 ADCON2 00h 03D5h				
and Degister 2 AD2 XXh 03Geh AD Register 3 AD3 XXh 03Geh AD Register 3 AD3 XXh 03Geh AD Register 4 AD4 XXh 03Geh AD Register 5 AD5 XXh 03Geh AD Register 6 AD6 XXh 03Geh AD Register 7 AD7 XXh 03Geh AD Register 7 AD7 XXh 03Geh AD Control Register 7 AD7 XXh 03Geh AD Control Register 7 AD7 XXh 03Geh AD Control Register 1 ADCOND 000h 03Geh AD Control Register 1 ADCOND 000000XXb 03Geh AD Control Register 1 DA1 00h 03Geh AD Control Register 1 DA1 00h 03Geh AD Control Register 1 DA2 00h 03Geh AD Register 1 DA4 00h 03Geh AD Register 1 DA4 00h 03Geh <t< td=""><td></td><td>A/D Register 1</td><td>AD1</td><td></td></t<>		A/D Register 1	AD1	
ADI Hegister 2 AD2 XXh 035Ch AD Register 3 AD3 XXh 035Ch AD Register 3 AD4 XXh 035Ch AD Register 4 AD4 XXh 035Ch AD Register 5 AD5 XXh 035Ch AD Register 6 AD6 XXh 035Ch AD Register 7 AD7 XXh 035Ch AD Register 7 XXh AD6 035Ch AD Register 7 XXh AD6 035Ch AD Control Register 7 XXh AD7 035Ch AD Control Register 2 ADCON2 00h 035Ch AD Control Register 2 ADCON1 00h 035Ch AD Control Register 1 AD2 00h 035Ch AD Control Register 1 ADCON1 00h 035Ch AD Control Register 1 ADCON1 00h 035Ch AD Control Register 1 ADCON1 00h 035Ch DA Register 1 ADCON1 00h 035Ch				
GSCPN AD Register 3 XXh GSCPN AD Register 4 AD4 XXh GSCPN AD Register 4 AD4 XXh GSCPN AD Register 5 AD5 XXh GSCPN AD Register 5 AD5 XXh GSCPN AD Register 6 AD6 XXh GSCPN AD7 XXh XSh GSCPN AD7 XXh XSh GSCPN AD7 XXh XSh GSCPN AD7 XXh XSh GSCPN AD Control Register 7 AD7 XXh GSCPN AD Control Register 2 ADCON2 ODh GSCPN AD Control Register 1 ADCON1 00h GSCPN AD Control Register 1 ADCON1 00h GSCPN AD Control Register 1 ADCON1 00h GSCPN AD Control Register 1 ADCON 00h GSCPN AD Control Register 1 0ACON 00h GSCPN POT PO Register D		A/D Register 2	AD2	
ADI Register 3 AD3 XXh 03CBA (03CBA) AD Register 4 AD4 XXh 03CAN (03CA) AD Register 5 AD5 XXh 03CAN (03CA) AD Register 6 AD6 XXh 03CAN (03CA) AD Register 7 AD7 XXh 03CAN (03CA) AD Register 7 AD7 XXh 03CAN (03CA) AD Control Register 7 AD7 XXh 03DA1 AD Control Register 2 ADCON2 00h 03DA1 AD Control Register 0 ADCON2 00h 03DA1 AD Control Register 1 ADCON0 000000XXb 03DA1 AD Control Register 1 ADCON1 00h 03DA1 AD Control Register 1 ADCON1 00h 03DA1 AD Control Register 1 ADCON 00h 03DA1 AD Control Register 1 ADCON 00h 03DA1 AD Control Register ADCON 00h 03DA1 AD Control Register ADCON 00h 03DAD DA Control Register <				
aggesh AD Register 4 AD4 XXh 03Geh AD Register 5 AD5 XXh 03Geh AD Register 5 AD6 XXh 03Geh AD Register 6 AD6 XXh 03Geh AD Register 7 AD6 XXh 03Geh AD7 XXh 03Geh AD7 XXh 03Geh AD Control Register 7 XXh 03Geh AD Control Register 2 ADCON2 Oth 03Geh AD Control Register 2 ADCON2 Oth 03Geh AD Control Register 0 ADCON1 00h 03Geh AD Control Register 1 ADCON 00h 03Geh DA Control Register 1 ADCON 00h 03Geh DA Control Register 2 ADCON 00h 03Geh DA Pot		A/D Register 3	AD3	
AD Program 4 AD 4 XXh 03CAh AD Register 5 AD5 XXh 03CCh AD Register 5 XXh XXh 03CCh AD Register 6 XXh XXh 03CCh AD Register 7 AD6 XXh 03CCh AD Register 7 XXh XXh 03D0h AD Control Register 7 XXh XXh 03D1h			454	XXh
ADD Register 5 XD5 XXh 03CDh AD Register 6 XXh 03CDh AD Register 7 AD 03CDh AD Register 7 XXh 03CDh AD XXh 03Dh AD Control Register 2 ADCON0 000000000000000000000000000000000000		A/D Register 4	AD4	XXh
Joseph AD AD Joseph AD Register 6 XXh Joseph AD Register 7 AD 7 XXh Joseph AD Register 7 XXh XXh Joseph AD Control Register 7 XXh XXh Joseph AD Control Register 7 XXh XXh Joseph AD Control Register 2 ADCON2 00h Joseph AD Control Register 1 ADCON1 000000XXbb Joseph AD Control Register 1 ADCON1 00h Joseph DA Register 1 ADCON1 00h 00h Joseph DA Register 1 ADCON1 00h 00h Joseph DA Control Register 1 DA1 00h		A/D Desister 5		
ADB XXh 33CEh AD7 XXh 33Ch AD7 XXh 33Ch XXh XXh 33Ch XXh XXh 33Ch XXh XXh 33Ch XD XXh 33Ch XD Control Register 2 ADCON2 Oh 33Dh XD Control Register 0 ADCON1 Oh 33Dh XD Control Register 1 ADCON1 Oh 33Dh AD Control Register 1 DA1 Oh 33Dh DA Register 1 Oh Oh 33Dh DA Control Register 1 DA1 Oh 33Dh DA Control Register 1 DA1 Oh 33Dh DA Register 3 DACON Oh 33Dh DA Register 4 DACON Oh 33Dh DA Register 1 DACON Oh 33Dh DA Control Register DACON Oh 33Dh DA Control Register DACON Oh 33Dh DA Por P		AD hegister 5	AD3	
Joseph AD7 XAII 039Ch AD7 XXII 039Ch AD7 XXII 039Ch AD7 XXII 039Ch AD7 XXII 039Ch AD7 XXIII 039Ch AD AD7 0392h AD AD7 0392h AD Control Register 2 ADCON2 0395h AD Control Register 0 ADCON0 0395h AD Control Register 1 DA0 0395h AD Control Register 1 DA0 0395h D/A Register 1 DA1 0395h D/A Register 1 DA1 0395h D/A Control Register DACON 0395h D/A Register 1 DA1 0395h D/A Register 1 DA0 0395h D/A Register 1 DA0 0395h D/A Control Register DACON 0395h D/A Control Register PO 0395h D/A Control Register PO 0395h Port P1 Begister		A/D Register 6	AD6	
AU/ XXh 3300h XXh 3300h XXh 3300h XXh 3300h XXh 3300h XXD 3302h XXD 3302h XXD 3302h AD Control Register 2 3305h AD Control Register 0 3302h AD Control Register 1 3302h AD Control Register 1 3302h D/A Register 0 3302h D/A Register 1 3302h DA 3302h D/A Register 1 3302h D/A Register 1 3302h D/A Register 1 3302h D/A Control Register 1 3302h D/A Pol Polecition Register 1 3302h ADCON 3302h Pol PO Register 1 3302h Pol PO Register 1 3302h Pol PO Register 1 3302h Pol PO Register 1 </td <td></td> <td></td> <td>7.00</td> <td></td>			7.00	
13300h AXII 3300h AXII 3300h AXII 3300h AXII 3300h AXII 3302h AXIII 3302h AXIIII 3302h AXIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		A/D Register 7	AD7	
1332h				XXN
1332h				
G320h AD Control Register 2 ADCON2 Oth 0330h AD Control Register 0 ADCON0 000000XXbb 0330h AD Control Register 1 ADCON1 00h 030bh D/A Register 0 0A0 00h 030bh D/A Register 1 DA0 00h 030bh D/A Register 1 DA1 00h 030bh D/A Control Register DACON 00h 030bh D/A Control Register DACON 00h 030bh D/A Control Register DACON 00h 030bh D/A Control Register DA 00h 030bh D/A Control Register P0 XXh 030bh D/A Control Register P0 XXh 035ch Port P0 Register P1 XXh 035ch Port P1 Deltoin Register P1 XXh 035ch Port P2 Register P2 Xh 035ch Port P2 Register P2 Xh 035ch Port P2 Register P2 Xh </td <td></td> <td></td> <td></td> <td></td>				
AD Control Register 2 AD CONN2 Obh 33Deh AD Control Register 0 ADCONN0 00000XXb 03Deh AD Control Register 1 ADCONN1 00h 03Deh D/A Register 0 DA0 00h 03Deh D/A Register 1 DA1 00h 03Deh D/A Register 1 DA1 00h 03Deh D/A Control Register DACON 00h 03DEh D/A Control Register DACON 00h 03DEh D/A Control Register DACON 00h 03DEh D/A Control Register PO XXh 03DEh D/A Control Register PO XXh 03DEh Port PD Register PO XXh 03E2h Port PI Bregister PO XXh 03E2h Port PD Direction Register PO XXh 03E5h Port P2 Register P2 Xh 03E5h Port P2 Register P2 Xh 03E5h Port P3 Register P2 XXh <tr< td=""><td></td><td></td><td></td><td></td></tr<>				
1930bh		A/D Control Register 2	ADCON2	00h
AD Control Register 0 ADCONNO 00000XXXb 03D7h AD Control Register 1 ADCON1 00h 03D8h D/A Register 0 DA0 00h 03D8h D/A Register 1 DA1 00h 03D8h D/A Register 1 DA1 00h 03D2h D/A Control Register DACON 00h 03D2h D/A Control Register DACON 00h 03D2h D/A Control Register DACON 00h 03D2h 03D2h 03D2h 03Eh Port PO Register P0 XXh 03E4h Port P2 Register P2 XXh				
Open Note Open Note Open Note 03Deh DA 00h 03Deh DA DACON 00h 03Deh DA Pot Po Register DA 03Deh Port P1 Register P1 XXh 03Eah Port P1 Register P2 XXh 03Eah Port P2 Register P3 Xxh 03Eah Port P2 Register P3 Xxh 03Eah Port P3 Register P4 Xxh 03Eah Port P4 Register P4 Xxh 03Eah Port P4 Register P4 00h		A/D Control Register 0	ADCON0	00000XXXb
0309h D/A Register 0 D/A 0309h 0 0 0309h 0 0 0309h 0 0 0309ch D/A Control Register 1 0 0300ch D/A Control Register DACON 00h 0300ch 0 0 0 0325h Port P0 Register P0 0 0355h Port P2 Register P3 XXh 0356h Port P3 Register P03 0 0356h Port P3 Register P3 XXh				
O2AAn D/A Register 1 DA1 O0h 03DDh			DA0	00h
G3DBh DACON ODh 03DCh D/A Control Register DACON 00h 03DDh	03D9h			
Op/A Control Register DACON ODh 03DEh - <t< td=""><td>03DAh</td><td>D/A Register 1</td><td>DA1</td><td>00h</td></t<>	03DAh	D/A Register 1	DA1	00h
03DDh				
03DEh Pot 03BCh Pot P0 Register P0 03E0h Pot P0 Register P0 03E1h Pot P0 IP ODirection Register PD0 00h 03E3h Pot P0 IP Direction Register PD1 00h 03E3h Pot P2 Register P2 XXh 03E5h Pot P2 Register P3 XXh 03E5h Pot P2 Register P3 XXh 03E5h Pot P2 Direction Register P3 XXh 03E5h Pot P3 Direction Register P02 00h 03E5h Pot P4 Signifer P03 00h 03E5h Pot P5 Register P4 XXh 03E5h Pot P5 Register P04 00h 03E5h Pot P5 Direction Register P05 00h 03E5h Pot P5 Register P7 XXh 03E5h Pot P6 Register P7 Xxh 03E5h Pot P7 Register P7 00h 03E5h Pot P7 Register P07 00h <td></td> <td>D/A Control Register</td> <td>DACON</td> <td>00h</td>		D/A Control Register	DACON	00h
O3DFh Poit PO Register P0 XXh 03E1h Port PO Irection Register P1 XXh 03E2h Port PO Direction Register PD0 00h 03E3h Port PD Direction Register PD1 00h 03E3h Port P1 Direction Register PD1 00h 03E3h Port P2 Register P2 XXh 03E5h Port P3 Register P2 00h 03E5h Port P3 Register PD2 00h 03E5h Port P3 Register PD2 00h 03E5h Port P3 Register PD2 00h 03E5h Port P4 Register PD3 00h 03E5h Port P5 Register P5 XXh 03E6h Port P6 Register P5 00h 03E5h Port P6 Register P05 00h 03E5h Port P6 Register P6 XXh 03E5h Port P6 Register P06 00h 03E5h Port P7 Register P07 00h <t< td=""><td></td><td></td><td></td><td></td></t<>				
O3E0h Port P0 Register P0 XXh 03E1h Port P1 Register P1 XXh 03E2h Port P0 Direction Register PD0 00h 03E3h Port P1 Direction Register PD1 00h 03E3h Port P2 Register P2 XXh 03E5h Port P2 Register P3 XXh 03E5h Port P3 Register P3 XXh 03E5h Port P3 Direction Register PD2 00h 03E7h Port P3 Direction Register PD3 00h 03E8h Port P4 Register P4 XXh 03E8h Port P5 Register P4 XXh 03E3h Port P4 Direction Register P5 XXh 03E3h Port P5 Register P5 00h 03E3h Port P4 Direction Register P04 00h 03E3h Port P5 Register P5 00h 03E3h Port P6 Register P6 XXh 03E3h Port P7 Register P7 XXh				
O3E1h Port P1 Register P1 XXh 03E3h Port P0 Direction Register PD0 00h 03E3h Port P1 Direction Register PD1 00h 03E3h Port P2 Register P2 XXh 03E3h Port P3 Register P3 XXh 03E3h Port P3 Direction Register PD2 00h 03E3h Port P3 Direction Register PD3 00h 03E3h Port P4 Register P4 XXh 03E3h Port P4 Register P5 XXh 03E3h Port P4 Register P5 XXh 03E3h Port P4 Register P5 00h 03E3h Port P5 Direction Register PD4 00h 03E3h Port P6 Register PD7 00h 03E3h Port P6 Register PD7 Xh 03E3h Port P6 Register PD6 00h 03E3h Port P7 Register PD6 00h 03E3h Port P3 Register PD8 0Xh </td <td></td> <td></td> <td>DO</td> <td>NO(1</td>			DO	NO(1
O3E2h Port P0 Direction Register PD0 00h 03E3h Port P1 Direction Register PD1 00h 03E4h Port P2 Register P2 XXh 03E5h Port P3 Register P3 XXh 03E5h Port P2 Direction Register PD2 00h 03E7h Port P3 Direction Register PD3 00h 03E8h Port P4 Register PD4 00h 03E8h Port P5 Direction Register PD4 00h 03E4h Port P5 Direction Register PD4 00h 03E6h Port P5 Direction Register PD5 00h 03E2h Port P6 Direction Register PD6 00h 03E2h Port P7 Register PD7 XXh 03E2h Port P7 Register PD7 00h 03E5h Port P7 Direction Register PD6 00h 03E7h Port P8 Direction Register PD6 00h 03F0h Port P8 Direction Register PD8 0XXh 03F1h Por				
O3E3h Port P1 Direction Register PD1 00h 03E4h Port P2 Register P2 XXh 03E5h Port P2 Inection Register PD2 00h 03E5h Port P2 Direction Register PD2 00h 03E5h Port P3 Direction Register PD3 00h 03E5h Port P4 Register P3 XXh 03E6h Port P4 Register P3 00h 03E8h Port P4 Register P5 XXh 03E9h Port P5 Register P5 00h 03E9h Port P5 Register P05 00h 03E2Ch Port P6 Register P6 XXh 03E2Dh Port P7 Register P7 XXh 03E5h Port P7 Register P06 00h 03E7h Port P7 Register P07 00h 03E5h Port P7 Register P07 00h 03E6h Port P7 Register P08 00X0000b 03F0h Port P3 Register P08 00Xh <td></td> <td></td> <td></td> <td></td>				
O3E4h Port P2 Register P2 XXh 03E5h Port P3 Register P3 XXh 03E6h Port P2 Direction Register PD2 00h 03E7h Port P3 Direction Register PD3 00h 03E8h Port P4 Register P4 XXh 03E9h Port P5 Register P5 XXh 03E9h Port P4 Register PD4 00h 03E8h Port P4 Register PD4 00h 03E8h Port P4 Direction Register PD4 00h 03E2h Port P5 Direction Register PD5 00h 03E2h Port P7 Register P7 XXh 03E2h Port P7 Register P07 00h 03Fh Port P8 Register PD7 00h 03Fh Port P8 Register P07 00h 03Fh Port P8 Register P07 00h 03Fh Port P8 Register P07 00h 03Fah Port P9 Direction Register P08 00X00000b				
O3E5h Port P3 Register P3 XXh O3E5ch Port P2 Direction Register PD2 00h O3E7h Port P3 Direction Register PD3 00h O3E8h Port P4 Register P4 XXh O3E9h Port P4 Register P5 XXh O3E9h Port P4 Direction Register PD4 00h O3EAh Port P4 Direction Register PD5 00h O3EAh Port P5 Direction Register PD6 00h O3EBh Port P5 Register P6 XXh O3EDh Port P5 Register P7 XXh O3ECh Port P6 Register PD6 00h O3EFh Port P7 Direction Register PD7 00h O3EFh Port P7 Direction Register PD7 00h O3F1h Port P8 Bigister P8 XXh O3F2h Port P8 Direction Register P08 00X00000b O3F2h Port P8 Direction Register P10 XXh O3F2h Port P10 Register <td></td> <td></td> <td></td> <td></td>				
O3E6h Port P2 Direction Register PD2 00h 03E7h Port P3 Direction Register PD3 00h 03E8h Port P4 Register P4 XXh 03E9h Port P5 Register P5 XXh 03EAh Port P5 Register P5 00h 03EAh Port P5 Direction Register PD4 00h 03EAh Port P5 Direction Register PD5 00h 03ECh Port P5 Register P6 XXh 03EDh Port P7 Register P6 XXh 03ECh Port P7 Register P7 XXh 03EEh Port P7 Direction Register P06 00h 03EFh Port P5 Direction Register P7 00h 03F1h Port P6 Register P8 XXh 03F2h Port P8 Register P8 00X00000b 03F3h Port P9 Register P9 00Xh 03F3h Port P10 Register P10 00h 03F3h Port P10 Register P10 <t< td=""><td></td><td></td><td></td><td></td></t<>				
O3E7h Port P3 Direction Register PD3 00h 03E8h Port P4 Register P4 XXh 03E9h Port P5 Register P5 XXh 03EAh Port P5 Register PD4 00h 03EAh Port P4 Direction Register PD4 00h 03EAh Port P5 Direction Register PD5 00h 03ECh Port P6 Register P6 XXh 03EDh Port P7 Register P7 XXh 03ECh Port P6 Register PD6 00h 03EDh Port P7 Register P7 XXh 03EDh Port P7 Direction Register PD6 00h 03EFh Port P7 Begister P07 00h 03F1h Port P8 Register P8 XXh 03F1h Port P8 Register P0 XXh 03F2h Port P8 Register P0 00X0000b 03F3h Port P9 Direction Register P10 XXh 03F3h Port P10 Register P10 00h				
O3E8h Port P4 Register P4 XXh 03E9h Port P5 Register P5 XXh 03EAh Port P4 Direction Register PD4 00h 03EBh Port P5 Direction Register PD5 00h 03ECh Port P5 Direction Register PD5 00h 03ECh Port P6 Register P6 XXh 03EDh Port P7 Register P6 00h 03EEh Port P7 Direction Register PD6 00h 03EFh Port P7 Direction Register PD7 00h 03Foh Port P8 Register P8 XXh 03F1h Port P9 Register P9 XXh 03F2h Port P8 Direction Register P08 00X00000b 03F3h Port P9 Direction Register PD8 00X00000b 03F3h Port P10 Register PD9 00h 03F3h Port P10 Register P10 XXh 03F3h Port P10 Direction Register P10 00h 03F3h Out P10 Direction Regis				
O3E9h Port P5 Register P5 XXh 03EAh Port P4 Direction Register PD4 00h 03EBh Port P5 Direction Register PD5 00h 03ECh Port P6 Register PC6 XXh 03EDh Port P7 Register P7 XXh 03EBh Port P7 Register PD6 00h 03ECh Port P7 Direction Register PD6 00h 03EFh Port P7 Direction Register PD6 00h 03Fbh Port P7 Bregister P8 XXh 03F1h Port P7 Bregister P8 XXh 03F1h Port P8 Register P9 XXh 03F2h Port P8 Register P08 00X0000b 03F3h Port P9 Direction Register P10 XXh 03F5h Port P10 Register P10 XXh 03F6h Port P10 Direction Register P10 00h 03F3h Port P10 Direction Register P10 00h 03F3h Port P10 Direction Register				XXh
O3EBh Port P5 Direction Register PD5 00h 03ECh Port P6 Register P6 XXh 03EDh Port P7 Register P7 XXh 03EEh Port P7 Direction Register PD6 00h 03EFh Port P7 Direction Register PD7 00h 03Fh Port P2 Direction Register PD7 00h 03Fh Port P3 Register P8 XXh 03F1h Port P3 Register P9 XXh 03F2h Port P3 Direction Register PD8 00X0000b 03F3h Port P9 Direction Register PD8 00X0000b 03F3h Port P10 Register PD9 00h 03F5h 03F6h Port P10 Register P10 XXh 03F3h Port P10 Register P10 00h 03F7h 03F8h 03F9h <td>03E9h</td> <td></td> <td>P5</td> <td>XXh</td>	03E9h		P5	XXh
O3ECh Port P6 Register P6 XXh 03EDh Port P7 Register P7 XXh 03EEh Port P6 Direction Register PD6 00h 03EFh Port P7 Direction Register PD7 00h 03Fh Port P7 Direction Register PD7 00h 03F1h Port P8 Register P9 XXh 03F2h Port P8 Register P9 XXh 03F2h Port P8 Direction Register PD8 00X00000b 03F3h Port P9 Direction Register PD9 00h 03F3h Port P10 Direction Register PD9 00h 03F3h Port P10 Direction Register PD9 00h 03F3h Port P10 Direction Register PD10 00h 03F3h Port P10 Direction Register PD10 00h 03F3h Port P10 Direction Register PU1 00h 03F3h Port P10 Direction Register PU1 00h 03F3h PO10 00h PU1 00h 03F3h </td <td></td> <td>Port P4 Direction Register</td> <td></td> <td>00h</td>		Port P4 Direction Register		00h
O3EDh Port P7 Register P7 XXh 03EEh Port P6 Direction Register PD6 00h 03EFh Port P7 Direction Register PD7 00h 03F0h Port P7 Bregister P8 XXh 03F1h Port P8 Register P9 XXh 03F2h Port P8 Direction Register P9 XXh 03F2h Port P9 Direction Register P9 XXh 03F2h Port P9 Direction Register P09 00h 03F3h Port P9 Direction Register PD9 00h 03F3h Port P10 Register P10 XXh 03F3h Port P10 Register P10 XXh 03F5h				
03EEh Port P6 Direction Register PD6 00h 03EFh Port P7 Direction Register PD7 00h 03F0h Port P8 Register P8 XXh 03F1h Port P9 Register P9 XXh 03F2h Port P8 Direction Register PD8 00X0000b 03F3h Port P9 Direction Register PD9 00h 03F3h Port P10 Register P10 XXh 03F5h 0057h Port P10 Register P10 XXh 03F6h Port P10 Direction Register P10 00h 00h 03F6h Port P10 Direction Register P10 00h 00h 00h 03F7h				
O3EFh Port P7 Direction Register PD7 00h 03F0h Port P8 Register P8 XXh 03F1h Port P9 Register P9 XXh 03F2h Port P8 Direction Register PD8 00X00000b 03F3h Port P9 Direction Register PD9 00h 03F3h Port P10 Register PD9 00h 03F3h Port P10 Register P10 XXh 03F5h 0056h Port P10 Register P10 XXh 03F5h 03F8h 000h 00h 00h 03F7h 00 00h 00h 00h 03F8h 0056h Port P10 Direction Register PD10 00h 03F8h 0057h 00h 00h 00h 03F6h Pull-up Control Register 0 PUR1 00000000b (
O3F0h Port P8 Register P8 XXh O3F1h Port P9 Register P9 XXh O3F2h Port P9 Direction Register PD8 00X00000b O3F3h Port P9 Direction Register PD9 00h O3F4h Port P10 Register P10 XXh O3F5h P10 00h 00h O3F6h Port P10 Direction Register P10 00h O3F6h Port P10 Direction Register PD10 00h O3F7h 00h 00h 00h O3F8h 005F9h 00h 00h O3F8h 005F9h 00h 00h O3F8h 005F0h 00h 00h O3F8h 005F0h 00h 00h O3F8h 005F0h PUI-up Control Register 0 00h O3FCh Pull-up Control Register 1 PUR1 00000000b (1) O3FEh Pull-up Control Register 2 PUR2 00h				
O3F1h Port P9 Register P9 XXh 03F2h Port P8 Direction Register PD8 00X0000b 03F3h Port P9 Direction Register PD9 00h 03F4h Port P10 Register P10 XXh 03F5h P10 00h 00h 03F6h Port P10 Direction Register PD10 00h 03F6h Port P10 Direction Register PD10 00h 03F8h 03F8h 03F8h 03F8h 03F8h 03F8h 03F8h 03F8h 03F8h 03F6h Pull-up Control Register 0 PUR0 00h 03F5h<				
03F2h Port P8 Direction Register PD8 00X0000b 03F3h Port P9 Direction Register PD9 00h 03F4h Port P10 Register P10 XXh 03F5h 910 00h 00h 03F6h Port P10 Direction Register PD10 00h 03F7h 910 00h 00h 03F8h 910 00h 00h 03F8h 910 00h 00h 03F8h 910 910 00h 03F8h 910 910 910 03F8h 910 910 910 03F8h 910 910 910 910 03F0h 911-up Control Register 0 910 910 910 03F10 911-up Control Register 1 91000000000000000000000000000000000000				
O3F3h Port P9 Direction Register PD9 00h 03F4h Port P10 Register P10 XXh 03F5h 03F6h Port P10 Direction Register PD10 00h 03F7h 03F8h 03F9h 03F8h 03F9h 03F8h 03F8h 03F8h 03F8h 03F8h 03F8h 03F8h 03FCh Pull-up Control Register 0 PUR0 00h 03FDh Pull-up Control Register 1 PUR1 00000000b (1) 03FEh Pull-up Control Register 2 PUR2 00h <td></td> <td></td> <td></td> <td></td>				
O3F4h Port P10 Register P10 XXh O3F5h				
03F5h Port P10 Direction Register PD10 00h 03F7h 00h 00h 00h 03F8h 03F9h 00h 00h 03F9h 00h 00h 00h 03FAh 00h 00h 00h 03FAh 00h 00h 00h 03FBh 00h 00h 00h 03FCh Pull-up Control Register 0 PUR0 00h 03FDh Pull-up Control Register 1 PUR1 00000000b (1) 00000010b 03FEh Pull-up Control Register 2 PUR2 00h				
O3F6h Port P10 Direction Register PD10 00h 03F7h <t< td=""><td></td><td></td><td></td><td></td></t<>				
03F7h		Port P10 Direction Register	PD10	00h
03F8h				
03F9h				
03FAh O3FBh PUR0 00h 03FCh Pull-up Control Register 0 PUR0 00h 03FDh Pull-up Control Register 1 PUR1 00000000b ⁽¹⁾ 03FEh Pull-up Control Register 2 PUR2 00h				
03FBh PUR0 00h 03FCh Pull-up Control Register 0 PUR0 00h 03FDh Pull-up Control Register 1 PUR1 00000000b ⁽¹⁾ 03FEh Pull-up Control Register 2 PUR2 00h				
03FCh Pull-up Control Register 0 PUR0 00h 03FDh Pull-up Control Register 1 PUR1 00000000b ⁽¹⁾ 03FEh Pull-up Control Register 2 PUR2 00h	03FBh			
03FDh Pull-up Control Hegister 1 PUR1 00000010b 03FEh Pull-up Control Register 2 PUR2 00h		Pull-up Control Register 0	PUR0	
03FEh Pull-up Control Register 2 PUR2 00h		Pull-up Control Register 1	PUR1	
03FFh Port Control Register PCR 00h				
	03FFh	Port Control Register	PCH	UUh

X: Undefined

NOTES:

1. At hardware reset, the register is as follows:

0000000b where "L" is input to the CNVSS pin

00000010b where "H" is input to the CNVSS pin

At software reset, watchdog timer reset and oscillation stop detection reset, the register is as follows:

0000000b where bits PM01 to PM00 in the PM0 register are 00b (single-chip mode)
00000010b where bits PM01 to PM00 in the PM0 register are 01b (memory expansion mode) or 11b (microprocessor mode)

2. Blank spaces are reserved. No access is allowed.

5. Resets

Hardware reset, software reset, watchdog timer reset, and oscillation stop detection reset are available to reset the MCU.

5.1 Hardware Reset

The MCU resets pins, the CPU and SFR by setting the RESET pin. If the supply voltage meets the recommended operating conditions, the MCU resets all pins when an "L" signal is applied to the RESET pin (see **Table 5.1 Pin Status When RESET Pin Level is** "L"). The oscillation circuit is also reset and the main clock starts oscillation. The MCU resets the CPU and SFR when the signal applied to the RESET pin changes low ("L") to high ("H"). The MCU executes the program in an address indicated by the reset vector. The internal RAM is not reset. When an "L" signal is applied to the RESET pin while writing data to the internal RAM, the internal RAM is in an undefined state.

Figure 5.1 shows an Example Reset Circuit. Figure 5.2 shows a Reset Sequence. Table 5.1 lists the Pin States when $\overrightarrow{\text{RESET}}$ Pin Level is "L".

5.1.1 Reset on a Stable Supply Voltage

- (1) Apply "L" to the RESET pin
- (2) Apply 20 or more clock cycles to the XIN pin
- (3) Apply "H" to the RESET pin

5.1.2 Power-on Reset

- (1) Apply "L" to the RESET pin
- (2) Raise the supply voltage to the recommended operating level
- (3) Insert td(P-R) ms as wait time for the internal voltage to stabilize
- (4) Apply 20 or more clock cycles to the XIN pin
- (5) Apply "H" to the RESET pin

Figure 5.1 Example Reset Circuit

Figure 5.2 Reset Sequence

Table 5.1	Pin Status wh	en RESET Pin	Level is "L"

	Status		
	CNVSS	CNVSS = VCC ⁽¹⁾	
CNV35 = V35	BYTE = VSS	BYTE = VCC	
Input port	Data input	Data input	
Input port	Data input	Input port	
Input port	Address output (undefined)	Address output (undefined)	
Input port	CS0 output ("H" is output)	CS0 output ("H" is output)	
Input port	Input port (Pulled high)	Input port (Pulled high)	
Input port	WR output ("H" is output)	WR output ("H" is output)	
Input port	BHE output (undefined)	BHE output (undefined)	
Input port	RD output ("H" is output)	RD output ("H" is output)	
Input port	BCLK output	BCLK output	
Input port	HLDA output	HLDA output	
	(The output value depends on	(The output value depends on	
	the input to the HOLD pin)	the input to the HOLD pin)	
Input port	HOLD input	HOLD input	
Input port	ALE output ("L" is output)	ALE output ("L" is output)	
Input port	RDY input	RDY input	
Input port	Input port	Input port	
	Input port	CNVSS = VSSCNVSSBYTE = VSSInput portData inputInput portData inputInput portData inputInput portAddress output (undefined)Input portCS0 output ("H" is output)Input portInput port (Pulled high)Input portWR output ("H" is output)Input portBHE output (undefined)Input portBHE output ("H" is output)Input portBCLK output ("H" is output)Input portBCLK outputInput portHLDA output (The output value depends on the input to the HOLD pin)Input portHOLD inputInput portRDY input	

NOTE:

1. Shown here is the valid pin state when the internal power supply voltage has stabilized after power-on. When CNVSS = VCC, the pin state is undefined until the internal power supply voltage stabilizes.

5.2 Software Reset

The MCU resets pins, the CPU and SFR when the PM03 bit in the PM0 register is set to 1 (MCU reset). Then the MCU executes the program in an address determined by the reset vector.

Set the PM03 bit to 1 while the main clock is selected as the CPU clock and the main clock oscillation is stable. In the software reset, the MCU does not reset a part of the SFR. Refer to **4. Special Function Registers (SFRs)** for details.

Processor mode remains unchanged since bits PM01 to PM00 in the PM0 register are not reset.

5.3 Watchdog Timer Reset

The MCU resets pins, the CPU and SFR when the PM12 bit in the PM1 register is set to 1 (reset when watchdog timer underflows) and the watchdog timer underflows. Then the MCU executes the program in an address determined by the reset vector.

In the watchdog timer reset, the MCU does not reset a part of the SFR. Refer to **4. Special Function Registers (SFRs)** for details.

Processor mode remains unchanged since bits PM01 to PM00 in the PM0 register are not reset.

5.4 Oscillation Stop Detection Reset

The MCU resets and stops pins, the CPU and SFR when the CM27 bit in the CM2 register is 0 (reset at oscillation stop, re-oscillation detection), if it detects main clock oscillation circuit stop. Refer to **8.5 Oscillation Stop and Re-Oscillation Detection Function** for details.

In the oscillation stop detection reset, the MCU does not reset a part of the SFR. Refer to **4. Special Function Registers (SFRs)** for details.

Processor mode remains unchanged since bits PM01 to PM00 in the PM0 register are not reset.

5.5 Internal Space

Figure 5.3 shows CPU Register Status After Reset. Refer to **4. Special Function Registers (SFRs)** for SFR states after reset.

RENESAS

6. Processor Mode

6.1 Types of Processor Mode

Three processor modes are available to choose from: single-chip mode, memory expansion mode, and microprocessor mode. Table 6.1 shows the Features of Processor Modes.

Table 6.1 Features of Proc	able 6.1 Features of Processor modes					
Processor Mode	Access Space	Pins Which are Assigned I/O Ports				
Single-chip mode	ode SFR, internal RAM, internal ROM All pins are I/O ports or					
		peripheral function I/O pins				
Memory expansion mode	SFR, internal RAM, internal ROM,	Some pins serve as bus control pins (1)				
	external area (1)					
Microprocessor mode	SFR, internal RAM, external area ⁽¹⁾	Some pins serve as bus control pins (1)				
NOTE.						

Table 6.1 Features of Processor Modes

NOTE:

1. Refer to 7. Bus.

6.2 Setting Processor Modes

Processor mode is set by using the CNVSS pin and bits PM01 to PM00 in the PM0 register.

Table 6.2 shows the Processor Mode after Hardware Reset. Table 6.3 shows Bits PM01 to PM00 Set Values and Processor Modes.

Table 6.2 Processor Mode after Hardware Reset

CNVSS Pin Input Level	Processor Mode
VSS	Single-chip mode
VCC ^{(1) (2)}	Microprocessor mode

NOTES:

1. If the MCU is reset in hardware by applying VCC to the CNVSS pin, the internal ROM cannot be accessed regardless of bits PM01 to PM00.

2. The multiplexed bus cannot be assigned to the entire \overline{CS} space.

Table 6.3 Bits PM01 to PM00 Set Values and Processor Modes

Bits PM01 to PM00	Processor Mode	
00b	Single-chip mode	
01b	Memory expansion mode	
10b	Do not set a value	
11b	Microprocessor mode	

Rewriting bits PM01 to PM00 places the MCU in the corresponding processor mode regardless of whether the input level on the CNVSS pin is "H" or "L". Note, however, that bits PM01 to PM00 cannot be rewritten to 01b (memory expansion mode) or 11b (microprocessor mode) at the same time bits PM07 to PM02 are rewritten. Note also that these bits cannot be rewritten to enter microprocessor mode in the internal ROM, nor can they be rewritten to exit microprocessor mode in areas overlapping the internal ROM.

If the MCU is reset in hardware by applying VCC to the CNVSS pin (hardware reset), the internal ROM cannot be accessed regardless of bits PM01 to PM00.

Figures 6.1 and 6.2 show the PM0 Register and PM1 Register. Figure 6.3 shows the Memory Map in Single-chip Mode. Figures 6.4 to 6.7 show the Memory Map and \overline{CS} Area in Memory Expansion Mode and Microprocessor Mode.

Processor Mode Reg	ster 0 ⁽¹⁾			
b7 b6 b5 b4 b3 b2 b1 b0	Symbol PM0	Address 0004h	After Reset ⁽²⁾ 0000000b (CNVSS pin = L) 00000011b (CNVSS pin = H)	
	Bit Symbol	Bit Name	Function	RW
	PM00	Processor mode bits (2)	0 0 : Single-chip mode 0 1 : Memory expansion mode	RW
	PM01		1 0 : Do not set a value 1 1 : Microprocessor mode	RW
	PM02	R/W Mode select bit ⁽³⁾	0 : RD, BHE, WR 1 : RD, WRH, WRL	RW
	PM03	Software reset bit	Setting this bit to 1 resets the MCU. When read, the content is 0.	RW
	PM04	Multiplexed bus space	0 0 : Multiplexed bus is unused (Separate bus in the entire CS space)	RW
	PM05	select bits ⁽³⁾	0 1 : Allocated to <u>CS2</u> space 1 0 : Allocated to <u>CS1</u> space 1 1 : Allocated to the entire <u>CS</u> space ⁽⁴⁾	RW
	PM06	Port P4_0 to P4_3 function select bit ⁽³⁾	0 : Address output 1 : Port function (Address is not output)	RW
	PM07	BCLK output disable bit ⁽³⁾	0 : BCLK is output 1 : BCLK is not output (Pin is left high-impedance)	RW

NOTES:

1. Rewrite this register after setting the PRC1 bit in the PRCR register to 1 (write enabled).

2. Bits PM01 to PM00 do not change at software reset, watchdog timer reset and oscillation stop detection reset.

Effective when bits PM01 to PM00 are set to 01b (memory expansion mode) or 11b (microprocessor mode).
 To set bits PM01 to PM00 are 01b and bits PM05 to PM04 are 11b (multiplexed bus assigned to the entire CS space), apply an "H" signal to the BYTE pin (external data bus is 8-bit width).

While the CNVSS pin is held "H" (VCC), do not rewrite bits PM05 to PM04 to 11b after reset.

If bits PM05 to PM04 are set to 11b during memory expansion mode, P3_1 to P3_7 and P4_0 to P4_3 become I/O ports, in which case the accessible area for each CS is 256 bytes.

Figure 6.1 PM0 Register

Processor Mode Register 1 ⁽¹⁾					
b7 b6 b5 b4 b3 b2 b1 b0	Symbol PM1	Address 0005h	After Reset 00001000b		
	Bit Symbol	Bit Name	Function	RW	
	PM10	$\overline{\text{CS2}}$ area switch bit (Data block enable bit) ⁽²⁾	0 : 08000h to 26FFFh (Block A disabled) 1 : 10000h to 26FFFh (Block A enabled)	RW	
	PM11	Port P3_7 to P3_4 function select bit $^{(3)}$	0 : Address output 1 : Port function	RW	
	PM12	Watchdog timer function select bit	0 : Watchdog timer interrupt 1 : Watchdog timer reset ⁽⁴⁾	RW	
	PM13	Internal reserved area expansion bit ⁽⁵⁾	Internal ROM area is: 0 : 192 Kbytes or smaller 1 : Expanded over 192 Kbytes	RW	
	_ (b6-b4)	Reserved bits	Set to 0	RW	
	PM17	Wait bit ⁽⁶⁾	0 : No wait state 1 : With wait state (1 wait)	RW	
NOTES			·		

NOTES:

1. Rewrite this register after setting the PRC1 bit in the PRCR register to 1 (write enabled).

2. For the mask ROM version, this bit is set to 0.

For the flash memory version, the PM10 bit controls whether block A is enabled or disabled. When the PM10 bit is set to 1, 0F000h to 0FFFFh (block A) can be used as internal ROM area.

In addition, the PM10 bit is automatically set to 1 while the FMR01 bit in the FMR0 register is set to 1 (CPU rewrite mode).

3. Effective when bits PM01 to PM00 are set to 01b (memory expansion mode) or 11b (microprocessor mode).

4. The PM12 bit is set to 1 by writing a 1 in a program. (writing a 0 has no effect.)

5. Be sure to set this bit to 0 except for products with internal ROM area over 192 Kbytes.

The PM13 bit is automatically set to 1 while the FMR01 bit in the FMR0 register is set to 1 (CPU rewrite mode). 6. When the PM17 bit is set to 1 (with wait state), one wait state is inserted when accessing the internal RAM or internal ROM.

When the PM17 bit is set to 1 and accesses an external area, set the CSiW bit (i = 0 to 3) in the CSR register to 0 (with wait state).

Figure 6.2 PM1 Register

Figure 6.3 Memory Map in Single-chip Mode

Figure 6.4 Memory Map and CS Area in Memory Expansion Mode and Microprocessor Mode (1)

Figure 6.5 Memory Map and CS Area in Memory Expansion Mode and Microprocessor Mode (2)

Figure 6.6 Memory Map and CS Area in Memory Expansion Mode and Microprocessor Mode (3)

Figure 6.7 Memory Map and CS Area in Memory Expansion Mode and Microprocessor Mode (4)

7. Bus

During memory expansion or microprocessor mode, some pins serve as the bus control pins to perform data input/output to and from external devices. These bus control pins include A0 to A19, D0 to D15, $\overline{CS0}$ to $\overline{CS3}$, \overline{RD} , \overline{WRL}/WR , $\overline{WRH}/\overline{BHE}$, ALE, \overline{RDY} , \overline{HOLD} , \overline{HLDA} , and BCLK.

7.1 Bus Mode

The bus mode, either multiplexed or separate, can be selected using bits PM05 to PM04 in the PM0 register.

7.1.1 Separate Bus

In this bus mode, data and address are separate.

7.1.2 Multiplexed Bus

In this bus mode, data and address are multiplexed.

7.1.2.1 When the input level on BYTE pin is high (8-bit data bus)

D0 to D7 and A0 to A7 are multiplexed.

7.1.2.2 When the input level on BYTE pin is low (16-bit data bus)

D0 to D7 and A1 to A8 are multiplexed. D8 to D15 are not multiplexed. Do not use D8 to D15. External devices connecting to a multiplexed bus are allocated to only the even addresses of the MCU. Odd addresses cannot be accessed.

Table 7.1 shows the Difference between Separate Bus and Multiplexed Bus.

Table 7 1	Difference	between	Separate	Bus and	Multiplexed Bu	IS
	Difference	Detween	ocparate	Dus ana	multiplexed be	10

Pin Name ⁽¹⁾	Sanarata Rua	Multiplexed Bus			
	Separate Bus	BYTE = H	BYTE = L		
P0_0 to P0_7/D0 to D7	X D0 to D7	(NOTE 2)	(NOTE 2)		
P1_0 to P1_7/D8 to D15	D8 to D15	I/O Port P1_0 to P1_7	(NOTE 2)		
P2_0/A0(/D0/-)	X A0 X	X A0 X D0 X	X A0 X		
P2_1 to P2_7/A1 to A7 (/D1 to D7/D0 to D6)	A1 to A7	A1 to A7 D1 to D7	XA1 to A7 D0 to D6		
P3_0/A8(/-/D7)	X A8 X	X A8 X	X A8 X D7 X		

NOTES :

- 1. See Table 7.6 Pin Functions for Each Processor Mode for bus control signals other than the above.
- 2. It changes with a setup of bits PM05 to PM04 in the PM0 register, and area to access. See **Table 7.6 Pin Functions for Each Processor Mode** for details.

7.2 Bus Control

The following describes the signals needed for accessing external devices and the functionality of software wait.

7.2.1 Address Bus

The address bus consists of 20 lines, A0 to A19. The address bus width can be chosen to be 12, 16 or 20 bits by using the PM06 bit in the PM0 register and the PM11 bit in the PM1 register. Table 7.2 shows Bits PM06 and PM11 Set Values and Address Bus Widths.

When processor mode is changed from single-chip mode to memory expansion mode, the address bus is undefined until any external area is accessed.

Table 7.2 Bits PM06 and PM11 Set Value and Address Bus Width

Set Value (1)	Pin Function	Address Bus Width
PM11 = 1	P3_4 to P3_7	12 bits
PM06 = 1	P4_0 to P4_3	
PM11 = 0	A12 to A15	16 bits
PM06 = 1	P4_0 to P4_3	
PM11 = 0	A12 to A15	20 bits
PM06 = 0	A16 to A19	

NOTE:

1. No values other than those shown above can be set.

7.2.2 Data Bus

When input on the BYTE pin is high (data bus is an 8-bit width), 8 lines D0 to D7 comprise the data bus; when input on the BYTE pin is low (data bus is a 16-bit width), 16 lines D0 to D15 comprise the data bus. Do not change the input level on the BYTE pin while in operation.

7.2.3 Chip Select Signal

The chip select (hereafter referred to as the CS) signals are output from the CSi (i = 0 to 3) pins. These pins can be chosen to function as I/O ports or as CS by using the CSi bit in the CSR register.

Figure 7.1 shows the CSR Register.

During 1 Mbyte mode, the external area can be separated into up to 4 by the CSi signal which is output from the CSi pin.

Figure 7.2 shows the Example of Address Bus and CSi Signal Output.

b7 b6 b5	b4 b3 b2 b1 b0	Symbol CSR	Address 0008h	After Reset 00000001b	
		Bit Symbol	Bit Name	Function	RW
	· · · · · · · · · · · · · · · · · · ·	CS0	CS0 output enable bit	0 : Chip select output disabled	RW
		CS1	CS1 output enable bit	(functions as I/O port)	RW
		CS2	CS2 output enable bit	1 : Chip select output enabled	RW
		CS3	CS3 output enable bit		RW
		CS0W	CS0 wait bit	0 : With wait state	RW
		CS1W	CS1 wait bit	1 : Without wait state ⁽¹⁾ ⁽²⁾ ⁽³⁾	RW
		CS2W	CS2 wait bit		RW
		CS3W	CS3 wait bit	7	RW

1. Where the \overline{RDY} signal is used in the area indicated by \overline{CSi} (i = 0 to 3) or the multiplexed bus is used, set the CSiW bit to 0 (wait state).

- 2. If the PM17 bit in the PM1 register is set to 1 (with wait state), set the CSiW bit to 0 (with wait state).
- 3. When the CSiW bit = 0 (with wait state), the number of wait states (in terms of clock cycles) can be selected using bits CSEi1W to CSEi0W in the CSE register.

Figure 7.1 CSR Register

Example 1

To access the external area indicated by $\overline{\text{CSj}}$ in the next cycle after accessing the external area indicated by $\overline{\text{CSi}}$.

The address bus and the chip select signal both change state between these two cycles.

Example 2

To access the internal ROM or internal RAM in the next cycle after accessing the external area indicated by $\overline{\text{CSi.}}$

The chip select signal changes state but the address bus does not change state.

Example 3

To access the external area indicated by \overline{CSi} in the next cycle after accessing the external area indicated by the same \overline{CSi} .

The address bus changes state but the chip select signal does not change state.

Example 4

Not to access any area (nor instruction prefetch generated) in the next cycle after accessing the external area indicated by $\overline{\text{CSi}}$.

Neither the address bus nor the chip select signal changes state between these two cycles.

1. These examples show the address bus and chip select signal when accessing areas in two successive cycles. The chip select bus cycle may be extended more than two cycles depending on a combination of these examples.

Shown above is the case where separate bus is selected and the area is accessed for read without wait states. i = 0 to 3, j = 0 to 3 (not including i, however)

Figure 7.2 Example of Address Bus and CSi Signal Output

7.2.4 Read and Write Signals

When the data bus is 16-bit width, the read and write signals can be chosen to be a combination of \overline{RD} , \overline{WR} , and \overline{BHE} or a combination of \overline{RD} , \overline{WRL} , and \overline{WRH} by using the PM02 bit in the PM0 register. When the data bus is 8-bit width, use a combination of \overline{RD} , \overline{WR} , and \overline{BHE} .

Table 7.3 shows the Operation of \overline{RD} , \overline{WRL} , and \overline{WRH} Signals. Table 7.4 shows the Operation of \overline{RD} , \overline{WR} , and \overline{BHE} Signals.

Data Bus Width	RD	WRL	WRH	Status of External Data Bus
16 bits	L	Н	Н	Read data
(BYTE pin	Н	L	Н	Write 1 byte of data to an even address
input = L)	Н	Н	L	Write 1 byte of data to an odd address
	Н	L	L	Write data to both even and odd addresses

Table 7.3 Operation of RD, WRL, and WRH Signals

Table 7.4 Operation of RD, WR, and BHE Signals

			<u> </u>		
Data Bus Width	RD	WR	BHE	A0	Status of External Data Bus
16 bits	Н	L	L	Н	Write 1 byte of data to an odd address
(BYTE pin	L	Н	L	Н	Read 1 byte of data from an odd address
input = L)	Н	L	Н	L	Write 1 byte of data to an even address
	L	Н	Н	L	Read 1 byte of data from an even address
	Н	L	L	L	Write data to both even and odd addresses
	L	Н	L	L	Read data from both even and odd addresses
8 bits	Н	L	Not used	H to L	Write 1 byte of data
(BYTE pin input = H)	L	Н	Not used	H to L	Read 1 byte of data

7.2.5 ALE Signal

The ALE signal latches the address when accessing the multiplexed bus space. Latch the address when the ALE signal falls.

Figure 7.3 shows the ALE Signal, Address Bus and Data Bus.

When BYTE pin input = H	When BYTE pin input = L
A0/D0 to A7/D7 Address Data	A0 Address
A8 to A19	A1/D0 to A8/D7 Address Data
	A9 to A19 Address

7.2.6 RDY Signal

This signal is provided for accessing external devices which need to be accessed at low speed. If input on the $\overline{\text{RDY}}$ pin is asserted low at the last falling edge of BCLK of the bus cycle, one wait state is inserted in the bus cycle. While in a wait state, the following signals retain the state in which they were when the $\overline{\text{RDY}}$ signal was acknowledged.

A0 to A19, D0 to D15, CS0 to CS3, RD, WRL, WRH, WR, BHE, ALE, HLDA

Then, when the input on the $\overline{\text{RDY}}$ pin is detected high at the falling edge of BCLK, the remaining bus cycle is executed. Figure 7.4 shows an Example in which Wait State was Inserted into Read Cycle by $\overline{\text{RDY}}$ Signal. To use the $\overline{\text{RDY}}$ signal, set the corresponding bit (bits CS3W to CS0W) in the CSR register to 0 (with wait state). When not using the $\overline{\text{RDY}}$ signal, the $\overline{\text{RDY}}$ pin must be pulled-up.

Figure 7.4 Example in which Wait State was Inserted into Read Cycle by RDY Signal

RENESAS

7.2.7 HOLD Signal

This signal is used to transfer control of the bus from the CPU or DMAC to an external circuit. When the input on $\overline{\text{HOLD}}$ pin is pulled low, the MCU is placed in a hold state after the bus access then in process finishes. The MCU remains in a hold state while the $\overline{\text{HOLD}}$ pin is held low, during which time the $\overline{\text{HLDA}}$ pin outputs a low-level signal.

Table 7.5 shows the MCU Status in Hold State.

Bus-using priorities are given to HOLD, DMAC, and CPU in order of decreasing precedence (see **Figure 7.5 Bus-using Priorities**). However, if the CPU is accessing an odd address in word units, the DMAC cannot gain control of the bus during two separate accesses.

\overline{HOLD} > DMAC > CPU

Figure 7.5 Bus-using Priorities

Table 7.5 MCU Status in Hold State

Item		Status		
BCLK		Output		
A0 to A19, D0 to D15, CS0 to CS	3, RD, WRL, WRH,	High-impedance		
WR, BHE				
I/O ports	P0, P1, P3, P4 ⁽¹⁾	High-impedance		
P6 to P10		Maintains status when hold signal is received		
HLDA	1	Output "L"		
Internal peripheral circuits		ON (but watchdog timer stops ⁽²⁾)		
ALE signal		Undefined		

NOTES:

- 1. When I/O port function is selected.
- 2. The watchdog timer does not stop when the PM22 bit in the PM2 register is set to 1 (the count source for the watchdog timer is the on-chip oscillator clock).

7.2.8 BCLK Output

If the PM07 bit in the PM0 register is set to 0 (output enable), a clock with the same frequency as that of the CPU clock is output as BCLK from the BCLK pin. Refer to **8.2 CPU Clock and Peripheral Function Clock**.

Table 7.6 shows the Pin Functions for Each Processor Mode.

Process	sor Mode	Memory E	xpansion Mode	or Microproces	ssor Mode	Memory Expansion Mode
Bits PM05 to PM04		00h (a a a a la haa)		01b (CS2 is for mi others are for 10b (CS1 is for mi others are f	11b (multiplexed bus for the entire space) ⁽¹⁾	
Data bus	width	8 bits	16 bits	8 bits	16 bits	8 bits
BYTE pin		"H"	"L"	"H"	"L"	"H"
P0_0 to P	0_7	D0 to D7		D0 to D7 (4)	•	I/O ports
P1_0 to P	1_7	I/O ports	D8 to D15	I/O ports	D8 to D15 (4)	I/O ports
P2_0		A0	1	A0/D0 ⁽²⁾	A0	A0/D0
P2_1 to P	2_7	A1 to A7		A1 to A7	A1 to A7	A1 to A7/D1 to D7
				/D1 to D7 (2)	/D0 to D6 (2)	
P3_0		A8		1	A8/D7 (2)	A8
P3_1 to P	3_3	A9 to A11			1	I/O ports
P3_4	PM11 = 0	A12 to A15				I/O ports
to P3_7	PM11 = 1	I/O ports				
P4_0	PM06 = 0	A16 to A19				I/O ports
to P4_3	PM06 = 1	I/O ports				
P4_4	CS0 = 0	I/O ports				
	CS0 = 1	CS0				
P4_5	CS1 = 0	I/O ports				
	CS1 = 1	CS1				
P4_6	CS2 = 0	I/O ports				
	CS2 = 1	CS2				
P4_7	CS3 = 0	I/O ports				
	CS3 = 1	CS3				
P5_0	PM02 = 0	WR				
	PM02 = 1	_ (3)	WRL	_ (3)	WRL	_ (3)
P5_1	PM02 = 0	BHE	I	1	1	1
	PM02 = 1	_ (3)	WRH	_ (3)	WRH	_ (3)
P5_2	1	RD	1			1
P5_3		BCLK				
P5_4		HLDA				

Та

P5 7 RDY I/O ports: Function as I/O ports or peripheral function I/O pins.

HOLD ALE

NOTES:

P5_5

P5_6

- 1. For setting bits PM01 to PM00 to 01b (memory expansion mode) and bits PM05 to PM04 to 11b (multiplexed bus assigned to the entire CS space), apply "H" to the BYTE pin (external data bus is an 8-bit width). While the CNVSS pin is held "H" (VCC), do not rewrite bits PM05 to PM04 to 11b after reset. If bits PM05 to PM04 are set to 11b during memory expansion mode, P3_1 to P3_7 and P4_0 to P4_3 become I/O ports, in which case the accessible area for each \overline{CS} is 256 bytes.
- 2. In separate bus mode, these pins serve as the address bus.
- 3. If the data bus is 8-bit width, make sure the PM02 bit is set to 0 (RD, BHE, WR).
- 4. When accessing the area that uses a multiplexed bus, these pins output an undefined value during a write.

RENESAS

7.2.9 External Bus Status when Internal Area Accessed

Table 7.7 shows the External Bus Status When Internal Area Accessed.

Item		SFR Accessed	Internal ROM, Internal RAM Accessed
A0 to A19		Address output	Maintain status before accessed address
			of external area or SFR
D0 to D15	When read	High-impedance	High-impedance
When write		Output data	Undefined
RD, WR, W	RL, WRH	RD, WR, WRL, WRH output	Output "H"
BHE		BHE output	Maintain status before accessed status of
			external area or SFR
CS0 to CS3	3	Output "H"	Output "H"
ALE		Output "L"	Output "L"

Table 7.7 External Bus Status When Internal Area Accessed

7.2.10 Software Wait

Software wait states can be inserted by using the PM17 bit in the PM1 register, bits CS0W to CS3W in the CSR register, and the CSE register. The SFR area is unaffected by these control bits. This area is always accessed in 2 BCLK or 3 BCLK cycles as determined by the PM20 bit in the PM2 register. See **Table 7.8 Bit and Bus Cycle Related to Software Wait** for details.

To use the $\overline{\text{RDY}}$ signal, set the corresponding bit of bits CS3W to CS0W to 0 (with wait state).

Figure 7.6 shows the CSE Register. Table 7.8 shows the Software Wait Related Bits and Bus Cycles. Figures 7.7 and 7.8 show the Typical Bus Timings Using Software Wait.

Figure 7.6 CSE Register

RENESAS

Area	Bus Mode	PM2 Register PM20 Bit	PM1 Register PM17 Bit ⁽⁵⁾	CSR Register CS3W Bit ⁽¹⁾ CS2W Bit ⁽¹⁾ CS1W Bit ⁽¹⁾ CS0W Bit ⁽¹⁾	CSE Register Bits CS31W to CS30W Bits CS21W to CS20W Bits CS11W to CS10W Bits CS01W to CS00W	Wait	Bus Cycle
SFR	-	0	-	-	-	-	3 BCLK cycles (4)
	-	1	_	-	-	-	2 BCLK cycles (4)
Internal	-	_	0	-	-	No wait	1 BCLK cycle (3)
ROM, RAM	-	_	1	-	-	1 wait	2 BCLK cycles
External	Separate	_	0	1	00b	No wait	1 BCLK cycle (read)
area	bus						2 BCLK cycles (write)
		_	_	0	00b	1 wait	2 BCLK cycles (3)
		_	_	0	01b	2 waits	3 BCLK cycles
		_	-	0	10b	3 waits	4 BCLK cycles
		_	1	0	00b	1 wait	2 BCLK cycles
	Multiplexed	_	_	0	00b	1 wait	3 BCLK cycles
	bus ⁽²⁾	_	-	0	01b	2 waits	3 BCLK cycles
		_	-	0	10b	3 waits	4 BCLK cycles
		_	1	0	00b	1 wait	3 BCLK cycles

Table 7.8 Software Wait Related Bits and Bus Cycles

NOTES:

- 1. To use the $\overline{\text{RDY}}$ signal, set this bit to 0.
- 2. To access in multiplexed bus mode, set the corresponding bit of bits CS0W to CS3W to 0 (with wait state).
- 3. After reset, the PM17 bit is set to 0 (without wait state), all of bits CS0W to CS3W are set to 0 (with wait state), and the CSE register is set to 00h (one wait state for CS0 to CS3). Therefore, the internal RAM and internal ROM are accessed with no wait state, and all external areas are accessed with one wait state.
- 4. When the selected CPU clock source is the PLL clock, the number of wait cycles can be altered by the PM20 bit in the PM2 register. When using PLL clock over 16 MHz, be sure to set the PM20 bit to 0 (2 wait cycles).
- 5. When the PM17 bit is set to 1 and access an external area, set the CSiW bits (i = 0 to 3) to 0 (with wait state).

Figure 7.7 Typical Bus Timings Using Software Wait (1)

Figure 7.8 Typical Bus Timings Using Software Wait (2)

RENESAS

8. Clock Generation Circuit

8.1 Types of Clock Generation Circuit

Four circuits are incorporated to generate the system clock signal:

- Main clock oscillation circuit
- Sub clock oscillation circuit
- On-chip oscillator
- PLL frequency synthesizer

Table 8.1 lists the Clock Generation Circuit Specifications. Figure 8.1 shows the Clock Generation Circuit. Figures 8.2 to 8.8 show the clock-related registers.

Item	Main Clock Oscillation Circuit	Sub Clock Oscillation Circuit	On-chip Oscillator	PLL Frequency Synthesizer
Use of clock	 CPU clock source Peripheral function clock source 	 CPU clock source Clock source of timer A, B 	 CPU clock source Peripheral function clock source CPU and peripheral function clock sources when the main clock stops oscillating 	 CPU clock source Peripheral function clock source
Clock	0 to 16 MHz	32.768 kHz	About 1 MHz	16 MHz, 20 MHz,
frequency				24 MHz ⁽¹⁾
Usable	•Ceramic oscillator	 Crystal oscillator 	-	-
oscillator	 Crystal oscillator 			
Pins to connect oscillator	XIN, XOUT	XCIN, XCOUT	-	-
Oscillation stop and re-oscillation detection function	Available	Available	Available	Available
Oscillation status after reset	Oscillating	Stopped	Stopped	Stopped
Other	Externally derived clo	ock can be input	-	-

Table 8.1 Clock Generation Circuit Specifications

NOTE:

1.24 MHz is available Normal-ver. only.

Figure 8.1 Clock Generation Circuit

RENESAS

b5 b4 b3 b2 b1 b0	Symbol CM0	Address 0006h	After Reset 01001000b	
	Bit Symbol	Bit Name	Function	RW
	CM00	Clock output function select bits	0 0 : I/O port P5_7 0 1 : Output fC	RW
	CM01	(Valid only in single-chip mode)	1 0 : Output f8 1 1 : Output f32	RW
	CM02	WAIT mode peripheral function clock stop bit	 0 : Peripheral function clock does not stop in wait mode 1 : Peripheral function clock stops in wait mode ⁽²⁾ 	RW
	CM03	XCIN-XCOUT drive capacity select bit ⁽³⁾	0 : LOW 1 : HIGH	RW
	CM04	Port XC select bit ⁽³⁾	0 : I/O port P8_6, P8_7 1 : XCIN-XCOUT oscillation function ⁽⁴⁾	RW
	CM05	Main clock stop bit ⁽⁵⁾ ⁽⁶⁾ ⁽⁷⁾	0 : On 1 : Off ⁽⁸⁾ ⁽⁹⁾	RW
	CM06	Main clock division select bit 0 (7) (10) (12)	0 : Bits CM16 and CM17 enabled 1 : Divide-by-8 mode	RW
	CM07	System clock select bit ^{(6) (11)}	0 : Main clock, PLL clock, or on-chip oscillator clock 1 : Sub clock	RW

NOTES:

- 1. Rewrite this register after setting the PRC0 bit in the PRCR register to 1 (write enabled).
- 2. The fC32 clock does not stop. In low-speed or low power dissipation mode, do not set this bit to 1 (peripheral clock stops in wait mode).
- 3. The CM03 bit is set to 1 (high) while the CM04 bit is set to 0 (I/O port) or when entering stop mode.
- 4. To use a sub clock, set this bit to 1. Also make sure ports P8_6 and P8_7 are directed for input, with no pull-ups.
- 5. This bit is provided to stop the main clock when the low power dissipation mode or on-chip oscillator low power dissipation mode is selected. This bit cannot be used for detection as to whether the main clock stops or not. To stop the main clock, set bits as follows:
 - (a) Set the CM07 bit to 1 (sub clock selected) or the CM21 bit in the CM2 register to 1 (on-chip oscillator selected) with the sub clock stably oscillating.
 - (b) Set the CM20 bit in the CM2 register to 0 (oscillation stop, re-oscillation detection function disabled).
 - (c) Set the CM05 bit to 1 (stop).
- 6. To use the main clock as the clock source for the CPU clock, set bits as follows:
 - (a) Set the CM05 bit to 0 (oscillate).
 - (b) Wait until the main clock oscillation stabilizes.
 - (c) Set bits CM11, CM21, and CM07 to 0.
- 7. When the CM21 bit = 0 (on-chip oscillator stops) and the CM05 bit = 1 (main clock stops), the CM06 bit is fixed to 1 (divide-by-8 mode) and the CM15 bit is fixed to 1 (drive capability high).
- 8. During external clock input, set the CM05 bit to 0 (oscillate).
- 9. When the CM05 bit is set to 1, the XOUT pin is held "H". Because the on-chip feedback resistor remains connected, the XIN pin is pulled "H" to the same level as XOUT via the feedback resistor.
- 10. When entering stop mode from high-speed or medium-speed mode, on-chip oscillator mode or on-chip oscillator low power dissipation mode, the CM06 bit is set to 1 (divide-by-8 mode).
- 11. After setting the CM04 bit to 1 (XCIN-XCOUT oscillator function), wait until the sub clock oscillates stably before switching the CM07 bit from 0 to 1 (sub clock).
- 12. To return from on-chip oscillator mode to high-speed or medium-speed mode, set bits CM06 and CM15 to 1.

Figure 8.2 CM0 Register

7 b6 b5 b4 b3 b2 b1 Image: Image of the state of the	Symbol CM1	Address 0007h	After Reset 00100000b	
	Bit Symbol	Bit Name	Function	RW
- i i i I I i	- CM10	All clock stop control bit ^{(2) (3)}	0 : Clock on 1 : All clocks off (stop mode)	RW
	CM11	System clock select bit 1 (4)	0 : Main clock 1 : PLL clock ⁽⁵⁾	RW
	 (b4-b2)	Reserved bits	Set to 0	RW
	CM15	XIN-XOUT drive capacity select bit ⁽⁶⁾	0 : LOW 1 : HIGH	RW
[CM16	Main clock division	0 0 : No division mode 0 1 : Divide-by-2 mode	RW
	CM17	select bits 1 ⁽⁷⁾	1 0 : Divide-by-4 mode 1 1 : Divide-by-16 mode	RW

- 1. Rewrite this register after setting the PRCU bit in the PRCR register to 1 (write enabled)
- 2. If the CM10 bit is 1 (stop mode), XOUT is held "H" and the on-chip feedback resistor is disconnected. Pins XCIN and XCOUT are in high-impedance state. When the CM11 bit is set to 1 (PLL clock), or the CM20 bit in the CM2 register is set to 1 (oscillation stop, re-oscillation detection function enabled), do not set the CM10 bit to 1.
- 3. When the PM22 bit in the PM2 register is set to 1 (on-chip oscillator clock is selected as watchdog timer count source), this bit remains unchanged even if writing to the CM10 bit.
- 4. This bit is valid when the CM07 bit is 0 and the CM21 bit is 0.
- 5. After setting the PLC07 bit in the PLC0 register to 1 (PLL operation), wait tsu(PLL) elapses before setting the CM11 bit to 1 (PLL clock).
- 6. When entering stop mode from high-speed or medium-speed mode, or when the CM05 bit is set to 1 (main clock stops) in low-speed mode, the CM15 bit is set to 1 (drive capability high).
- 7. This bit is valid when the CM06 bit is 0 (bits CM16 and CM17 enabled).

Figure 8.3 CM1 Register

Oscillation Stop Detection Register (1)						
	Symbol CM2	Address 000Ch	After Reset 0X000000b ⁽²⁾			
	Bit Symbol	Bit Name	Function	RW		
	CM20	Oscillation stop, re-oscillation detection enable bit ^{(2) (3) (4)}	 0 : Oscillation stop, re-oscillation detection function disabled 1 : Oscillation stop, re-oscillation detection function enabled 	RW		
· · · · · · · · · · · · · · · · · · ·	CM21	System clock select bit 2 (2) (5) (6) (7) (8) (11)	0 : Main clock or PLL clock 1 : On-chip oscillator clock (On-chip oscillator oscillates)	RW		
	CM22	Oscillation stop, re-oscillation detection flag ⁽⁹⁾	 0 : Main clock stop, re-oscillation not detected 1 : Main clock stop, re-oscillation detected 	RW		
	CM23	XIN monitor flag ⁽¹⁰⁾	0 : Main clock oscillates 1 : Main clock stops	RO		
	_ (b5-b4)	Reserved bits	Set to 0	RW		
	_ (b6)	Nothing is assigned. If nece When read, the content is u		-		
NOTES	CM27	Operation select bit (when an oscillation stop, re-oscillation is detected) ⁽²⁾	0 : Oscillation stop detection reset1 : Oscillation stop, re-oscillation detection interrupt	RW		

NOTES:

- 1. Rewrite this register after setting the PRC0 bit in the PRCR register to 1 (write enabled).
- 2. Bits CM20, CM21, and CM27 remain unchanged at oscillation stop detection reset.
- Set the CM20 bit to 0 (disabled) before entering stop mode. Exit stop mode before setting the CM20 bit back to 1 (enabled).
- 4. Set the CM20 bit to 0 (disabled) before setting the CM05 bit in the CM0 register to 1 (main clock stops).
- 5. When the CM20 bit is set to 1 (oscillation stop, re-oscillation detection function enabled), the CM27 bit is set to 1 (oscillation stop, re-oscillation detection interrupt), and the CPU clock source is the main clock, the CM21 bit is set to 1 (on-chip oscillator clock) if the main clock stop is detected.
- 6. If the CM20 bit is set to 1 and the CM23 bit is set to 1 (main clock stops), do not set the CM21 bit to 0.
- 7. This bit is valid when the CM07 bit in the CM0 register is set to 0.
- 8. Where the CM20 bit is set to 1 (oscillation stop, re-oscillation detection function enabled), the CM27 bit is set to 1 (oscillation stop, re-oscillation detection interrupt), and the CM11 bit is set to 1 (PLL clock is selected as the CPU clock source), the CM21 bit remains unchanged even if a main clock stop is detected. When the CM22 bit is set to 0 under these conditions, an oscillation stop, re-oscillation detection interrupt request is generated at main clock stop detection. Set the CM21 bit to 1 (on-chip oscillator clock) in the interrupt routine.
- 9. This bit is set to 1 when the main clock is detected and the main clock re-oscillation is detected. When this bit changes state from 0 to 1, an oscillation stop and re-oscillation detection interrupt request is generated. Use this bit in an interrupt routine to discriminate the interrupt sources between the oscillation stop and re-oscillation detection interrupt and the watchdog timer interrupt. This bit is set to 0 by writing 0 in a program. (This bit remains unchanged even if writing 1. Nor is it set to 0 when an oscillation stop and re-oscillation detection interrupt request is acknowledged.)

If an oscillation stop or a re-oscillation is detected when the CM22 bit = 1, no oscillation stop and re-oscillation detection interrupt requests are generated.

- 10. Determine the main clock status by reading the CM23 bit several times in an oscillation stop or re-oscillation detection interrupt routine.
- 11. When the CM21 bit is set to 0 (on-chip oscillator stops) and the CM05 bit is set to 1 (main clock stops), the CM06 bit is fixed to 1 (divide-by-8 mode) and the CM15 bit is fixed to 1 (drive capability high).

Figure 8.4 CM2 Register

Figure 8.5 PCLKR Register

3. Before setting this bit to 1, set the Sleep bit in the CiCTLR to 1 (sleep mode enabled).

Figure 8.6 CCLKR Register

b7 b6 b5 b4 b3	Symbol PM2		After Reset XX00000b	
	Bit Symbol	Bit Name	Function	RW
	PM20	Specifying wait when accessing SFR at PLL operation ⁽²⁾	0 : 2 waits 1 : 1 wait	RW
	 _ (b1)	Reserved bit	Set to 0	RW
	 PM22	WDT count source protective bit ^{(3) (4)}	 0 : CPU clock is used for the watchdog timer count source 1 : On-chip oscillator clock is used for the watchdog timer count source 	RW
	 _ (b4-b3)	Reserved bits	Set to 0	RW
	 _ (b7-b5)	Nothing is assigned. If nece When read, the content is u		-

2. The PM20 bit become effective when the PLC07 bit in the PLC0 register is set to 1 (PLL on). Change the PLC07 bit when the PLC07 bit is set to 0 (PLL off). Set the PM20 bit to 0 (2 waits) when PLL clock > 16MHz.

3. Once this bit is set to 1, it cannot be set to 0 in a program.

4. Setting the PM22 bit to 1 results in the following conditions:

• The on-chip oscillator starts oscillating, and the on-chip oscillator clock becomes the watchdog timer count source.

• The CM10 bit in the CM1 register is disabled against write. (Writing a 1 has no effect, nor is stop mode entered.)

• The watchdog timer does not stop when in wait mode or hold state.

3. Before setting this bit to 1, set the CM07 bit in the CM0 register to 0 (main clock), set bits CM17 to CM16 in the CM1 register to 00b (main clock undivided mode), and set the CM06 bit in the CM0 register to 0 (bits CM16 and CM17 enabled).

4. Multiply by 6 is available Normal-ver. only.

Figure 8.8 PLC0 Register

The following describes the clocks generated by the clock generation circuit.

8.1.1 Main Clock

The main clock is generated by the main clock oscillation circuit. This clock is used as the clock source for the CPU and peripheral function clocks. The main clock oscillation circuit is configured by connecting a resonator between pins XIN and XOUT. The main clock oscillation circuit has an on-chip feedback resistor, which is disconnected from the oscillation circuit during stop mode in order to reduce the amount of power consumed in the chip. The main clock oscillation circuit may also be configured by feeding an externally generated clock to the XIN pin. Figure 8.9 shows an Examples of Main Clock Connection Circuit. After reset, the main clock divided by 8 is selected for the CPU clock.

The power consumption in the chip can be reduced by setting the CM05 bit in the CM0 register to 1 (main clock oscillation circuit turned off) after switching the clock source for the CPU clock to a sub clock or on-chip oscillator clock. In this case, XOUT goes "H". Furthermore, because an on-chip feedback resistor remains on, XIN is pulled "H" to XOUT via the feedback resistor. Note, that if an externally generated clock is fed into the XIN pin, the main clock cannot be turned off by setting the CM05 bit to 1, unless the sub clock is selected as a CPU clock. If necessary, use an external circuit to turn off the clock.

During stop mode, all clocks including the main clock are turned off. Refer to **8.4 Power Control**.

Figure 8.9 Examples of Main Clock Connection Circuit

8.1.2 Sub Clock

The sub clock is generated by the sub clock oscillation circuit. This clock is used as the clock source for the CPU clock, as well as the timer A and timer B count sources. In addition, an fC clock with the same frequency as that of the sub clock can be output from the CLKOUT pin.

The sub clock oscillation circuit is configured by connecting a crystal resonator between pins XCIN and XCOUT. The sub clock oscillation circuit has an on-chip feedback resistor, which is disconnected from the oscillation circuit during stop mode in order to reduce the amount of power consumed in the chip. The sub clock oscillation circuit may also be configured by feeding an externally generated clock to the XCIN pin. Figure 8.10 shows an Examples of Sub Clock Connection Circuit.

After reset, the sub clock is turned off. At this time, the feedback resistor is disconnected from the oscillation circuit.

To use the sub clock for the CPU clock, set the CM07 bit in the CM0 register to 1 (sub clock) after the sub clock becomes oscillating stably.

During stop mode, all clocks including the sub clock are turned off. Refer to 8.4 Power Control.

Figure 8.10 Examples of Sub Clock Connection Circuit

8.1.3 On-chip Oscillator Clock

This clock, approximately 1 MHz, is supplied by a on-chip oscillator. This clock is used as the clock source for the CPU and peripheral function clocks. In addition, if the PM22 bit in the PM2 register is 1 (on-chip oscillator clock for the watchdog timer count source), this clock is used as the count source for the watchdog timer (refer to **11.1 Count Source Protective Mode**).

After reset, the on-chip oscillator is turned off. It is turned on by setting the CM21 bit in the CM2 register to 1 (on-chip oscillator clock), and is used as the clock source for the CPU and peripheral function clocks, in place of the main clock. If the main clock stops oscillating when the CM20 bit in the CM2 register is 1 (oscillation stop, re-oscillation detection function enabled) and the CM27 bit is 1 (oscillation stop, re-oscillation detection interrupt), the on-chip oscillator automatically starts operating, supplying the necessary clock for the MCU.

8.1.4 PLL Clock

The PLL clock is generated PLL frequency synthesizer. This clock is used as the clock source for the CPU and peripheral function clocks. After reset, the PLL clock is turned off. The PLL frequency synthesizer is activated by setting the PLC07 bit to 1 (PLL operation). When the PLL clock is used as the clock source for the CPU clock, wait tsu(PLL) for the PLL clock to be stable, and then set the CM11 bit in the CM1 register to 1.

Before entering wait mode or stop mode, be sure to set the CM11 bit to 0 (CPU clock source is the main clock). Furthermore, before entering stop mode, be sure to set the PLC07 bit in the PLC0 register to 0 (PLL stops). Figure 8.11 shows the Procedure to Use PLL Clock as CPU Clock Source.

The PLL clock frequency is determined by the equation below. When the PLL clock frequency is 16 MHz or more, set the PM20 bit in the PM2 register to 0 (2 waits).

PLL clock frequency = $f(XIN) \times (multiplying factor set by bits PLC02 to PLC00 in the PLC0 register)$ (However, PLL clock frequency = 16 MHz, 20 MHz or 24 MHz⁽¹⁾)

NOTE:

1.24 MHz is available Normal-ver. only.

Bits PLC02 to PLC00 can be set only once after reset. Table 8.2 shows an Example for Setting PLL Clock Frequencies.

Table 0.2 Example for betting I EE block i requeitbles					
XIN (MHz)	PLC02	PLC01	PLC00	Multiply Factor	PLL Clock (MHz) ⁽¹⁾
8	0	0	1	2	16
4	0	1	0	4	10
10	0	0	1	2	
5	0	1	0	4	20
12	0	0	1	2	
6	0	1	0	4	24 (2)
4	0	1	1	6 ⁽³⁾	
NOTEO					

Table 8.2 Example for Setting PLL Clock Frequencies

NOTES:

- 1. PLL clock frequency = 16 MHz , 20 MHz or 24 MHz
- 2. 24 MHz is available Normal-ver. only.
- 3. Multiply by 6 is available Normal-ver. only.

Figure 8.11 Procedure to Use PLL Clock as CPU Clock Source

8.2 CPU Clock and Peripheral Function Clock

Two type clocks: CPU clock to operate the CPU and peripheral function clocks to operate the peripheral functions.

8.2.1 CPU Clock and BCLK

These are operating clocks for the CPU and watchdog timer.

The clock source for the CPU clock can be chosen to be the main clock, sub clock, on-chip oscillator clock or the PLL clock.

If the main clock or on-chip oscillator clock is selected as the clock source for the CPU clock, the selected clock source can be divided by 1 (undivided), 2, 4, 8, or 16 to produce the CPU clock. Use the CM06 bit in the CM0 register and bits CM17 to CM16 in the CM1 register to select the divide-by-n value.

When the PLL clock is selected as the clock source for the CPU clock, the CM06 bit should be set to 0 and bits CM17 to CM16 to 00b (undivided).

After reset, the main clock divided by 8 provides the CPU clock.

During memory expansion or microprocessor mode, a BCLK signal with the same frequency as the CPU clock can be output from the BCLK pin by setting the PM07 bit of PM0 register to 0 (output enabled).

Note that when entering stop mode from high-speed or medium-speed mode, on-chip oscillator mode or on-chip oscillator low power dissipation mode, or when the CM05 bit in the CM0 register is set to 1 (main clock turned off) in low-speed mode, the CM06 bit in the CM0 register is set to 1 (divide-by-8 mode).

8.2.2 Peripheral Function Clock (f1, f2, f8, f32, f1SIO, f2SIO, f8SIO, f32SIO, fAD, fCAN0, fCAN1, fC32)

These are operating clocks for the peripheral functions.

Two of these, fi (i = 1, 2, 8, 32) and fiSIO are derived from the main clock, PLL clock or on-chip oscillator clock by dividing them by i. The clock fi is used for timers A and B, and fiSIO is used for serial interface. The f8 and f32 clocks can be output from the CLKOUT pin.

The fAD clock is produced from the main clock, PLL clock or on-chip oscillator clock, and is used for the A/D converter.

The fCANi (i =0, 1) clock is derived from the main clock, PLL clock or on-chip oscillator clock by dividing them by 1 (undivided), 2, 4, 8, or 16, and is used for the CAN module.

When the WAIT instruction is executed after setting the CM02 bit in the CM0 register to 1 (peripheral function clock turned off during wait mode), or when the MCU is in low power dissipation mode, the fi, fiSIO, fAD, fCAN0, and fCAN1 clocks are turned off ⁽¹⁾.

The fC32 clock is produced from the sub clock, and is used for timers A and B. This clock can be used when the sub clock is on.

NOTE:

1. fCAN0 and fCAN1 clocks stop at "H" in CAN0, 1 sleep mode.

8.3 Clock Output Function

During single-chip mode, the f8, f32, or fC clock can be output from the CLKOUT pin. Use bits CM01 to CM00 in the CM0 register to select.

8.4 Power Control

Normal operating mode, wait mode and stop mode are provided as the power consumption control. All mode states, except wait mode and stop mode, are called normal operating mode in this document.

8.4.1 Normal Operating Mode

Normal operating mode is further classified into seven sub modes.

In normal operating mode, because the CPU clock and the peripheral function clocks both are on, the CPU and the peripheral functions are operating. Power control is exercised by controlling the CPU clock frequency. The higher the CPU clock frequency, the greater the processing capability. The lower the CPU clock frequency, the smaller the power consumption in the chip. If the unnecessary oscillator circuits are turned off, the power consumption is further reduced.

Before the clock sources for the CPU clock can be switched over, the new clock source to which switched must be oscillating stably. If the new clock source is the main clock, sub clock or PLL clock, allow a sufficient wait time in a program until it becomes oscillating stably.

Note that operating modes cannot be changed directly from low speed or low power dissipation mode to on-chip oscillator or on-chip oscillator low power dissipation mode. Nor can operating modes be changed directly from on-chip oscillator or on-chip oscillator low power dissipation mode to low-speed or low power dissipation mode. Where the CPU clock source is changed from the on-chip oscillator to the main clock, change the operating mode to the medium-speed mode (divide-by-8 mode) after the clock was divided by 8 (the CM06 bit in the CM0 register was set to 1) in the on-chip oscillator mode.

8.4.1.1 High-Speed Mode

The main clock divided by 1 provides the CPU clock. If the sub clock is on, fC32 can be used as the count source for timers A and B.

8.4.1.2 PLL Operating Mode

The main clock multiplied by 2, 4, or 6 ⁽¹⁾ provides the PLL clock, and this PLL clock serves as the CPU clock. If the sub clock is on, fC32 can be used as the count source for timers A and B. PLL operating mode can be entered from high speed mode. If PLL operating mode is to be changed to wait or stop mode, first go to high speed mode before changing.

NOTE:

1. The main clock multiplied by 6 is available Normal-ver. only.

8.4.1.3 Medium-Speed Mode

The main clock divided by 2, 4, 8, or 16 provides the CPU clock. If the sub clock is on, fC32 can be used as the count source for timers A and B.

8.4.1.4 Low-Speed Mode

The sub clock provides the CPU clock. The main clock is used as the clock source for the peripheral function clock when the CM21 bit in the CM2 register is set to 0 (on-chip oscillator turned off), and the on-chip oscillator clock is used when the CM21 bit is set to 1 (on-chip oscillator oscillating). The fC32 clock can be used as the count source for timers A and B.

8.4.1.5 Low Power Dissipation Mode

In this mode, the main clock is turned off after being placed in low speed mode. The sub clock provides the CPU clock. The fC32 clock can be used as the count source for timers A and B.

Simultaneously when this mode is selected, the CM06 bit in the CM0 register becomes 1 (divide-by-8 mode). In the low power dissipation mode, do not change the CM06 bit. Consequently, the medium speed (divide-by-8) mode is to be selected when the main clock is operated next.

8.4.1.6 On-chip Oscillator Mode

The on-chip oscillator clock divided by 1 (undivided), 2, 4, 8 or 16 provides the CPU clock. The on-chip oscillator clock is also the clock source for the peripheral function clocks. If the sub clock is on, fC32 can be used as the count source for timers A and B. When the operating mode is returned to the high-speed and medium-speed modes, set the CM06 bit in the CM0 register to 1 (divide-by-8 mode).

8.4.1.7 On-chip Oscillator Low Power Dissipation Mode

The main clock is turned off after being placed in on-chip oscillator mode. The CPU clock can be selected as in on-chip oscillator mode. The on-chip oscillator clock is the clock source for the peripheral function clocks. If the sub clock is on, fC32 can be used as the count source for timers A and B.

Table 8.3 lists the Setting Clock Related Bit and Modes.

Mc	odes	CM2 Register	CM1 R	egister		CM0 R	egister	
	Jues	CM21	CM11	CM17, CM16	CM07	CM06	CM05	CM04
PLL opera	ating mode	0	1	00b	0	0	0	-
High-spe	ed mode	0	0	00b	0	0	0	-
Medium-	Divide-by-2	0	0	01b	0	0	0	-
speed	Divide-by-4	0	0	10b	0	0	0	-
mode	Divide-by-8	0	0	-	0	1	0	-
	Divide-by-16	0	0	11b	0	0	0	-
Low-spe	ed mode	-	0	-	1	-	0	1
Low pow	er	0	0	-	1	1 ⁽¹⁾	1 ⁽¹⁾	1
dissipatio	on mode							
On-chip	No division	1	0	00b	0	0	0	-
oscillator	Divide-by-2	1	0	01b	0	0	0	-
mode	Divide-by-4	1	0	10b	0	0	0	-
	Divide-by-8	1	0	-	0	1	0	-
	Divide-by-16	1	0	11b	0	0	0	-
On-chip low power mode	oscillator dissipation	1	0	(NOTE 2)	0	(NOTE 2)	1	-

Table 8.3 Setting Clock Related Bit and Modes

-: 0 or 1

NOTES:

- 1. When the CM05 bit is set to 1 (main clock turned off) in low-speed mode, the mode goes to low power dissipation mode and the CM06 bit is set to 1 (divide-by-8 mode) simultaneously.
- 2. The divide-by-n value can be selected the same way as in on-chip oscillator mode.

8.4.2 Wait Mode

In wait mode, the CPU clock is turned off, so are the CPU (because operated by the CPU clock) and the watchdog timer. However, if the PM22 bit in the PM2 register is 1 (on-chip oscillator clock for the watchdog timer count source), the watchdog timer remains active. Because the main clock, sub clock and on-chip oscillator clock all are on, the peripheral functions using these clocks keep operating.

8.4.2.1 Peripheral Function Clock Stop Function

If the CM02 bit in the CM0 register is 1 (peripheral function clocks turned off during wait mode), the f1, f2, f8, f32, f1SIO, f8SIO, f32SIO, fAD, fCAN0, and fCAN1 clocks are turned off when in wait mode, with the power consumption reduced that much. However, fC32 remains on.

8.4.2.2 Entering Wait Mode

The MCU is placed into wait mode by executing the WAIT instruction.

When the CM11 bit = 1 (CPU clock source is the PLL clock), be sure to set the CM11 bit in the CM1 register to 0 (CPU clock source is the main clock) before going to wait mode. The power consumption of the chip can be reduced by setting the PLC07 bit in the PLC0 register to 0 (PLL stops).

8.4.2.3 Pin Status During Wait Mode

Table 8.4 lists the Pin Status During Wait Mode.

Pin	Memory Expansion Mode Microprocessor Mode	Single-chip Mode
A0 to A19, D0 to D15,	Retains status before wait mode	Does not become a bus control pin
CS0 to CS3, BHE		
RD, WR, WRL, WRH	"H"	-
HLDA, BCLK	"H"	-
ALE	"L"	_
I/O ports	Retains status before wait mode	Retains status before wait mode
CLKOUT When fC sele	cted Does not become a CLKOUT pin	Does not stop
When f8, f32		•CM02 bit = 0: Does not stop
selected		•CM02 bit = 1: Retains status before
		wait mode

Table 8.4 Pin Status During Wait Mode

8.4.2.4 Exiting Wait Mode

The MCU exits wait mode by a hardware reset, $\overline{\text{NMI}}$ interrupt or peripheral function interrupt.

If the MCU exits wait mode by a hardware reset or $\overline{\text{NMI}}$ interrupt, set the peripheral function interrupt priority bits ILVL2 to ILVL0 to 000b (interrupt disabled) before executing the WAIT instruction.

The peripheral function interrupts are affected by the CM02 bit. If the CM02 bit is 0 (peripheral function clocks not turned off during wait mode), peripheral function interrupts can be used to exit wait mode. If the CM02 bit is 1 (peripheral function clocks turned off during wait mode), the peripheral functions using the peripheral function clocks stop operating, so that only the peripheral functions clocked by external signals can be used to exit wait mode.

Table 8.5 lists the Interrupts to Exit Wait Mode and Use Conditions.

Interrupt	CM02 Bit = 0	CM02 Bit = 1
NMI interrupt	Can be used	Can be used
Serial interface interrupt	Can be used when operating with	Can be used when operating with
	internal or external clock	external clock
Key input interrupt	Can be used	Can be used
A/D conversion interrupt	Can be used in one-shot mode or	- (Do not use)
	single sweep mode	
Timer A interrupt	Can be used in all modes	Can be used in event counter mode
Timer B interrupt		or when the count source is fC32
INT interrupt	Can be used	Can be used
CAN0/1 wake-up interrupt	Can be used in CAN sleep mode	Can be used in CAN sleep mode

If the MCU exits wait mode by a peripheral function interrupt, set up the following before executing the WAIT instruction.

(1) Set bits ILVL2 to ILVL0 in the interrupt control register, for peripheral function interrupts used to exit wait mode.

Bits ILVL2 to ILVL0 in all other interrupt control registers, for peripheral function interrupts not used to exit wait mode, are set to 000b (interrupt disabled).

- (2) Set the I flag to 1.
- (3) Start operating the peripheral functions used to exit wait mode.

When the peripheral function interrupt is used, an interrupt routine is performed as soon as an interrupt request is acknowledged and the CPU clock is supplied again.

When the MCU exits wait mode by the peripheral function interrupt, the CPU clock is the same clock as the CPU clock executing the WAIT instruction.

8.4.3 Stop Mode

In stop mode, all oscillator circuits are turned off, so are the CPU clock and the peripheral function clocks. Therefore, the CPU and the peripheral functions clocked by these clocks stop operating. The least amount of power is consumed in this mode. If the voltage applied to VCC pin is VRAM or more, the internal RAM is retained.

However, the peripheral functions clocked by external signals keep operating.

Table 8.6 lists the Interrupts to Stop Mode and Use Conditions.

Interrupt	Condition
NMI interrupt	Can be used
Key input interrupt	Can be used
INT interrupt	Can be used
Timer A interrupt	Can be used
Timer B interrupt	(when counting external pulses in event counter mode)
Serial interface interrupt	Can be used (when external clock is selected)
CAN0/1 wake-up interrupt	Can be used (when CAN sleep mode is selected)

Table 8.6 Interrupts to Stop Mode and Use Conditions

8.4.3.1 Entering Stop Mode

The MCU is placed into stop mode by setting the CM10 bit in the CM1 register to 1 (all clocks turned off). At the same time, the CM06 bit in the CM0 register is set to 1 (divide-by-8 mode) and the CM15 bit in the CM1 register is set to 1 (main clock oscillator circuit drive capability high).

Before entering stop mode, set the CM20 bit in the CM2 register to 0 (oscillation stop, re-oscillation detection function disabled).

Also, if the CM11 bit in the CM1 register is 1 (PLL clock for the CPU clock source), set the CM11 bit to 0 (main clock for the CPU clock source) and the PLC07 bit in the PLC0 register to 0 (PLL turned off) before entering stop mode.

8.4.3.2 Pin Status in Stop Mode

Table 8.7 lists the Pin Status in Stop Mode.

	Pin	Memory Expansion Mode Microprocessor Mode	Single-chip Mode
A0 to A19	9, D0 to D15,	Retains status before stop mode	Does not become a bus control pin
CS0 to C	S3, BHE		
RD, WR,	WRL, WRH	"H"	
HLDA, B	CLK	"H"	
ALE		undefined	
I/O ports		Retains status before stop mode	Retains status before stop mode
CLKOUT	When fC selected	Does not become a CLKOUT pin	"H"
	When f8, f32		Retains status before stop mode
	selected		

Table 8.7 Pin Status in Stop Mode

8.4.3.3 Exiting Stop Mode

Stop mode is exited by a hardware reset, $\overline{\text{NMI}}$ interrupt or peripheral function interrupt.

When the hardware reset or $\overline{\text{NMI}}$ interrupt is used to exit stop mode, set all ILVL2 to ILVL0 bits in the interrupt control registers for the peripheral function interrupt to 000b (interrupt disabled) before setting the CM10 bit in the CM1 register to 1.

When the peripheral function interrupt is used to exit stop mode, set the CM10 bit to 1 after the following settings are completed.

(1) Set bits ILVL2 to ILVL0 in the interrupt control registers to decide the peripheral priority level of the peripheral function interrupt.

Set the interrupt priority levels of the interrupts, not being used to exit stop mode, to 0 by setting the all ILVL2 to ILVL0 bits to 000b (interrupt disabled).

- (2) Set the I flag to 1.
- (3) Start operation of peripheral function being used to exit wait mode.

When exiting stop mode by the peripheral function interrupt, the interrupt routine is performed when an interrupt request is generated and the CPU clock is supplied again.

When stop mode is exited by the peripheral function interrupt or $\overline{\text{NMI}}$ interrupt, the CPU clock source is as follows, in accordance with the CPU clock source setting before the MCU had entered stop mode.

- \bullet When the sub clock is the CPU clock before entering stop mode: Sub clock
- When the main clock is the CPU clock source before entering stop mode:

Main clock divided by 8

• When the on-chip oscillator clock is the CPU clock source before entering stop mode:

On-chip oscillator clock divided by 8

Figure 8.12 shows the State Transition to Stop Mode and Wait Mode. Figure 8.13 shows the State Transition in Normal Operating Mode.

Table 8.8 shows a state transition matrix describing allowed transition and setting. The vertical line shows current state and horizontal line show state after transition.

Figure 8.12 State Transition to Stop Mode and Wait Mode

Figure 8.13 State Transition in Normal Operating Mode

Table 8.8 Allowed Transition and Setting ⁽⁹⁾

			State after Transition								
		High-Speed Mode, Medium-Speed Mode	-	Low Power Dissipation Mode		On-chip Oscillator Mode	On-chip Oscillator Low Power Dissipation Mode	Stop Mode	Wait Mode		
	High-speed mode, medium-speed mode	(NOTE 8)	(9) ⁽⁷⁾	-	(13) ⁽³⁾	(15)	-	(16) (1)	(17)		
	Low-speed mode ⁽²⁾	(8)		(11) (1) (6)	-	-	-	(16) ⁽¹⁾	(17)		
	Low power dissipation mode	-	(10)		-	-	-	(16) (1)	(17)		
t State	PLL operating mode ⁽²⁾	(12) (3)	-	-		-	-	-	-		
Current State	On-chip oscillator mode	(14) (4)	-	-	-	(NOTE 8)	(11) ⁽¹⁾	(16) (1)	(17)		
	On-chip oscillator low power dissipation mode	_	_	-	-	(10)	(NOTE 8)	(16) ⁽¹⁾	(17)		
	Stop mode	(18) (5)	(18)	(18)	-	(18) (5)	(18) (5)		-		
	Wait mode	(18)	(18)	(18)	-	(18)	(18)	-			

-: Cannot transit

NOTES:

- 1. Avoid making a transition when the CM20 bit is set to 1 (oscillation stop, re-oscillation detection function enabled). Set the CM20 bit to 0 (oscillation stop, re-oscillation detection function disabled) before transiting.
- 2. On-chip oscillator clock oscillates and stops in low-speed mode. In this mode, the on-chip oscillator can be used as peripheral function clock. Sub clock oscillates and stops in PLL operating mode. In this mode, sub clock can be used as peripheral function clock.
- 3. PLL operating mode can only be entered from and changed to high-speed mode.
- 4. Set the CM06 bit to 1 (divide-by-8 mode) before transiting from on-chip oscillator mode to high-speed or medium-speed mode.
- 5. When exiting stop mode, the CM06 bit is set to 1 (divide-by-8 mode).
- If the CM05 bit is set to 1 (main clock stop), then the CM06 bit is set to 1 (divide-by-8 mode).
- 7. A transition can be made only when sub clock is oscillating.
- 8. State transitions within the same mode (divide-by-n values changed or sub clock oscillation turned on or off) are shown in the table below.

		Sub Clock Oscillating					Sub Clock Turned Off				
		No Division		Divide- by-4		Divide- by-16	No Division	Divide- by-2	Divide- by-4	Divide- by-8	Divide- by-16
ting	No division	\searrow	(4)	(5)	(7)	(6)	(1)	-	-	-	-
Clock Oscillating	Divide-by-2	(3)		(5)	(7)	(6)	-	(1)	-	-	-
о З	Divide-by-4	(3)	(4)	$\overline{}$	(7)	(6)	-	-	(1)	-	-
Clo	Divide-by-8	(3)	(4)	(5)		(6)	-	-	-	(1)	-
Sub	Divide-by-16	(3)	(4)	(5)	(7)		-	-	-	-	(1)
Off	No division	(2)	-	-	-	-	\square	(4)	(5)	(7)	(6)
rned	Divide-by-2	-	(2)	-	-	-	(3)	$\overline{}$	(5)	(7)	(6)
Sub Clock Turned	Divide-by-4	-	-	(2)	-	-	(3)	(4)		(7)	(6)
	Divide-by-8	-	-	-	(2)	-	(3)	(4)	(5)		(6)
Sub	Divide-by-16	-	-	-	-	(2)	(3)	(4)	(5)	(7)	

9. ():setting method. See right table.

<u> </u>	0 = 11 := =	Orrentier
	Setting	Operation
(1)	CM04=0	Sub clock turned off
(2)	CM04=1	Sub clock oscillating
(3)	CM06=0 CM17=0 CM16=0	CPU clock no division mode
(4)	CM06=0 CM17=0 CM16=1	CPU clock divide-by-2 mode
(5)	CM06=0 CM17=1 CM16=0	CPU clock divide-by-4 mode
(6)	CM06=0 CM17=1 CM16=1	CPU clock divide-by-16 mode
(7)	CM06=1	CPU clock divide-by-8 mode
(8)	CM07=0	Main clock, PLL clock or on-chip oscillator clock selected
	CM07=1	Sub clock selected
	CM05=0	Main clock oscillating
	CM05=1	Main clock turned off
È	PLC07=0 CM11=0	Main clock selected
´	PLC07=1 CM11=1	PLL clock selected
È	CM21=0	Main clock or PLL clock selected
. ,	CM21=1	On-chip oscillator clock selected
	CM10=1	Transition to stop mode
(17)	WAIT	Transition to wait mode
	instruction	
Ľ,	Hardware interrupt	Exit stop mode or wait mode
		, CM07: Bits in CM0 register
CM1	0, CM11, CM16	, CM17: Bits in CM1 register
CM2	20, CM21	: Bits in CM2 register
PLC	07	: Bit in PLC0 register

8.5 Oscillation Stop and Re-oscillation Detection Function

The oscillation stop and re-oscillation detection function is such that main clock oscillation circuit stop and re-oscillation are detected. At oscillation stop, re-oscillation detection, reset or oscillation stop, re-oscillation detection interrupt request are generated. Which is to be generated can be selected using the CM27 bit in the CM2 register.

The oscillation stop and re-oscillation detection function can be enabled and disabled using the CM20 bit in the CM2 register.

Table 8.9 lists a Specification Overview of Oscillation Stop and Re-oscillation Detection Function.

Table 8.9 Specification Overview of Oscillation Stop and Re-oscillation Detection Function

Item	Specification
Oscillation stop detectable clock and	$f(XIN) \ge 2 MHz$
frequency bandwidth	
Enabling condition for oscillation stop	Set CM20 bit to 1 (enabled)
and re-oscillation detection function	
Operation at oscillation stop,	•Reset occurs (when CM27 bit = 0)
re-oscillation detection	•Oscillation stop, re-oscillation detection interrupt is generated (when CM27 bit =1)

8.5.1 Operation when CM27 Bit = 0 (Oscillation Stop Detection Reset)

Where main clock stop is detected when the CM20 bit is 1 (oscillation stop, re-oscillation detection function enabled), the MCU is initialized, coming to a halt (oscillation stop reset; refer to **4. Special Function Registers (SFRs)**, **5. Resets**).

This status is reset with hardware reset. Also, even when re-oscillation is detected, the MCU can be initialized and stopped; it is, however, necessary to avoid such usage (During main clock stop, do not set the CM20 bit to 1 and the CM27 bit to 0).

8.5.2 Operation when CM27 Bit = 1 (Oscillation Stop, Re-oscillation Detection Interrupt)

Where the main clock corresponds to the CPU clock source and the CM20 bit is 1 (oscillation stop, re-oscillation detection function enabled), the system is placed in the following state if the main clock comes to a halt:

Oscillation stop, re-oscillation detection interrupt request is generated.

- The on-chip oscillator starts oscillation, and the on-chip oscillator clock becomes the clock source for CPU clock and peripheral functions in place of the main clock.
- CM21 bit = 1 (on-chip oscillator clock is the clock source for CPU clock)
- CM22 bit = 1 (main clock stop detected)
- CM23 bit = 1 (main clock stopped)

Where the PLL clock corresponds to the CPU clock source and the CM20 bit is 1, the system is placed in the following state if the main clock comes to a halt: Since the CM21 bit remains unchanged, set it to 1 (on-chip oscillator clock) inside the interrupt routine.

- Oscillation stop, re-oscillation detection interrupt request is generated.
- CM22 bit = 1 (main clock stop detected)
- CM23 bit = 1 (main clock stopped)
- CM21 bit remains unchanged

Where the CM20 bit is 1, the system is placed in the following state if the main clock re-oscillates from the stop condition:

- Oscillation stop, re-oscillation detection interrupt request is generated.
- CM22 bit = 1 (main clock re-oscillation detected)
- CM23 bit = 0 (main clock oscillation)
- CM21 bit remains unchanged

8.5.3 How to Use Oscillation Stop and Re-oscillation Detection Function

- The oscillation stop, re-oscillation detection interrupt shares the vector with the watchdog timer interrupt. If the oscillation stop, re-oscillation detection and watchdog timer interrupts both are used, read the CM22 bit in an interrupt routine to determine which interrupt source is requesting the interrupt.
- Where the main clock re-oscillated after oscillation stop, the clock source for the CPU clock and peripheral function must be switched to the main clock in the program. Figure 8.14 shows the Procedure to Switch Clock Source from On-chip Oscillator to Main Clock.
- Simultaneously with oscillation stop, re-oscillation detection interrupt request occurrence, the CM22 bit becomes 1. When the CM22 bit is set at 1, oscillation stop, re-oscillation detection interrupt are disabled. By setting the CM22 bit to 0 in the program, oscillation stop, re-oscillation detection interrupt are enabled.
- If the main clock stops during low speed mode where the CM20 bit is 1, an oscillation stop, re-oscillation
 detection interrupt request is generated. At the same time, the on-chip oscillator starts oscillating. In this
 case, although the CPU clock is derived from the sub clock as it was before the interrupt occurred, the
 peripheral function clocks now are derived from the on-chip oscillator clock.
- To enter wait mode while using the oscillation stop and re-oscillation detection function, set the CM02 bit to 0 (peripheral function clocks not turned off during wait mode).
- Since the oscillation stop and re-oscillation detection function is provided in preparation for main clock stop due to external sources, set the CM20 bit to 0 (oscillation stop, re-oscillation detection function disabled) where the main clock is stopped or oscillated in the program, that is where the stop mode is selected or the CM05 bit is altered.

• This function cannot be used if the main clock frequency is 2 MHz or less. In that case, set the CM20 bit to 0.

Figure 8.14 Procedure to Switch Clock Source from On-chip Oscillator to Main Clock

RENESAS

9. Protection

In the event that a program runs out of control, this function protects the important registers so that they will not be rewritten easily.

Figure 9.1 shows the PRCR Register. The registers protected by the PRCR register are listed below.

- Registers protected by the PRC0 bit: Registers CM0, CM1, CM2, PLC0, PCLKR, and CCLKR
- Registers protected by the PRC1 bit: Registers PM0, PM1, PM2, TB2SC, INVC0, and INVC1
- Registers protected by the PRC2 bit: Registers PD7, PD9, and S3C

Set the PRC2 bit to 1 (write enabled) and then write to given address, and the PRC2 bit will be set to 0 (write protected). The registers protected by the PRC2 bit should be changed in the next instruction after setting the PRC2 bit to 1. Make sure no interrupts or DMA transfers will occur between the instruction in which the PRC2 bit is set to 1 and the next instruction. Bits PRC0 and PRC1 are not automatically set to 0 by writing to given address. They can only be set to 0 in a program.

b7 b6 b5 b4 b3 b2 b1 b0	Symbol PRCR	Address 000Ah	After Reset XX000000b	
	Bit Symbol	Bit Name	Function	RW
	PRC0	Protect bit 0	Writing to registers CM0, CM1, CM2, PLC0, PCLKR, CCLKR is enabled 0 : Write protected 1 : Write enabled	RW
·····	PRC1	Protect bit 1	Writing to registers PM0, PM1, PM2, TB2SC, INVC0, INVC1 is enabled 0 : Write protected 1 : Write enabled	RW
· · · · · · · · · · · · · · · · · · ·	PRC2	Protect bit 2	Writing to registers PD7, PD9, S3C is enabled 0 : Write protected 1 : Write enabled ⁽¹⁾	RW
	_ (b5-b3)	Reserved bits	Set to 0	RW
	- (b7-b6)	Nothing is assigned. If nec When read, the content is		_

1. The PRC2 bit is set to 0 by writing to given address after setting it to 1. Other bits are not set to 0 by writing to given address, and must therefore be set in a program.

Figure 9.1 PRCR Register

10. Interrupts

10.1 Type of Interrupts

Figure 10.1 shows the Types of Interrupts.

Figure 10.1 Types of Interrupts

- Maskable interrupt: An interrupt which can be enabled (disabled) by the interrupt enable flag (I flag) or whose interrupt priority **can be changed** by priority level.
- Non-maskable interrupt: An interrupt which cannot be enabled (disabled) by the interrupt enable flag (I flag) or whose interrupt priority **cannot be changed** by priority level.

10.2 Software Interrupts

A software interrupt is generated when executing certain instructions. Software interrupts are nonmaskable interrupts.

10.2.1 Undefined Instruction Interrupt

An undefined instruction interrupt is generated when executing the UND instruction.

10.2.2 Overflow Interrupt

An overflow interrupt is generated when executing the INTO instruction with the O flag in the FLG register set to 1 (the operation resulted in an overflow). The following are instructions whose O flag changes by arithmetic:

ABS, ADC, ADCF, ADD, CMP, DIV, DIVU, DIVX, NEG, RMPA, SBB, SHA, SUB

10.2.3 BRK Interrupt

A BRK interrupt is generated when executing the BRK instruction.

10.2.4 INT Instruction Interrupt

An INT instruction interrupt is generated when executing the INT instruction. Software interrupt Nos. 0 to 63 can be specified for the INT instruction. Because software interrupt Nos. 1 to 31 are assigned to peripheral function interrupts, the same interrupt routine as for peripheral function interrupts can be executed by executing the INT instruction.

In software interrupt Nos. 0 to 31, the U flag is saved to the stack during instruction execution and is set to 0 (ISP selected) before executing an interrupt sequence. The U flag is restored from the stack when returning from the interrupt routine. In software interrupt Nos. 32 to 63, the U flag does not change state during instruction execution, and the SP then selected is used.

10.3 Hardware Interrupts

Hardware interrupts are classified into two types — special interrupts and peripheral function interrupts.

10.3.1 Special Interrupts

Special interrupts are non-maskable interrupts.

10.3.1.1 NMI Interrupt

An NMI interrupt is generated when input on the NMI pin changes state from high to low. For details, refer to **10.7** NMI Interrupt.

10.3.1.2 DBC Interrupt

Do not normally use this interrupt because it is provided exclusively for use by development tools.

10.3.1.3 Watchdog Timer Interrupt

Generated by the watchdog timer. Once a watchdog timer interrupt is generated, be sure to initialize the watchdog timer. For details about the watchdog timer, refer to **11. Watchdog Timer**.

10.3.1.4 Oscillation Stop and Re-oscillation Detection Interrupt

Generated by the oscillation stop and re-oscillation detection function. For details about the oscillation stop and re-oscillation detection function, refer to **8. Clock Generation Circuit**.

10.3.1.5 Single-Step Interrupt

Do not normally use this interrupt because it is provided exclusively for use by development tools.

10.3.1.6 Address Match Interrupt

An address match interrupt is generated immediately before executing the instruction at the address indicated by registers RMAD0 to RMAD3 that corresponds to one of the AIER0 or AIER1 bit in the AIER register or the AIER20 or AIER21 bit in the AIER2 register which is 1 (address match interrupt enabled). For details, refer to **10.10 Address Match Interrupt**.

10.3.2 Peripheral Function Interrupts

The peripheral function interrupt is generated when a request from the peripheral functions in the MCU is acknowledged. The peripheral function interrupt is a maskable interrupt. See **Table 10.2 Relocatable Vector Tables** about how the peripheral function interrupt occurs. Refer to the descriptions of each function for details.

10.4 Interrupts and Interrupt Vector

One interrupt vector consists of 4 bytes. Set the start address of each interrupt routine in the respective interrupt vectors. When an interrupt request is accepted, the CPU branches to the address set in the corresponding interrupt vector. Figure 10.2 shows the Interrupt Vector.

Figure 10.2 Interrupt Vector

10.4.1 Fixed Vector Tables

The fixed vector tables are allocated to the addresses from FFFDCh to FFFFFh. Table 10.1 lists the Fixed Vector Tables. In the flash memory version of MCU, the vector addresses (H) of fixed vectors are used by the ID code check function. For details, refer to **21.2 Functions to Prevent Flash Memory from Rewriting**.

Table 10.1	Fixed	Vector	Tables
------------	-------	--------	--------

Interrupt Source	Vector table Addresses Address (L) to Address (H)	Reference
Undefined instruction (UND instruction)	FFFDChto FFFDFh	M16C/60, M16C/20, M16C/Tiny
Overflow (INTO instruction)	FFFE0h to FFFE3h	Series Software Manual
BRK instruction ⁽²⁾	FFFE4h to FFFE7h	
Address match	FFFE8h to FFFEBh	10.10 Address Match Interrupt
Single step (1)	FFFECh to FFFEFh	-
Oscillation stop and re-oscillation detection,	FFFF0h to FFFF3h	8. Clock Generation Circuit
Watchdog timer		11. Watchdog Timer
	FFFF4h to FFFF7h	-
NMI	FFFF8h to FFFFBh	10.7 NMI Interrupt
Reset	FFFFCh to FFFFFh	5. Resets

NOTES:

1. Do not normally use this interrupt because it is provided exclusively for use by development tools.

2. If the contents of address FFFE7h is FFh, program execution starts from the address shown by the vector in the relocatable vector table.

10.4.2 Relocatable Vector Tables

The 256 bytes beginning with the start address set in the INTB register comprise a relocatable vector table area. Table 10.2 lists the Relocatable Vector Tables. Setting an even address in the INTB register results in the interrupt sequence being executed faster than in the case of odd addresses.

Interrupt Source	Vector Address ⁽¹⁾ Address (L) to Address (H)	Software Interrupt Number	Reference
BRK Instruction ⁽²⁾	+0 to +3 (0000h to 0003h)	0	M16C/60, M16C/20, M16C/Tiny Series Software Manual
CAN0/1 wake-up (10)	+4 to +7 (0004h to 0007h)	1	19. CAN Module
CAN0 successful reception	+8 to +11 (0008h to 000Bh)	2	
CAN0 successful transmission	+12 to +15 (000Ch to 000Fh)	3	
ĪNT3	+16 to +19 (0010h to 0013h)	4	10.6 INT Interrupt
Timer B5	+20 to +23 (0014h to 0017h)	5	13. Timers
Timer B4, UART1 bus collision detection ^{(3) (9)}	+24 to +27 (0018h to 001Bh)	6	13. Timers
Timer B3, UART0 bus collision detection ^{(4) (9)}	+28 to +31 (001Ch to 001Fh)	7	15. Serial Interface
CAN1 successful reception, INT5 (5)	+32 to +35 (0020h to 0023h)	8	19. CAN Module, 10.6 INT Interrupt
SI/O3, CAN1 successful transmission, INT4 (6)	+36 to +39 (0024h to 0027h)	9	15. Serial Interface, 19. CAN Module, 10.6 INT Interrupt
UART2 bus collision detection ⁽⁹⁾	+40 to +43 (0028h to 002Bh)	10	15. Serial Interface
DMA0	+44 to +47 (002Ch to 002Fh)	11	12. DMAC
DMA1	+48 to +51 (0030h to 0033h)	12	
CAN0/1 error ⁽¹¹⁾	+52 to +55 (0034h to 0037h)	13	19. CAN Module
A/D, key input ⁽⁷⁾	+56 to +59 (0038h to 003Bh)	14	16. A/D Convertor, 10.8 Key Input Interrupt
UART2 transmission, NACK2 (8)	+60 to +63 (003Ch to 003Fh)	15	15. Serial Interface
UART2 reception, ACK2 ⁽⁸⁾	+64 to +67 (0040h to 0043h)	16	
UART0 transmission, NACK0 ⁽⁸⁾	+68 to +71 (0044h to 0047h)	17	
UART0 reception, ACK0 ⁽⁸⁾	+72 to +75 (0048h to 004Bh)	18	
UART1 transmission, NACK1 ⁽⁸⁾	+76 to +79 (004Ch to 004Fh)	19	
UART1 reception, ACK1 ⁽⁸⁾	+80 to +83 (0050h to 0053h)	20	
Timer A0	+84 to +87 (0054h to 0057h)	21	13. Timers
Timer A1	+88 to +91 (0058h to 005Bh)	22	
Timer A2	+92 to +95 (005Ch to 005Fh)	23	
Timer A3	+96 to +99 (0060h to 0063h)	24	
Timer A4	+100 to +103 (0064h to 0067h)	25	
Timer B0	+104 to +107 (0068h to 006Bh)	26	
Timer B1	+108 to +111 (006Ch to 006Fh)	27	
Timer B2	+112 to +115 (0070h to 0073h)	28	
INTO	+116 to +119 (0074h to 0077h)	29	10.6 INT Interrupt
INT1	+120 to +123 (0078h to 007Bh)	30	
INT2	+124 to +127 (007Ch to 007Fh)	31	
INT instruction interrupt ⁽²⁾	+128 to +131 (0080h to 0083h)	32	M16C/60, M16C/20, M16C/Tiny
	to	to	Series Software Manual
	+252 to + 255 (00FCh to 00FFh)	63	

NOTES:

- 1. Address relative to address in INTB.
- 2. These interrupts cannot be disabled using the I flag.
- 3. Use the IFSR07 bit in the IFSR0 register to select.
- 4. Use the IFSR06 bit in the IFSR0 register to select.
- 5. Use the IFSR17 bit in the IFSR1 register to select.
- 6. Use the IFSR16 bit in the IFSR1 register to select.
- Furthermore, use the IFSR00 bit in the IFSR0 register to select, when selecting SI/O3 or CAN1 successful transmission. 7. Use the IFSR01 bit in the IFSR0 register to select.
- 8. During I²C mode, NACK and ACK interrupts comprise the interrupt source.
- 9. Bus collision detection: During IE mode, this bus collision detection constitutes the interrupt source.

During I²C mode, a start condition or a stop condition detection constitutes the interrupt source. 10. Use the IFSR02 bit in the IFSR0 register to select. When the IFSR02 bit = 0, CAN0/1 wake-up is selected. When the IFSR02 bit = 1, CAN0 wake-up/error is selected.

11. Use the IFSR02 bit in the IFSR0 register to select. When the IFSR02 bit = 0, CAN0/1 error is selected. When the IFSR02 bit = 1, CAN1 wake-up/error is selected.

10.5 Interrupt Control

The following describes how to enable/disable the maskable interrupts, and how to set the priority in which order they are accepted. What is explained here does not apply to non-maskable interrupts.

Use the I flag in the FLG register, IPL, and bits ILVL2 to ILVL0 in the each interrupt control register to enable/disable the maskable interrupts. Whether an interrupt is requested is indicated by the IR bit in the each interrupt control register.

Figures 10.3 and 10.4 show the Interrupt Control Registers.

1. To rewrite the interrupt control registers, do so at a point that does not generate the interrupt request for that register. For details, refer to **23.6 Interrupts**.

2. Use the IFSR07 bit in the IFSR0 register to select.

3. Use the IFSR06 bit in the IFSR0 register to select.

4. This bit can only be reset by writing 0 (do not write 1).

5. When the IFSR02 bit in the IFSR0 register = 0 (CAN0/1 wake-up or error), CAN0/1 wake-up is selected.

When the IFSR02 bit = 1 (CAN0 wake-up/error or CAN1 wake-up/error), CAN0 wake-up/error is selected.

6. When the IFSR02 bit = 0, CAN0/1 error is selected. When the IFSR02 bit = 1, CAN1 wake-up/error is selected.

7. Use the IFSR01 bit in the IFSR0 register to select.

		Symbol		Address	After Reset	
7 b6 b5 b4 b3 b2 b1 b0	C1TF	IC ⁽²⁾ ECIC/INT5IC ^{(2) (6)} RMIC/S3IC/INT4IC ^{(2) (7)} IC to INT2IC	004 004 004 005	18h	XX00X000b XX00X000b XX00X000b XX00X000b	
	Bit Symbol	Bit Name		Func	tion	RW
	ILVL0			b2 b1 b0 0 0 0 : Level 0 (interrupt disabled) 0 0 1 : Level 1		RW
	ILVL1	Interrupt priority level select bits	el 0 1 0 : Level 2 0 1 1 : Level 3 1 0 0 : Level 4 1 0 1 : Level 5 1 1 0 : Level 6 1 1 1 : Level 7			RW
,	ILVL2					RW
	IR	Interrupt request bit		0 : Interrupt not re 1 : Interrupt reque		RW (3
	POL	Polarity select bit		0 : Selects falling 1 : Selects rising		RW
	_ (b5)	Reserved bit		Set to 0		RW
	_ (b7-b6)	Nothing is assigned. If necessary, set to 0. When read, the content is undefined.			_	

1. To rewrite the interrupt control registers, do so at a point that does not generate the interrupt request for that register. For details, refer to **23.6 Interrupts**.

2. When the BYTE pin is low and the processor mode is memory expansion or microprocessor mode, set bits ILVL2 to ILVL0 in registers INT5IC to INT3IC to 000b (interrupt disabled).

3. This bit can only be reset by writing 0 (do not write 1).

4. If bits IFSR10 to IFSR15 in the IFSR1 register are 1 (both edges), set the POL bit in registers INT0IC to INT5IC to 0 (falling edge).

5. Set the POL bit in the S3IC register to 0 (falling edge) when the IFSR00 bit in the IFSR0 register = 1 and the IFSR16 bit in the IFSR1 register = 0 (SI/O3 selected).

- 6. Use the IFSR17 bit in the IFSR1 register to select.
- 7. Use the IFSR16 bit in the IFSR1 register and the IFSR00 bit in the IFSR0 register to select.

10.5.1 | Flag

The I flag enables or disables the maskable interrupt. Setting the I flag to 1 (enabled) enables the maskable interrupt. Setting the I flag to 0 (disabled) disables all maskable interrupts.

10.5.2 IR Bit

The IR bit is set to 1 (interrupt requested) when an interrupt request is generated. Then, when the interrupt request is accepted and the CPU branches to the corresponding interrupt vector, the IR bit is set to 0 (interrupt not requested).

The IR bit can be set to 0 in a program. Note that do not write 1 to this bit.

10.5.3 Bits ILVL2 to ILVL0 and IPL

Interrupt priority levels can be set using bits ILVL2 to ILVL0.

Table 10.3 shows the settings of interrupt priority levels and Table 10.4 shows the interrupt priority levels enabled by the IPL.

The following are conditions under which an interrupt is accepted:

- \cdot I flag = 1
- \cdot IR bit = 1
- · interrupt priority level > IPL

The I flag, IR bit, bits ILVL2 to ILVL0 and IPL are independent of each other. In no case do they affect one another.

Table 10.3 Settings of Interrupt Priority Levels

Bits ILVL2 to ILVL0	Interrupt Priority Level	Priority Order
000b	Level 0 (Interrupt disabled)	-
001b	Level 1	Low
010b	Level 2	
011b	Level 3	
100b	Level 4	
101b	Level 5	
110b	Level 6	▼
111b	Level 7	High

Table 10.4 Interrupt Priority Levels Enabled by IPL

Enabled Interrupt Priority Levels
Interrupt levels 1 and above are enabled
Interrupt levels 2 and above are enabled
Interrupt levels 3 and above are enabled
Interrupt levels 5 and above are enabled
Interrupt levels 5 and above are enabled
Interrupt levels 6 and above are enabled
Interrupt levels 7 and above are enabled
All maskable interrupts are disabled

10.5.4 Interrupt Sequence

An interrupt sequence — what are performed over a period from the instant an interrupt is accepted to the instant the interrupt routine is executed — is described here.

If an interrupt request is generated while an instruction is being executing, the CPU determines its priority when the execution of the instruction is completed, and transfers control to the interrupt sequence from the next cycle. However, for the SMOVB, SMOVF, SSTR or RMPA instruction, if an interrupt request is generated while the instruction is being executing, the MCU temporarily suspends the instruction being executed, and transfers control to the interrupt sequence.

The CPU behavior during the interrupt sequence is described below.

Figure 10.5 shows the Time Required for Executing Interrupt Sequence.

- (1) The CPU obtains interrupt information (interrupt number and interrupt request level) by reading address 000000h. Then, the IR bit applicable to the interrupt information is set to 0 (interrupt requested).
- (2) The FLG register, prior to an interrupt sequence, is saved to a temporary register ⁽¹⁾ within the CPU.
- (3) Flags I, D, and U in the FLG register become as follows:
 - The I flag is set to 0 (interrupt disabled)
 - The D flag is set to 0 (single-step interrupt disabled)
 - The U flag is set to 0 (ISP selected)

However, the U flag does not change state if an INT instruction for software interrupt Nos. 32 to 63 is executed.

- (4) The temporary register ⁽¹⁾ within the CPU is saved to the stack.
- (5) The PC is saved to the stack.
- (6) The interrupt priority level of the acknowledged interrupt in IPL is set.
- (7) The start address of the relevant interrupt routine set in the interrupt vector is stored in the PC.

After the interrupt sequence is completed, an instruction is executed from the starting address of the interrupt routine.

NOTE:

1. This register cannot be accessed by user.

CPU clock			
Address bus	Address Undefined (1) SP-2 SP-4 vec vec+2 PC		
Data bus	Interrupt Undefined (1) SP-2 SP-4 vec vec+2 contents contents		
RD			
WR (2)			
NOTES: 1. The undefined state depends on the instruction queue buffer. A read cycle occurs when the instruction queue buffer is ready to accept instructions. 2. The WR signal timing shown here is for the case where the stack is located in the internal RAM.			

Figure 10.5 Time Required for Executing Interrupt Sequence

RENESAS

10.5.5 Interrupt Response Time

Figure 10.6 shows the Interrupt Response Time. The interrupt response or interrupt acknowledge time denotes a time from when an interrupt request is generated till when the first instruction in the interrupt routine is executed. Specifically, it consists of a time from when an interrupt request is generated till when the instruction then executing is completed ((a) on Figure 10.6) and a time during which the interrupt sequence is executed ((b) on Figure 10.6).

10.5.6 Variation of IPL when Interrupt Request is Accepted

When a maskable interrupt request is accepted, the interrupt priority level of the accepted interrupt is set in the IPL.

When a software interrupt or special interrupt request is accepted, one of the interrupt priority levels listed in Table 10.5 is set in the IPL. Table 10.5 shows the IPL Level that is Set to IPL when Software or Special Interrupts is Accepted.

Table 10 5 IDL I avail that is Set to IDL	when Software or S	nanial Interrupt in Accord
Table 10.5 IPL Level that is Set to IPL	. when sollware of s	pecial interrupt is Accepted

Interrupt Sources	Value that is Set to IPL
Oscillation stop and re-oscillation detection, Watchdog timer, $\overline{\text{NMI}}$	7
Software, Address match, DBC, Single-step	Not changed
10.5.7 Saving Registers

In the interrupt sequence, the FLG register and PC are saved to the stack.

At this time, the 4 high-order bits of the PC and the 4 high-order (IPL) and 8 low-order bits in the FLG register, 16 bits in total, are saved to the stack first. Next, the 16 low-order bits of the PC are saved.

Figure 10.7 shows the Stack Status Before and After Acceptance of Interrupt Request.

The other necessary registers must be saved in a program at the beginning of the interrupt routine. Use the PUSHM instruction, and all registers except SP can be saved with a single instruction.

Figure 10.7 Stack Status Before and After Acceptance of Interrupt Request

The register saving operation carried out in the interrupt sequence is dependent on whether the SP⁽¹⁾, at the time of acceptance of an interrupt request, is even or odd. If the SP⁽¹⁾ is even, the FLG register and the PC are saved, 16 bits at a time. If odd, they are saved in two steps, 8 bits at a time. Figure 10.8 shows the Register Saving Operation.

NOTE:

1. When any INT instruction in software numbers 32 to 63 has been executed, this is the SP indicated by the U flag. Otherwise, it is the ISP.

Figure 10.8 Register Saving Operation

10.5.8 Returning from Interrupt Routine

The FLG register and PC in the state in which they were immediately before entering the interrupt sequence are restored from the stack by executing the REIT instruction at the end of the interrupt routine. Thereafter the CPU returns to the program which was being executed before accepting the interrupt request.

Return the other registers saved by a program within the interrupt routine using the POPM or similar instruction before executing the REIT instruction.

Register bank is switched back to the bank used prior to the interrupt sequence by the REIT instruction.

10.5.9 Interrupt Priority

If two or more interrupt requests are sampled at the same sampling points (a timing to detect whether an interrupt request is generated or not), the interrupt request with the highest priority is acknowledged.

For maskable interrupts (peripheral functions interrupt), any desired priority level can be selected using bits ILVL2 to ILVL0. However, if two or more maskable interrupts have the same priority level, their interrupt priority is resolved by hardware, with the highest priority interrupt accepted.

The watchdog timer and other special interrupts have their priority levels set in hardware.

Figure 10.9 shows the Hardware Interrupts Priority.

Software interrupts are not affected by the interrupt priority. If an instruction is executed, control branches invariably to the interrupt routine.

Figure 10.9 Hardware Interrupt Priority

10.5.10 Interrupt Priority Level Select Circuit

The interrupt priority level select circuit selects the highest priority interrupt when two or more interrupt requests are sampled at the same sampling point.

Figure 10.10 shows the Interrupts Priority Select Circuit.

Figure 10.10 Interrupts Priority Select Circuit

10.6 INT Interrupt

INTi interrupt (i = 0 to 5) is triggered by the edges of external inputs. The edge polarity is selected using bits IFSR10 to IFSR15 in the IFSR1 register.

INT4 share the interrupt vector and interrupt control register with CAN1 successful transmission and SI/O3. INT5 share the interrupt vector and interrupt control register with CAN1 successful reception. To use the INT4 interrupt, set the IFSR16 bit in the IFSR1 register to 1 (INT4). To use the INT5 interrupt, set the IFSR17 bit in the IFSR1 register to 1 (INT5).

After modifying the IFSR16 or IFSR17 bit, set the corresponding IR bit to 0 (interrupt not requested) before enabling the interrupt.

Figure 10.11 shows Registers IFSR0 and IFSR1.

Interrupt Source Sele	ct Register	0		
b7 b6 b5 b4 b3 b2 b1 b0	Symb IFSR		After Reset 00XXX000h	
	Bit Symbol	Bit Name	Function	RW
	IFSR00	Interrupt request source select bit	0 : CAN1 successful transmission 1 : SI/O3	RW
· · · · ·	IFSR01	Interrupt request source delect bit	0 : A/D conversion 1 : Key input	RW
	IFSR02	Interrupt request source select bit ⁽³⁾	0 : CAN0/1 wake-up or error 1 : CAN0 wake-up/error or CAN1 wake-up/error	RW
	- (b5-b3)	Nothing is assigned. If necessary When read, the content is undefir		RW
	IFSR06	Interrupt request source select bit ⁽¹⁾	0 : Timer B3 1 : UART0 bus collision detection	RW
NOTEO	IFSR07	Interrupt request source select bit ⁽²⁾	0 : Timer B4 1 : UART1 bus collision detection	RW

NOTES:

- 1. Timer B3 and UART0 bus collision detection share the vector and interrupt control register. When using the timer B3 interrupt, set the IFSR06 bit to 0 (tmer B3).
- When using UART0 bus collision detection, set the IFSR06 bit to 1 (UART0 bus collision detection). 2. Timer B4 and UART1 bus collision detection share the vector and interrupt control register.
- When using the timer B4 interrupt, set the IFSR07 bit to 0 (timer B4). When using UART1 bus collision detection, set the IFSR07 bit to 1 (UART1 bus collision detection).
- 3. If this bit is set to 0, the software interrupt number 1 is selected CAN0/1 wake-up and the interrupt number 13 is selected CAN0/1 error. If this bit is set to 1, the interrupt number 1 is selected CAN0 wake-up/error and the interrupt number 13 is selected CAN1 wake-up/error.

Interrupt Source Select Register 1

b7 b6 b	55 b4 b3 b2 b1 b0] Symb IFSR		After Reset 00h	
		Bit Symbol	Bit Name	Function	RW
		IFSR10	INT0 interrupt polarity switching bit	0 : One edge 1 : Both edges ⁽¹⁾	RW
		IFSR11	INT1 interrupt polarity switching bit	0 : One edge 1 : Both edges ⁽¹⁾	RW
		IFSR12	INT2 interrupt polarity switching bit	0 : One edge 1 : Both edges ⁽¹⁾	RW
		IFSR13	INT3 interrupt polarity switching bit	0 : One edge 1 : Both edges ⁽¹⁾	RW
	· · · · · · · · · · · · · · · · · · ·	IFSR14	INT4 interrupt polarity switching bit	0 : One edge 1 : Both edges ⁽¹⁾	RW
		IFSR15	INT5 interrupt polarity switching bit	0 : One edge 1 : Both edges ⁽¹⁾	RW
		IFSR16	Interrupt request source select bit ⁽²⁾	0 : SI/O3/CAN1 successful transmission (3) 1 : INT4	RW
		IFSR17	Interrupt request source select bit ⁽²⁾	0 : CAN1 successful reception 1 : INT5	RW
NOTES	:				

- 1. When setting this bit to 1 (both edges), make sure the POL bit in registers INT0IC to INT5IC is set to 0 (falling edge).
- 2. During memory expansion and microprocessor modes, when the data bus is 16-bit width (BYTE pin is "L"), set this bit to 0.
- 3. When setting this bit to 0 (SI/O3, CAN1 successful transmission), make sure the IFSR00 bit in the IFSR0 register is set to 0 (CAN1 successful transmission) or 1 (SI/O3).
 - And, make sure the POL bit in registers S3IC and C1TRMIC are set to 0 (falling edge).

Figure 10.11 Registers IFSR0 and IFSR1

10.7 NMI Interrupt

An $\overline{\text{NMI}}$ interrupt request is generated when input on the $\overline{\text{NMI}}$ pin changes state from high to low. The $\overline{\text{NMI}}$ interrupt is a non-maskable interrupt.

The input level of this $\overline{\text{NMI}}$ interrupt input pin can be read by accessing the P8_5 bit in the P8 register. This pin cannot be used as an input port.

10.8 Key Input Interrupt

Of P10_4 to P10_7, a key input interrupt request is generated when input on any of pins P10_4 to P10_7 which has had bits PD10_4 to PD10_7 in the PD10 register set to 0 (input) goes low. Key input interrupts can be used as a key-on wake up function, the function which gets the MCU out of wait or stop mode. However, if you intend to use the key input interrupt, do not use P10_4 to P10_7 as analog input ports. Figure 10.12 shows the Key Input Interrupt Block Diagram. Note, however, that while input on any pin which has had bits PD10_4 to PD10_7 set to 0 (input mode) is pulled low, inputs on all other pins of the port are not detected as interrupts.

Figure 10.12 Key Input Interrupt Block Diagram

10.9 CAN0/1 Wake-up Interrupt

CAN0/1 wake-up interrupt request is generated when a falling edge is input to CRX0 or CRX1. One interrupt is allocated to CAN0/1. The CAN0/1 wake-up interrupt is enabled only when the PortEn bit = 1 (CTX/CRX function) and Sleep bit = 1 (sleep mode enabled) in the CiCTLR register (i = 0, 1). Figure 10.13 shows the CAN0/1 Wake-up Interrupt Block Diagram. Please note that the wake-up message will be lost.

Figure 10.13 CAN0/1 Wake-up Interrupt Block Diagram

10.10 Address Match Interrupt

An address match interrupt request is generated immediately before executing the instruction at the address indicated by the RMADi register (i = 0 to 3). Set the start address of any instruction in the RMADi register. Use bits AIER0 and AIER1 in the AIER register and bits AIER20 and AIER21 in the AIER2 register to enable or disable the interrupt. Note that the address match interrupt is unaffected by the I flag and IPL. For address match interrupts, the value of the PC that is saved to the stack area varies depending on the instruction being executed (refer to **10.5.7 Saving Registers**). (The value of the PC that is saved to the stack area is not the correct return address.) Therefore, follow one of the methods described below to return from the address match interrupt.

- Rewrite the content of the stack and then use the REIT instruction to return.
- Restore the stack to its previous state before the interrupt request was accepted by using the POP or similar other instruction and then use a jump instruction to return.

Table 10.6 shows the Value of PC that is Saved to Stack Area when Address Match Interrupt Request is Accepted. Table 10.7 shows the Relationship between Address Match Interrupt Sources and Associated Registers.

Note that when using the external bus in 8-bit width, no address match interrupts can be used for external areas.

Figure 10.14 shows Registers AIER, AIER2, and RMAD0 to RMAD3.

				ea mien /		i intoir apt negacot le Accepted
Ins	struction at A	Value of PC that is Saved to Stack Area				
• 16-bit ope	eration code	Address indicated by RMADi				
Instruction	n shown belo	w among 8	B-bit operation	on code in	structions	register + 2
ADD.B:S	#IMM8,dest	SUB.B:S	#IMM8,dest	AND.B:S	#IMM8,dest	
OR.B:S	#IMM8,dest	MOV.B:S	#IMM8,dest	STZ.B:S	#IMM8,dest	
STNZ.B:S	#IMM8,dest	STZX.B:S	#IMM81,#IMN	/I82,dest		
CMP.B:S	#IMM8,dest	PUSHM	src	POPM des	st	
JMPS	#IMM8	JSRS	#IMM8			
MOV.B:S #IMM,dest (However, dest = A0 or A1)						
Instructions	s other than	Address indicated by RMADi				
						register + 1

Table 10.6 Value of PC that is Saved to Stack Area when Address Match Interrupt Request is Accepted

Value of PC that is saved to stack area: Refer to **10.5.7 Saving Registers**.

Table 10.7 Relationship between Address Match Interrupt Sources and Associated Registers

Address Match Interrupt Sources	Address Match Interrupt Enable Bit	Address Match Interrupt Register
Address match interrupt 0	AIER0	RMAD0
Address match interrupt 1	AIER1	RMAD1
Address match interrupt 2	AIER20	RMAD2
Address match interrupt 3	AIER21	RMAD3

Figure 10.14 Registers AIER, AIER2, and RMAD0 to RMAD3

11. Watchdog Timer

The watchdog timer is the function of detecting when the program is out of control. Therefore, we recommend using the watchdog timer to improve reliability of a system. The watchdog timer contains a 15-bit counter which counts down the clock derived by dividing the CPU clock using the prescaler. Whether to generate a watchdog timer interrupt request or apply a watchdog timer reset as an operation to be performed when the watchdog timer underflows after reaching the terminal count can be selected using the PM12 bit in the PM1 register. The PM12 bit can only be set to 1 (watchdog timer reset). Once this bit is set to 1, it cannot be set to 0 (watchdog timer interrupt) in a program. Refer to **5.3 Watchdog Timer Reset** for details about watchdog timer reset.

When the main clock, on-chip oscillator clock or PLL clock is selected for CPU clock, the divide-by-n value for the prescaler can be selected to be 16 or 128. If a sub clock is selected for CPU clock, the divide-by-n value for the prescaler is always 2 no matter how the WDC7 bit is set. The period of watchdog timer can be calculated as given below. The period of watchdog timer is, however, subject to an error due to the prescaler.

With main clock, on-chip oscillator clock or PLL clock selected for CPU clock

Watchdog timer period = Prescaler dividing (16 or 128) × Watchdog timer count (32768) CPU clock

With sub clock selected for CPU clock

Watchdog timer period = Prescaler dividing (2) × Watchdog timer count (32768) CPU clock

For example, when CPU clock = 16 MHz and the divide-by-n value for the prescaler = 16, the watchdog timer period is approx. 32.8 ms.

The watchdog timer is initialized by writing to the WDTS register. The prescaler is initialized after reset. Note that the watchdog timer and the prescaler both are inactive after reset, so that the watchdog timer is activated to start counting by writing to the WDTS register.

In stop mode, wait mode and hold state, the watchdog timer and prescaler are stopped. Counting is resumed from the held value when the modes or state are released.

Figure 11.1 shows the Watchdog Timer Block Diagram. Figure 11.2 shows Registers WDC and WDTS.

Figure 11.1 Watchdog Timer Block Diagram

Figure 11.2 Registers WDC and WDTS

11.1 Count Source Protective Mode

In this mode, a on-chip oscillator clock is used for the watchdog timer count source. The watchdog timer can be kept being clocked even when CPU clock stops as a result of runaway.

Before this mode can be used, the following register settings are required:

- (1) Set the PRC1 bit in the PRCR register to 1 (write to registers PM1 and PM2 enabled).
- (2) Set the PM12 bit in the PM1 register to 1 (reset when the watchdog timer underflows).
- (3) Set the PM22 bit in the PM2 register to 1 (on-chip oscillator clock used for the watchdog timer count source).
- (4) Set the PRC1 bit in the PRCR register to 0 (write to registers PM1 and PM2 disabled).
- (5) Write to the WDTS register (watchdog timer starts counting).

Setting the PM22 bit to 1 results in the following conditions:

• The on-chip oscillator starts oscillating, and the on-chip oscillator clock becomes the watchdog timer count source.

Watchdog timer period = Watchdog

Watchdog timer count (32768) On-chip oscillator clock

- The CM10 bit in the CM1 register is disabled against write. (Writing a 1 has no effect, nor is stop mode entered.)
- The watchdog timer does not stop when in wait mode or hold state.

12. DMAC

The DMAC (Direct Memory Access Controller) allows data to be transferred without the CPU intervention. Two DMAC channels are included. Each time a DMA request occurs, the DMAC transfers one (8- or 16-bit) data from the source address to the destination address. The DMAC uses the same data bus as used by the CPU. Because the DMAC has higher priority of bus control than the CPU and because it makes use of a cycle steal method, it can transfer one word (16 bits) or one byte (8 bits) of data within a very short time after a DMA request is generated. Figure 12.1 shows the DMAC Block Diagram. Table 12.1 lists the DMAC Specifications. Figures 12.2 to 12.4 show the DMAC related-registers.

Figure 12.1 DMAC Block Diagram

A DMA request is generated by a write to the DSR bit in the DMiSL register (i = 0, 1), as well as by an interrupt request which is generated by any function specified by bits DMS, and DSEL3 to DSEL0 in the DMiSL register. However, unlike in the case of interrupt requests, DMA requests are not affected by the I flag and the interrupt control register, so that even when interrupt requests are disabled and no interrupt request can be accepted, DMA requests are always accepted. Furthermore, because the DMAC does not affect interrupts, the IR bit in the interrupt control register does not change state due to a DMA transfer.

A data transfer is initiated each time a DMA request is generated when the DMAE bit in the DMiCON register = 1 (DMA enabled). However, if the cycle in which a DMA request is generated is faster than the DMA transfer cycle, the number of transfer requests generated and the number of times data is transferred may not match. For details, refer to **12.4 DMA Request**.

Table 12.1 DMAC Specifications

Item		Specification				
No. of channels	6	2 (cycle steal method)				
Transfer memory space		• From given address in the 1-Mbyte space to a fixed address				
		 From a fixed address to given address in the 1-Mbyte space 				
		 From a fixed address to a fixed address 				
Maximum no. of	bytes transferred	128 Kbytes (with 16-bit transfer) or 64 Kbytes (with 8-bit transfer)				
DMA request so	ources (1) (2)	Falling edge of INT0 or INT1				
		Both edge of INT0 or INT1				
		Timers A0 to A4 interrupt requests				
		Timers B0 to B5 interrupt requests				
		UART0 transmit, UART0 receive interrupt requests				
		UART1 transmit, UART1 receive interrupt requests				
		UART2 transmit, UART2 receive interrupt requests				
		SI/O3 interrupt request				
		A/D conversion interrupt requests				
		Software triggers				
Channel priority	/	DMA0 > DMA1 (DMA0 takes precedence)				
Transfer unit		8 bits or 16 bits				
Transfer addres	ss direction	forward or fixed (The source and destination addresses cannot both be				
		in the forward direction.)				
Transfer mode	Single transfer	Transfer is completed when the DMAi transfer counter underflows				
		after reaching the terminal count.				
	Repeat transfer	When the DMAi transfer counter underflows, it is reloaded with the value				
		of the DMAi transfer counter reload register and a DMA transfer is				
		continued with it.				
DMA interrupt r	equest	When the DMAi transfer counter underflowed				
generation timir	ng					
DMA start up		Data transfer is initiated each time a DMA request is generated when the				
		The DMAE bit in the DMAiCON register = 1 (enabled).				
DMA shutdown	Single transfer	When the DMAE bit is set to 0 (disabled)				
		 After the DMAi transfer counter underflows 				
	Repeat transfer	When the DMAE bit is set to 0 (disabled)				
Reload timing for	or forward	When a data transfer is started after setting the DMAE bit to 1 (enabled),				
address pointer	and transfer	the forward address pointer is reloaded with the value of the SARi or the				
counter		DARi pointer whichever is specified to be in the forward direction and the				
		DMAi transfer counter is reloaded with the value of the DMAi transfer				
		counter reload register.				
DMA transfer c	ycles	Minimum 3 cycles between SFR and internal RAM				
= 0 1	-	· ·				

i = 0, 1

NOTES:

- 1. DMA transfer is not effective to any interrupt. DMA transfer is affected neither by the I flag nor by the interrupt control register.
- 2. The selectable DMA request sources differ with each channel.
- 3. Make sure that no DMAC-related registers (addresses 0020h to 003Fh) are accessed by the DMAC.

b7 b6 b5 b4 b	3 b2 b1 b0	Symbol DM0SL		ddress 03B8h	After Reset 00h		
		Bit Symbol	Bit N	lame	Function		RW
		DSEL0					RW
· · · · · · · · · · · · · · · · · · ·		DSEL1	DMA reque	est source			RW
	DSEL2	select bits		See NOTE 1		RW	
	DSEL3					RW	
		_ (b5-b4)		assigned. If r , the content	necessary, set to 0. i is 0.		_
		DMS	DMA reque		0 : Basic request source 1 : Extended request sou	irce	RW
		DSR	Software DMA request bit		A DMA request is generated by setting this bit to 1 when the DMS bit is 0 (basic source) and bits DSEL3 to DSEL0 are 0001b (software trigger). When read, the content is 0.		RW
manner de ts DSEL3 to DSEL0 000b 001b	DMS =	ow. 0 (basic request e of INT0 pin			n of the DMS bit and bits D extended request source)	SEL3 to DSEL0	in th
010b 0011b	Timer A1			-			
)100b)101b	Timer A2			-			
)110b	Timer A3 Timer A4			- Two edges	of INITO pip		
0111b	Timer B0			Timer B3			
1000b	Timer B1			Timer B4			
1001b	Timer B2			Timer B5			
1010b	UART0 tran	smit		-			
1011b	UART0 rece			_			
1100b	UART2 tran			—			
1011	UART2 rece	eive		_			
1101b	0.000						

-

Figure 12.2 DM0SL Register

A/D conversion UART1 transmit

1110b 1111b

DMA1 Request Source Select Register

b7 b6 b5 b4	b3 b2 b1 b0	Symbol DM1SL	Address 03BAh	After Reset 00h	
		Bit Symbol	Bit Name	Function	RW
		DSEL0			RW
		DSEL1	DMA request source	See NOTE 1	RW
	·	DSEL2 select bits			RW
		DSEL3			RW
			Nothing is assigned. If necessary, set to 0. When read, the content is 0.		-
			DMA request source expansion select bit	0 : Basic request source 1 : Extended request source	RW
		DSR	Software DMA request bit	A DMA request is generated by setting this bit to 1 when the DMS bit is 0 (basic source) and the DSEL3 to DSEL0 bits are 0001b (software trigger). When read, the content is 0.	RW

NOTE:

1. The DMA1 request sources can be selected by a combination of the DMS bit and bits DSEL3 to DSEL0 in the manner described below.

Bits DSEL3 to DSEL0	DMS = 0 (basic request source)	DMS = 1 (extended request source)
0000b	Falling edge of INT1 pin	-
0001b	Software trigger	-
0010b	Timer A0	-
0011b	Timer A1	-
0100b	Timer A2	-
0101b	Timer A3	SI/O3
0110b	Timer A4	-
0111b	Timer B0	Two edges of INT1 pin
1000b	Timer B1	_
1001b	Timer B2	-
1010b	UART0 transmit	-
1011b	UART0 receive/ACK0	-
1100b	UART2 transmit	-
1101b	UART2 receive/ACK2	-
1110b	A/D conversion	-
1111b	UART1 receive/ACK1	_

DMAi Control Register (i = 0, 1)

	Symbol DM0CON DM1CON	Address 002Ch 003Ch	After Reset 00000X00b 00000X00b	
	Bit Symbol	Bit Name	Function	RW
	DMBIT	Transfer unit bit select bit	0 : 16 bits 1 : 8 bits	RW
	DMASL	Repeat transfer mode select bit	0 : Single transfer 1 : Repeat transfer	RW
	DMAS	DMA request bit	0 : DMA not requested 1 : DMA requested	RW ⁽¹⁾
	DMAE	DMA enable bit	0 : Disabled 1 : Enabled	RW
	DSD	Source address direction select bit ⁽²⁾	0 : Fixed 1 : Forward	RW
	DAD	Destination address direction select bit ⁽²⁾	0 : Fixed 1 : Forward	RW
ļ	_ (b7-b6)	Nothing is assigned. If necessary, set to 0. When read, the content is 0.		-

NOTES:

1. The DMAS bit can be set to 0 by writing 0 in a program. (This bit remains unchanged even if 1 is written.) 2. At least one of bits DAD and DSD is set to 0 (address direction fixed).

Figure 12.3 Registers DM1SL, DM0CON, and DM1CON

RENESAS

12.1 Transfer Cycle

The transfer cycle consists of a memory or SFR read (source read) bus cycle and a write (destination write) bus cycle. The number of read and write bus cycles is affected by the source and destination addresses of transfer. During memory expansion and microprocessor modes, it is also affected by the BYTE pin level. Furthermore, the bus cycle itself is extended by a software wait or RDY signal.

12.1.1 Effect of Source and Destination Addresses

If the transfer unit and data bus both are 16 bits and the source address of transfer begins with an odd address, the source read cycle consists of one more bus cycle than when the source address of transfer begins with an even address.

Similarly, if the transfer unit and data bus both are 16 bits and the destination address of transfer begins with an odd address, the destination write cycle consists of one more bus cycle than when the destination address of transfer begins with an even address.

12.1.2 Effect of BYTE Pin Level

During memory expansion and microprocessor modes, if 16 bits of data are to be transferred on an 8-bit data bus (input on the BYTE pin = high), the operation is accomplished by transferring 8 bits of data twice. Therefore, this operation requires two bus cycles to read data and two bus cycles to write data. Furthermore, if the DMAC is to access the internal area (internal ROM, internal RAM, or SFR), unlike in the case of the CPU, the DMAC does it through the data bus width selected by the BYTE pin.

12.1.3 Effect of Software Wait

For memory or SFR accesses in which one or more software wait states are inserted, the number of bus cycles required for that access increases by an amount equal to software wait states.

12.1.4 Effect of RDY Signal

During memory expansion and microprocessor modes, DMA transfers to and from an external area are affected by the $\overline{\text{RDY}}$ signal. Refer to **7.2.6** $\overline{\text{RDY}}$ Signal.

Figure 12.5 shows the Transfer Cycles for Source Read. For convenience, the destination write cycle is shown as one cycle and the source read cycles for the different conditions are shown. In reality, the destination write cycle is subject to the same conditions as the source read cycle, with the transfer cycle changing accordingly. When calculating transfer cycles, take into consideration each condition for the source read and the destination write cycle, respectively. For example, when data is transferred in 16-bit unit using an 8-bit bus ((2) on Figure 12.5), two source read bus cycles and two destination write bus cycles are required.

(1) When the	e transfer unit is 8 or 16 bits and the source of transfer is an even address
BCLK	
Address bus	CPU use Source Destination CPU use CPU use
RD signal	
WR signal	
Data bus	CPU use Source Destination CPU use CPU use
(2) When the transfer	e transfer unit is 16 bits and the source address of transfer is an odd address, or when the unit is 16 bits and an 8-bit bus is used
BCLK	
Address bus	CPU use Source + 1 Destination CPU use CPU use
RD signal	
WR signal	
Data bus	CPU use Source + 1 Destination CPU use CPU use
(3) When the	e source read cycle under condition (1) has one wait state inserted
BCLK	
Address bus	CPU use Source Destination CPU use CPU use
RD signal	
WR signal	
Data bus	CPU use Source Destination CPU use CPU use
(4) When the	e source read cycle under condition (2) has one wait state inserted
BCLK	
Address bus	CPU use Source Source + 1 Destination CPU use
RD signal	
WR signal	
Data bus	CPU use Source Source + 1 Destination CPU use
NOTE: 1. The sar	me timing changes occur with the respective conditions at the destination as at the source.

Figure 12.5 Transfer Cycles for Source Read

12.2 DMA Transfer Cycles

Any combination of even or odd transfer read and write addresses is possible. Table 12.2 lists the DMA Transfer Cycles. Table 12.3 lists the Coefficient j, k. The number of DMAC transfer cycles can be calculated as follows:

No. of transfer cycles per transfer unit = No. of read cycles \times j + No. of write cycles \times k

Table 12.2 DMA Transfer Cycles

Transfer Unit	Bus Width	Access Address	Single-cl	nip Mode	Memory Expansion Mode Microprocessor Mode		
	Bus Width		No. of Read Cycles	No. of Write Cycles	No. of Read Cycles	No. of Write Cycles	
	16 bits	Even	1	1	1	1	
8-bit transfer	(BYTE = L)	Odd	1	1	1	1	
(DMBIT =1)	8 bits	Even	-	-	1	1	
	(BYTE= H)	Odd	-	-	1	1	
	16 bits	Even	1	1	1	1	
16-bit transfer	(BYTE =L)	Odd	2	2	2	2	
(DMBIT = 0)	8 bits	Even	-	-	2	2	
	(BYTE = H)	Odd	-	-	2	2	

-: This condition does not exist.

Table 12.3 Coefficient j, k

	Internal Area				External Area						
	Internal R	ernal ROM, RAM SFR		Separate Bus				Multiplexed Bus			
	No Wait	With Wait	1 Mait ⁽¹⁾ 2 Maita ⁽¹⁾	No Wait	With Wait ⁽²⁾		With Wait ⁽²⁾				
	No Wait With Wait 1 Wait	I Wall	2 Waits	NO Wall	1 Wait	2 Waits	3 Waits	1 Wait	2 Waits	3 Waits	
j	1	2	2	3	1	2	3	4	3	3	4
k	1	2	2	3	2	2	3	4	3	3	4

NOTES:

1. Depends on the set value of the PM20 bit in the PM2 register.

2. Depends on the set value of the CSE register.

12.3 DMA Enable

When a data transfer starts after setting the DMAE bit in the DMiCON register (i = 0, 1) to 1 (enabled), the DMAC operates as follows:

- (1) Reload the forward address pointer with the SARi register value when the DSD bit in the DMiCON register is 1 (forward) or the DARi register value when the DAD bit in the DMiCON register is 1 (forward).
- (2) Reload the DMAi transfer counter with the DMAi transfer counter reload register value.

If the DMAE bit is set to 1 again while it remains set, the DMAC performs the above operation.

However, if a DMA request may occur simultaneously when the DMAE bit is being written, follow the steps below.

Step 1: Write 1 to the DMAE bit and DMAS bit in the DMiCON register simultaneously.

Step 2: Make sure that the DMAi is in an initial state as described above (1) and (2) in a program.

If the DMAi is not in an initial state, the above steps should be repeated.

12.4 DMA Request

The DMAC can generate a DMA request as triggered by the request source that is selected with bits DMS, and DSEL3 to DSEL0 in the DMiSL register (i = 0, 1) on either channel.

Table 12.4 lists the Timing at which DMAS Bit Changes State.

Whenever a DMA request is generated, the DMAS bit is set to 1 (DMA requested) regardless of whether or not the DMAE bit is set. If the DMAE bit was set to 1 (enabled) when this occurred, the DMAS bit is set to 0 (DMA not requested) immediately before a data transfer starts. This bit cannot be set to 1 in a program (it can only be set to 0).

The DMAS bit may be set to 1 when the DMS bit or bits DSEL3 to DSEL0 change state. Therefore, always be sure to set the DMAS bit to 0 after changing the DMS bit or bits DSEL3 to DSEL0.

Because if the DMAE bit is 1, a data transfer starts immediately after a DMA request is generated, the DMAS bit in almost all cases is 0 when read in a program. Read the DMAE bit to determine whether the DMAC is enabled.

	DMAS Bit in DMiCON Register			
DMA Source	Timing at which the bit is set to 1	Timing at which the bit is set to 0		
Software trigger	When the DSR bit in the DMiSL register	 Immediately before a data transfer starts 		
	is set to 1	When set by writing 0 in a program		
Peripheral function	When the interrupt control register for			
	the peripheral function that is selected			
	by bits DSEL3 to DSEL0, and DMS in			
	the DMiSL register has its IR bit set to 1.			

Table 12 4	Timing at which	DMAS Bit	Changes State
	i mining at which	DIVIAO DI	Unanges Otate

i = 0, 1

12.5 Channel Priority and DMA Transfer Timing

If both DMA0 and DMA1 are enabled and DMA transfer request signals from DMA0 and DMA1 are detected active in the same sampling period (one period from a falling edge to the next falling edge of BCLK), the DMAS bit on each channel is set to 1 (DMA requested) at the same time. In this case, the DMA requests are arbitrated according to the channel priority, DMA0 > DMA1.

The following describes DMAC operation when DMA0 and DMA1 requests are detected active in the same sampling period.

Figure 12.6 shows an example of DMA Transfer by External Sources.

In Figure 12.6, DMA0 request having priority is received first to start a transfer when a DMA0 request and DMA1 request are generated simultaneously. After one DMA0 transfer is completed, a bus arbitration is returned to the CPU. When the CPU has completed one bus access, a DMA1 transfer starts. After one DMA1 transfer is completed, the bus arbitration is again returned to the CPU.

In addition, DMA requests cannot be counted up since each channel has one DMAS bit. Therefore, when DMA requests, as DMA1 in Figure 12.6, occurs more than one time, the DMAS bit is set to 0 as soon as getting the bus arbitration. The bus arbitration is returned to the CPU when one transfer is completed. Refer to **7.2.7 HOLD Signal** for details about bus arbitration between the CPU and DMA.

Figure 12.6 DMA Transfer by External Sources

13. Timers

Eleven 16-bit timers, each capable of operating independently of the others, can be classified by function as either timer A (five) and timer B (six). The count source for each timer acts as a clock, to control such timer operations as counting, reloading, etc.

Figures 13.1 and 13.2 show the Timer A and Timer B Configurations.

Figure 13.1 Timer A Configuration

Figure 13.2 Timer B Configuration

13.1 Timer A

Figure 13.3 shows the Timer A Block Diagram. Figures 13.4 to 13.6 show the timer A-related registers. The timer A supports the following four modes. Except in event counter mode, timers A0 to A4 all have the same function. Use bits TMOD1 to TMOD0 in the TAiMR register (i = 0 to 4) to select the desired mode.

- Timer mode:
- Event counter mode: The timer counts pulses from an external device or overflows and underflows of other timers.

The timer counts an internal count source.

- One-shot timer mode:
- The timer outputs a pulse only once before it reaches the minimum count 0000h.
- Pulse width modulation (PWM) mode: The timer outputs pulses in a given width successively.

Figure 13.3 Timer A Block Diagram

Figure 13.4 Registers TA0MR to TA4MR, and TA0 to TA4

Count Start Flag				
b7 b6 b5 b4 b3 b2 b1 b0	Symbol TABSR	Address 0380h	After Reset 00h	
	Bit Symbol	Bit Name	Function	RW
	TA0S	Timer A0 count start flag	0 : Count stops	RW
	TA1S	Timer A1 count start flag	1 : Count starts	RW
	TA2S	Timer A2 count start flag	-	RW
	TA3S	Timer A3 count start flag		RW
	TA4S	Timer A4 count start flag		RW
	TB0S	Timer B0 count start flag	-	RW
	TA0S Timer A0 count start flag 0 : Count stops RW TA1S Timer A1 count start flag 1 : Count stops RW TA2S Timer A2 count start flag RW RW TA3S Timer A3 count start flag RW RW TA4S Timer A4 count start flag RW RW TB0S Timer B0 count start flag RW RW TB1S Timer B1 count start flag RW RW TB2S Timer B2 count start flag RW RW Wn Flag ⁽¹⁾ Symbol Address After Reset Other Bit Symbol Bit Name Function RW TA0UD Timer A0 up/down flag 0 : Down count RW	RW		
	TB2S	Timer B2 count start flag		RW
Up/Down Flag ⁽¹⁾				
	Bit Symbol	Bit Name	Function	RW
	TA0UD	Timer A0 up/down flag		RW
	TA1UD	Timer A1 up/down flag	1 : Up count	RW
	TA2UD	Timer A2 up/down flag	Enabled by setting the MR2 bit in	RW
	TA3UD	Timer A3 up/down flag	the TAiMR register to 0 (= switching source in UDF register)	RW
	TA4UD	Timer A4 up/down flag	during event counter mode.	RW
	TA2P	Timer A2 two-phase pulse signal processing select bit	0 : Two-phase pulse signal processing disabled	wo

Timer A3 two-phase pulse

signal processing select bit Timer A4 two-phase pulse

signal processing select bit

2. Make sure the port direction bits for pins TA2IN to TA4IN, and TA2OUT to TA4OUT are set to 0

3. When not using the two-phase pulse signal processing function, set the corresponding bit to timers

ТАЗР

TA4P

1. Use the MOV instruction to write to this register.

1 : Two-phase pulse signal

processing enabled (2) (3)

WO

WO

Figure 13.5 Registers TABSR and UDF

(input mode).

A2 to A4 to 0.

NOTES:

One-Shot Start Flag				
b7 b6 b5 b4 b3 b2 b1 b0	Symbo ONSF		After Reset 00h	
	Bit Symbol	Bit Name	Function	RW
· · · · · ·	TA0OS	Timer A0 one-shot start flag	The timer starts counting by setting	RW
	TA1OS	Timer A1 one-shot start flag	this bit to 1 while bits TMOD1 to TMOD0 in the TAiMR register ($i = 0$ to 4) =	RW
	TA2OS	Timer A2 one-shot start flag	10b (one-shot timer mode) and the	RW
	TA3OS	Timer A3 one-shot start flag	MR2 bit in the TAiMR register = 0 (TAiOS bit enabled).	RW
	TA4OS	Timer A4 one-shot start flag	When read, its content is 0.	RW
	TAZIE	Z-phase input enable bit	0 : Z-phase input disabled 1 : Z-phase input enabled	RW
	TA0TGL	Timer A0 event/trigger	^{b7 b6} 0 0 : Input on TA0IN is selected ⁽¹⁾ 0 1 : TB2 is selected ⁽²⁾	RW
	TA0TGH	select bits	1 0 : TA4 is selected ⁽²⁾ 1 1 : TA1 is selected ⁽²⁾	RW

NOTES:

1. Make sure the PD7_1 bit in the PD7 register is set to 0 (input mode).

2. Overflow or underflow.

Trigger Select Register

Symbol Address After Reset TŔGSR 00h 0383h Bit Symbol Bit Name Function RW b1 b0 TA1TGL 0 0 : Input on TA1IN is selected (1) RW Timer A1 event/trigger 01: TB2 is selected (2) 1 0 : TA0 is selected (2) select bits TA1TGH RW 1 1 : TA2 is selected (2) b3 b2 i. TA2TGL 0 0 : Input on TA2IN is selected (1) RW Timer A2 event/trigger 01: TB2 is selected (2) select bits 1 0 : TA1 is selected (2) TA2TGH RW 1 1 : TA3 is selected (2) h5 h4 **TA3TGL** 0 0 : Input on TA3IN is selected (1) RW Timer A3 event/trigger 01: TB2 is selected (2) select bits 1 0 : TA2 is selected (2) **TA3TGH** RW 11: TA4 is selected (2) b7 b6 TA4TGL 0 0 : Input on TA4IN is selected (1) RW Timer A4 event/trigger 0 1 : TB2 is selected (2) select bits 1 0 : TA3 is selected (2) TA4TGH RW 1 1: TA0 is selected (2)

NOTES:

1. Make sure the port direction bits for pins TA1IN to TA4IN are set to 0 (input mode). 2. Overflow or underflow.

Clock Prescaler Reset Flag

Figure 13.6 Registers ONSF, TRGSR, and CPSRF

13.1.1 Timer Mode

In timer mode, the timer counts a count source generated internally. Table 13.1 lists the Timer Mode Specifications. Figure 13.7 shows Registers TA0MR to TA4MR in Timer Mode.

Item	Specification
Count source	f1, f2, f8, f32, fC32
Count operation	• Down-count
	• When the timer underflows, it reloads the reload register contents and continues counting
Divide ratio	1/(n+1) n: set value of the TAi register 0000h to FFFFh
Count start condition	Set the TAiS bit in the TABSR register to 1 (count starts)
Count stop condition	Set the TAiS bit to 0 (count stops)
Interrupt request generation timing	Timer underflow
TAiIN pin function	I/O port or gate input
TAiOUT pin function	I/O port or pulse output
Read from timer	Count value can be read by reading the TAi register
Write to timer	When not counting and until the 1st count source is input after counting start
	Value written to the TAi register is written to both reload register and counter
	 When counting (after 1st count source input)
	Value written to the TAi register is written to only reload register
	(Transferred to counter when reloaded next)
Select function	Gate function
	Counting can be started and stopped by an input signal to TAiIN pin
	Pulse output function
	Whenever the timer underflows, the output polarity of TAiOUT pin is inverted.
	When TAiS bit is set to 0 (count stops), the pin outputs a low.

i = 0 to 4

b7 b6 b5	b4 b3 b2 b1 b0		nbol Address to TA4MR 0396h to 039		
		Bit Symbol	Bit Name	Function	RW
		TMOD0	Operating mode	b1 b0	RW
		TMOD1	select bits	0 0 : Timer mode	RW
		MR0	Pulse output function select bit	0 : Pulse is not output (TAiOUT pin is a normal port pin) 1 : Pulse is output (TAiOUT pin is a pulse output pin)	RW
		MR1	- Gate function select bits	Gate function not available 0 1 : 1 0 : Counts while input on the TAilN pin	RW
			is low ⁽¹⁾ 1 1 : Counts while input on the TAiIN pin is high ⁽¹⁾	RW	
	[MR3	Set to 0 in timer mode		RW
		TCK0	Count source select bits	0 0 : f1 or f2 ⁽²⁾ 0 1 : f8	RW
				1 0 : f32 1 1 : fC32	RW

2. Selected by the PCLK0 bit in the PCLKR register.

Figure 13.7 Registers TA0MR to TA4MR in Timer Mode

13.1.2 Event Counter Mode

In event counter mode, the timer counts pulses from an external device or overflows and underflows of other timers. Timers A2, A3, and A4 can count two-phase external signals. Table 13.2 lists the Event Counter Mode Specifications (when not using two-phase pulse signal processing). Figure 13.8 shows TAiMR Register in Event Counter Mode (when not using two-phase pulse signal processing). Table 13.3 lists the Event Counter Mode Specifications (when using two-phase pulse signal processing with timers A2, A3, and A4). Figure 13.9 shows Registers TA2MR to TA4MR in Event Counter Mode (when using two-phase pulse signal processing with timers A2, A3, and A4).

Item	Specification		
Count source	• External signals input to TAiIN pin (effective edge can be selected in program)		
	Timer B2 overflows or underflows,		
	Timer Aj overflows or underflows,		
	Timer Ak overflows or underflows		
Count operation	• Up-count or down-count can be selected by external signal or program		
	• When the timer overflows or underflows, it reloads the reload register		
	contents and continues counting. When operating in free-running mode,		
	the timer continues counting without reloading.		
Divided ratio	1/ (FFFFh - n + 1) for up-count		
	1/ (n + 1) for down-count n : set value of the TAi register 0000h to FFFFh		
Count start condition	Set the TAiS bit in the TABSR register to 1 (count starts)		
Count stop condition	Set the TAiS bit to 0 (count stops)		
Interrupt request generation timing	Timer overflow or underflow		
TAiIN pin function	I/O port or count source input		
TAiOUT pin function	I/O port, pulse output, or up/down-count select input		
Read from timer	Count value can be read by reading the TAi register		
Write to timer	When not counting and until the 1st count source is input after counting start		
	Value written to the TAi register is written to both reload register and counter		
	When counting (after 1st count source input)		
	Value written to the TAi register is written to only reload register		
	(Transferred to counter when reloaded next)		
Select function	Free-run count function		
	Even when the timer overflows or underflows, the reload register content		
	is not reloaded to it		
	Pulse output function		
	Whenever the timer underflows or underflows, the output polarity of		
	TAiOUT pin is inverted.		
	When TAiS bit is set to 0 (count stops), the pin outputs a low.		
= 0 to 4			

i = 0 to 4

j = i - 1, except j = 4 if i = 0

k = i + 1, except k = 0 if i = 4

b6 b5 b4	b3 b2 b1 b0 0 1	TAC	Symbol Addr DMR to TA4MR 0396h to		
		Bit Symbol	Bit Name	Function	RW
		TMOD0	Operating made calent hits	b1 b0	RW
		TMOD1	TMOD1 Operating mode select bits	0 1 : Event counter mode ⁽¹⁾	RW
		MR0	Pulse output function select bit	 0 : Pulse is not output (TAiOUT pin functions as I/O port) 1 : Pulse is output (TAiOUT pin functions as pulse output pin) 	RW
		MR1	Count polarity select bit ⁽²⁾	0 : Counts falling edge of external signal 1 : Counts rising edge of external signal	RW
		MR2	Up/down switching source select bit	0 : UDF register 1 : Input signal to TAiOUT pin ⁽³⁾	RW
		MR3	Set to 0 in event counter mo	ode	RW
		TCK0	Count operation type select bit	0 : Reload type 1 : Free-run type	RW
		TCK1	Can be 0 or 1 when not usi	ng two-phase pulse signal processing.	RW

2. Effective when bits TAITGH and TAITGL in the ONSF or TRGSR register are 00b (TAIIN pin input). 3. Count down when input on TAiOUT pin is low or count up when input on that pin is high. The port direction bit for TAiOUT pin is set to 0 (input mode).

Figure 13.8 Registers TA0MR to TA4MR in Event Counter Mode (when not using two-phase pulse signal processing)

Table 13.3 Event Counter Mode Specifications (when using two-phase pulse signal processing with timers A2, A3, and A4)

Item	Specification Specification				
Count source	Two-phase pulse signals input to TAiIN or TAiOUT pins				
Count operation	• Up-count or down-count can be selected by two-phase pulse signal				
	• When the timer overflows or underflows, it reloads the reload register				
	contents and continues counting. When operating in free-running mode,				
	the timer continues counting without reloading.				
Divide ratio	1/ (FFFFh - n + 1) for up-count				
	1/(n + 1) for down-count n : set value of the TAi register 0000h to FFFFh				
Count start condition	Set the TAiS bit in the TABSR register to 1 (count starts)				
Count stop condition	Set the TAiS bit to 0 (count stops)				
Interrupt request generation timing	Timer overflow or underflow				
TAIIN pin function	Two-phase pulse input				
TAIOUT pin function	Two-phase pulse input				
Read from timer	Count value can be read by reading the TAi register				
Write to timer	• When not counting and until the 1st count source is input after counting start				
	Value written to TAi register is written to both reload register and counter				
	When counting (after 1st count source input)				
	Value written to TAi register is written to reload register				
	(Transferred to counter when reloaded next)				
Select function (1)	Normal processing operation (timers A2 and A3)				
	The timer counts up rising edges or counts down falling edges on TAjIN				
	pin when input signals on TAjOUT pin is "H".				
	Up- Up- Up- Down- Down- count count count count count				
	Multiply-by-4 processing operation (timers A3 and A4)				
	If the phase relationship is such that TAkIN pin goes "H" when the input				
	signal on TAkOUT pin is "H", the timer counts up rising and falling edges				
	on pins TAkOUT and TAkIN. If the phase relationship is such that TAkIN				
	pin goes "L" when the input signal on TAkOUT pin is "H", the timer counts				
	down rising and falling edges on pins TAkOUT and TAkIN.				
	Count up all edges Count down all edges				
	Count up all edges Count down all edges				
	Counter initialization by Z-phase input (timer A3)				
	The timer count value is initialized to 0 by Z-phase input.				
i = 2 to 4	•				
= 2, 3					
< = 3, 4					

1. Only timer A3 is selectable. Timer A2 is fixed to normal processing operation, and timer A4 is fixed to multiply-by-4 processing operation.

b6 b5 b4 b3 b2 b1 b 0 1 0 0 0 1 0 0 1 </th <th> Symi</th> <th>ool Address o TA4MR 0398h to 039</th> <th>After Reset Ah 00h</th> <th></th>	Symi	ool Address o TA4MR 0398h to 039	After Reset Ah 00h	
	Bit Symbol	Bit Name	Function	RV
	- TMOD0	Operating mode select bits	0 1 : Event counter mode	RV RV
· · · · · · · · · · · · · · · · · · ·	MR0 To use two-phase pulse signal processing, set this bit to 0.			RV
· · · · · · · · · · · · · · · · · · ·	MR1			
	MR2	To use two-phase pulse signal processing, set this bit to 1.		RV
MR3 To use two-phase pulse signal processing, set this bit to 0.		RV		
	- ТСК0	Count operation type select bit	0 : Reload type 1 : Free-run type	RV
	- TCK1	Two-phase pulse signal processing operation select bit ^{(1) (2)}	0 : Normal processing operation 1 : Multiply-by-4 processing operation	RW

Set bits TAITGH and TAITGL in the TRGSR register to 00b (TAIIN pin input).
Set the port direction bits for TAIIN and TAiOUT to 0 (input mode).

Figure 13.9 Registers TA2MR to TA4MR in Event Counter Mode (when using two-phase pulse signal processing with timers A2, A3, and A4)

13.1.2.1 Counter Initialization by Two-Phase Pulse Signal Processing

This function initializes the timer count value to 0 by Z-phase (counter initialization) input during twophase pulse signal processing.

This function can only be used in timer A3 event counter mode during two-phase pulse signal processing, free-running type, x4 processing, with Z-phase entered from the ZP pin.

Counter initialization by Z-phase input is enabled by writing 0000h to the TA3 register and setting the TAZIE bit in the ONSF register to 1 (Z-phase input enabled).

Counter initialization is accomplished by detecting Z-phase input edge. The active edge can be selected to be the rising or falling edge by using the POL bit in the INT2IC register. The Z-phase pulse width applied to the INT2 pin must be equal to or greater than one clock cycle of the timer A3 count source.

The counter is initialized at the next count timing after recognizing Z-phase input. Figure 13.10 shows the relationship between the two-phase pulse (A phase and B phase) and the Z-phase.

If timer A3 overflow or underflow coincides with the counter initialization by Z-phase input, a timer A3 interrupt request is generated twice in succession. Do not use the timer A3 interrupt when using this function.

Figure 13.10 Two-phase Pulse (A Phase and B Phase) and Z Phase

13.1.3 One-shot Timer Mode

In one-shot timer mode, the timer is activated only once by one trigger. When the trigger occurs, the timer starts up and continues operating for a given period. Table 13.4 lists the One-shot Timer Mode Specifications. Figure 13.11 shows Registers TA0MR to TA4MR in One-shot Timer Mode.

Item	Specification				
Count source	f1, f2, f8, f32, fC32				
Count operation	• Down-count				
	• When the counter reaches 0000h, it stops counting after reloading a new value				
	• If a trigger occurs when counting, the timer reloads a new count and restarts counting				
Divide ratio	1/n n : set value of the TAi register 0000h to FFFFh				
	However, the counter does not work if the divide-by-n value is set to 0000h.				
Count start condition	The TAIS bit in the TABSR register = 1 (count starts) and one of the following				
	triggers occurs.				
	• External trigger input from the TAiIN pin				
	• Timer B2 overflow or underflow,				
	Timer Aj overflow or underflow,				
	Timer Ak overflow or underflow				
	• The TAiOS bit in the ONSF register is set to 1 (timer starts)				
Count stop condition	When the counter is reloaded after reaching 0000h				
	 TAiS bit is set to 0 (count stops) 				
Interrupt request generation timing	When the counter reaches 0000h				
TAiIN pin function	I/O port or trigger input				
TAiOUT pin function	I/O port or pulse output				
Read from timer	An undefined value is read by reading the TAi register				
Write to timer	• When not counting and until the 1st count source is input after counting start				
	Value written to the TAi register is written to both reload register and counter				
	 When counting (after 1st count source input) 				
	Value written to the TAi register is written to only reload register				
	(Transferred to counter when reloaded next)				
Select function	Pulse output function				
	The timer outputs a low when not counting and a high when counting.				

Table 13.4	One-shot	Timer	Mode	Specifications
------------	----------	-------	------	----------------

i = 0 to 4

j = i - 1, except j = 4 if i = 0

k = i + 1, except k = 0 if i = 4

7 b6 b5 b4 b3 b2 b1 b0 0 1 0 1 0 1 0		nbol Address to TA4MR 0396h to 039	After Reset Ah 00h	
	Bit Symbol	Bit Name	Function	
L.	TMOD0	OD0	b1 b0	RW
	TMOD1 Operating mode select bits		1 0 : One-shot timer mode	
	MR0	Pulse output function select bit	0 : Pulse is not output (TAiOUT pin functions as I/O port) 1 : Pulse is output (TAiOUT pin functions as a pulse output pin	
	MR1	External trigger select bit ⁽¹⁾	0 : Falling edge of input signal to TAilN pin ⁽²⁾ 1 : Rising edge of input signal to TAilN pin ⁽²⁾	
MR2 MR3		Trigger select bit	0 : TAiOS bit is enabled 1 : Selected by bits TAiTGH to TAiTGL	RW
		Set to 0 in one-shot timer mode		RW
тско			^{b7 b6} 0 0 : f1 or f2 ⁽³⁾ 0 1 : f8	RW
	TCK1 Count source select bits		1 0 : f32 1 1 : fC32	RW

2. The port direction bit for the TAilN pin is set to 0 (input mode).
 3. Selected by the PCLK0 bit in the PCLKR register.

Figure 13.11 Registers TA0MR to TA4MR in One-shot Timer Mode

13.1.4 Pulse Width Modulation (PWM) Mode

In PWM mode, the timer outputs pulses of a given width in succession. The counter functions as either 16-bit pulse width modulator or 8-bit pulse width modulator.

Table 13.5 lists the PWM Mode Specifications. Figure 13.12 shows Registers TA0MR to TA4MR in PWM Mode. Figures 13.13 and 13.14 show an Example of 16-bit Pulse Width Modulator Operation and 8-bit Pulse Width Modulator Operation.

Item	Specification			
Count source	f1, f2, f8, f32, fC32			
Count operation	• Down-count (operating as an 8-bit or a 16-bit pulse width modulator)			
	• The timer reloads a new value at a rising edge of PWM pulse and continues counting			
	 The timer is not affected by a trigger that occurs during counting 			
16-bit PWM	• High level width n / fj n : set value of the TAi register			
	• Cycle time (2 ¹⁶ -1) / fj fixed fj : count source frequency (f1, f2, f8, f32, fC32)			
8-bit PWM	• High level width $n \times (m+1) / f_j$ n : set value of the TAi register high-order address			
	• Cycle time (2 ⁸ -1) \times (m+1) / fj m : set value of the TAi register low-order address			
Count start condition	• The TAiS bit in the TABSR register is set to 1 (count starts)			
	• The TAiS bit = 1 and external trigger input from the TAiIN pin			
	• The TAiS bit = 1 and one of the following external triggers occurs			
	Timer B2 overflow or underflow,			
	Timer Aj overflow or underflow,			
	Timer Ak overflow or underflow			
Count stop condition	The TAiS bit is set to 0 (count stops)			
Interrupt request generation timing	On the falling edge of the PWM pulse			
TAIIN pin function	I/O port or trigger input			
TAiOUT pin function	Pulse output			
Read from timer	An undefined value is read by reading the TAi register			
Write to timer	• When not counting and until the 1st count source is input after counting start			
	Value written to the TAi register is written to both reload register and counter			
	When counting (after 1st count source input)			
	Value written to the TAi register is written to only reload register			
	(Transferred to counter when reloaded next)			

Table 13.5	PWM	Mode	Specifications
		mouo	opoonnounomo

i = 0 to 4

j = i - 1, except j = 4 if i = 0

k = i + 1, except k = 0 if i = 4

Timer Ai Mode Regist	er (i = 0 to	4)		
b7 b6 b5 b4 b3 b2 b1 b0	Symbol Address After Reset TA0MR to TA4MR 0396h to 039Ah 00h			
	Bit Symbol	Bit Name	Function	
· · · · · · · · · · · · · · · · · · ·	TMOD0 TMOD1	Operating mode select bits	1 1 : PWM mode	
	MR0	Pulse output function select bit ⁽³⁾	0 : Pulse is not output (TAiOUT pin is a normal port pin) 1 : Pulse is output (TAiOUT pin is a pulse output pin)	
	MR1	External trigger select bit ⁽¹⁾	0 : Falling edge of input signal to TAilN pin ⁽²⁾ 1 : Rising edge of input signal to TAilN pin ⁽²⁾	RW
	MR2	Trigger select bit	0 : Write 1 to TAiS bit in the TABSR register 1 : Selected by bits TAiTGH to TAiTGL	RW
МRЗ ТСКО		16/8-Bit PWM mode select bit	0 : Functions as a 16-bit pulse width modulator 1 : Functions as an 8-bit pulse width modulator	RW
		Count source select bits	^{b7 b6} 0 0 : f1 or f2 (4) 0 1 : f8	RW
NOTES	TCK1		1 0 : f32 1 1 : fC32	RW

NOTES:

- 1. Effective when bits TAiTGH and TAiTGL in the ONSF or TRGSR register are 00b (TAiIN pin input).
- 2. The port direction bit for the TAiIN pin is set to 0 (input mode).
- 3. Set to 1 (pulse is output), PWM pulse is output.

4. Selected by the PCLK0 bit in the PCLKR register.

Figure 13.12 Registers TA0MR to TA4MR in PWM Mode

Figure 13.13 Example of 16-bit Pulse Width Modulator Operation

Figure 13.14 Example of 8-bit Pulse Width Modulator Operation

13.2 Timer B

Figure 13.15 shows a Timer B Block Diagram. Figures 13.16 and 13.17 show the timer B-related registers. Timer B supports the following three modes. Use bits TMOD1 and TMOD0 in the TBiMR register (i = 0 to 5) to select the desired mode.

- Timer mode
- Event counter mode

: The timer counts an internal count source.

- : The timer counts pulses from an external device or over flows or underflows of other timers.
- Pulse period/pulse width measuring mode : The timer measures pulse period or pulse width of an external signal.

Figure 13.15 Timer B Block Diagram

Figure 13.16 Registers TB0MR to TB5MR, and TB0 to TB5

	(b6-b0)	When read, the content is u	indefined.
	CPSR	Clock prescaler reset flag	Setting this bit to 1 initializes the prescaler for the timekeeping clock. (When read, the content is 0.)

RW

13.2.1 Timer Mode

In timer mode, the timer counts a count source generated internally. Table 13.6 lists the Timer Mode Specifications. Figure 13.18 shows Registers TB0MR to TB5MR in Timer Mode.

Item	Specification		
Count source	f1, f2, f8, f32, fC32		
Count operation	Down-count		
	• When the timer underflows, it reloads the reload register contents and		
	continues counting		
Divide ratio	1/(n+1) n: set value of the TBi register 0000h to FFFFh		
Count start condition	Set the TBiS bit ⁽¹⁾ to 1 (count starts)		
Count stop condition	Set the TBiS bit to 0 (count stops)		
Interrupt request generation timing	Timer underflow		
TBiIN pin function	I/O port		
Read from timer	Count value can be read by reading the TBi register		
Write to timer	• When not counting and until the 1st count source is input after counting start		
	Value written to the TBi register is written to both reload register and counter		
	 When counting (after 1st count source input) 		
	Value written to the TBi register is written to only reload register		
	(Transferred to counter when reloaded next)		

Table 13.6	Timer	Mode	Specifications
		mouo	opoonnounomo

i = 0 to 5

NOTE:

1. Bits TB0S to TB2S are assigned to bits 5 to 7 in the TABSR register, and bits TB3S to TB5S are assigned to bits 5 to 7 in the TBSR register.

b6 b5 b4 b3 b2 b1 b0 Image: Im	TB0MŘ t	nbol Address to TB2MR 039Bh to 039D to TB5MR 01DBh to 01DI		
	Bit Symbol	Bit Name	Function	RW
	TMOD0	On eventions model as lost bits		RW
	TMOD1	Operating mode select bits	00: Timer mode	RW
	MR0	Has no effect in timer mode		RW
	MR1	Can be set to 0 or 1	R	
		Registers TB0MR and TB3MR Set to 0 in timer mode		RW
	MR2	Registers TB1MR, TB2MR, TB4MR, and TB5MR Nothing is assigned. If necessary, set to 0. When read, the content is undefined.		-
	MR3	If necessary, set to 0 in tim When read in timer mode,		RO
	TCK0	Count source select bits	^{b7 b6} 0 0 : f1 or f2 (1) 0 1 : f8	RW
	TCK1	Count source select bits	1 0 : f32 1 1 : fC32	RW

Figure 13.18 Registers TB0MR to TB5MR in Timer Mode

13.2.2 Event Counter Mode

In event counter mode, the timer counts pulses from an external device or overflows and underflows of other timers. Table 13.7 lists the Event Counter Mode Specifications. Figure 13.19 shows Registers TB0MR to TB5MR in Event Counter Mode.

Item	Specification		
Count source	• External signals input to TBiIN pin (effective edge can be selected in program)		
	Timer Bj overflow or underflow		
Count operation	Down-count		
	• When the timer underflows, it reloads the reload register contents and		
	continues counting		
Divide ratio	1/(n+1) n: set value of the TBi register 0000h to FFFh		
Count start condition	Set TBiS bit ⁽¹⁾ to 1 (count starts)		
Count stop condition	Set TBiS bit to 0 (count stops)		
Interrupt request generation timing	Timer underflow		
TBiIN pin function	Count source input		
Read from timer	Count value can be read by reading the TBi register		
Write to timer	• When not counting and until the 1st count source is input after counting start		
	Value written to the TBi register is written to both reload register and counter		
	When counting (after 1st count source input)		
	Value written to the TBi register is written to only reload register		
	(Transferred to counter when reloaded next)		

Table 13.7	Event Counter	Mode	Specifications
------------	---------------	------	----------------

i = 0 to 5

j = i - 1, except j = 2 if i = 0, j = 5 if i = 3

NOTE:

1. Bits TB0S to TB2S are assigned to bits 5 to 7 in the TABSR register, and bits TB3S to TB5S are assigned to bits 5 to 7 in the TBSR register.

Figure 13.19 Registers TB0MR to TB5MR in Event Counter Mode

13.2.3 Pulse Period and Pulse Width Measurement Mode

In pulse period and pulse width measurement mode, the timer measures pulse period or pulse width of an external signal. Table 13.8 lists the Pulse Period and Pulse Width Measurement Mode Specifications. Figure 13.20 shows Registers TB0MR to TB5MR in Pulse Period and Pulse Width Measurement mode. Figure 13.21 shows the Operation Timing when Measuring Pulse Period. Figure 13.22 shows the Operation Timing when Measuring Pulse Period.

Item	Specification		
Count source	f1, f2, f8, f32, fC32		
Count operation	• Up-count		
	• Counter value is transferred to reload register at an effective edge of		
	measurement pulse. The counter value is set to 0000h to continue counting.		
Count start condition	Set the TBiS bit ⁽¹⁾ to 1 (count starts)		
Count stop condition	Set the TBiS bit to 0 (count stops)		
Interrupt request	When an effective edge of measurement pulse is input ⁽²⁾		
generation timing	• Timer overflow. If an overflow occurs, the MR3 bit in the TBiMR register		
	is set to 1 (overflow) simultaneously. The MR3 bit is set to 0 (no overflow)		
	by writing to the TBiMR register at the next count timing or later after the		
	MR3 bit was set to 1. At this time, make sure the TBiS bit is set to 1		
	(count starts).		
TBiIN pin function	Measurement pulse input		
Read from timer	Contents of the reload register (measurement result) can be read by reading		
	TBi register ⁽³⁾		
Write to timer	Value written to the TBi register is written to neither reload register nor counter		

Table 13.8	Pulse Period	and Pulse	Width	Measurement	Mode Specifications
------------	--------------	-----------	-------	-------------	---------------------

i = 0 to 5

NOTES:

- 1.Bits TB0S to TB2S are assigned to bits 5 to 7 in the TABSR register, and bits TB3S to TB5S are assigned to bits 5 to 7 in the TBSR register.
- 2. Interrupt request is not generated when the first effective edge is input after the timer started counting.
- 3. Value read from the TBi register is undefined until the second valid edge is input after the timer starts counting.

b6 b5 b4 b3	b2 b1 b0	TBOMF	to TB2MR 039Bh te	o 039Dh 00XX0000b	
		Bit Symbol	Bit Name	Function	RW
		TMOD0	Operating mode	b1 b0	RW
	L	TMOD1	select bits	1 0 : Pulse period / pulse width measurement mode	RW
	MR0	MR0	Measurement mode	 ^{b3 b2} 0 0 : Pulse period measurement (Measurement between a falling edge and the next falling edge of measured pulse) 0 1 : Pulse period measurement (Measurement between a rising edge and the payt 	
MR1 Measurement mode select bits MR1 MR2 Registers TB0MR an Set to 0 in pulse perior MR2 Registers TB1MR, TI Nothing is assigned. When read, the conte	MR1		select bits	rising edge of measured pulse) 1 0 : Pulse width measurement (Measurement between a falling edge and the next rising edge of measured pulse and between a rising edge and the next falling edge) 1 1 : Do not set a value	
		RW			
	1 0 TB0MR to TB2MR 039Bh to 039Dh 00XX0000b Bit Symbol Bit Name Function TMOD0 Operating mode 1 0 : Pulse period / pulse width measurement mode TMOD1 select bits 1 0 : Pulse period / pulse width measurement mode MR0 Measurement mode 1 0 : Pulse period measurement (Measurement between a falling edge and the next falling edge of measured pulse) 0 1 : Pulse period measurement (Measurement between a rising edge and the next rising edge of measured pulse) 1 0 : Pulse width measurement (Measurement between a rising edge and the next rising edge of measured pulse) 1 0 : Pulse width measurement MR1 MR1 Registers TB0MR and TB3MR Set to 0 in pulse period and pulse width measurement mode MR2 Registers TB1MR, TB2MR, TB4MR, and TB5MR Nothing is assigned. If necessary, set to 0. When read, the content is undefined. MR3 Timer Bi overflow flag (1) TCK0 Count source select bits 0 0 : Thor f2 (2) 0 1 : fla 1 0 : fla2 1 1 : fC32 1 1 : fC32	-			
		MR3		039Bh to 039Dh 00XX0000b 01DBh to 01DDh 00XX0000b me Function RW ode b1 b0 10 : Pulse period / pulse width measurement mode RW t mode 0 0 : Pulse period measurement (Measurement between a falling edge and the next falling edge of measurement (Measurement between a rising edge and the next rising edge of measurement (Measurement between a falling edge and the next rising edge of measured pulse) RW 1 0 : Pulse width measurement (Measurement between a falling edge and the next rising edge of measured pulse) RW 1 1 : Du not set a value NW RW 0MR and TB3MR Ise period and pulse width measurement mode RW 1MR, TB2MR, TB4MR, and TB5MR signed. If necessary, set to 0. he content is undefined. RW 0 : Timer did not overflow 1 : Timer has overflowed RO 10 : 132 1 1 : fC32 RW a 0 : 132 1 1 : fC32 RW	RO
l		ТСК0	Count source		
		TCK1	select bits	10:f32	RW
register at th	e next cou TB2S are	nt timing or lat assigned to bi	er after the MR3 bit was ts 5 to 7 in the TABSR r	s set to 1 (overflow). The MR3 bit cannot be set to 1 in a prog	gram.

Figure 13.20 Registers TB0MR to TB5MR in Pulse Period and Pulse Width Measurement Mode

Figure 13.22 Operation Timing When Measuring Pulse Width

14. Three-Phase Motor Control Timer Function

Timers A1, A2, A4, and B2 can be used to output three-phase motor drive waveforms. Table 14.1 lists the Three-phase Motor Control Timer Function Specifications. Figure 14.1 shows the Three-phase Motor Control Timer Function Block Diagram. Figures 14.2 to 14.8 shows the Three-phase Motor Control Timer Function related registers.

Item	Specification
Three-Phase waveform output pin	Six pins (U, \overline{U} , V, \overline{V} , W, \overline{W})
Forced cutoff input ⁽¹⁾	Input "L" to NMI pin
Used timers	Timer A4, A1, A2 (used in the one-shot timer mode)
	 Timer A4: U- and U-phase waveform control
	 Timer A1: V- and V-phase waveform control
	 Timer A2: W- and W-phase waveform control
	Timer B2 (used in the timer mode)
	 Carrier wave cycle control
	Dead time timer (3 eight-bit timer and shared reload register)
	Dead time control
Output waveform	Triangular wave modulation, Sawtooth wave modification
	 Enable to output "H" or "L" for one cycle
	• Enable to set positive-phase level and negative-phase level respectively
Carrier wave cycle	Triangular wave modulation: count source \times (m+1) \times 2
	Sawtooth wave modulation: count source \times (m+1)
	m: Setting value of the TB2 register, 0000h to FFFFh
	Count source: f1, f2, f8, f32, fC32
Three-Phase PWM output width	Triangular wave modulation: count source \times n \times 2
	Sawtooth wave modulation: count source \times n
	n: Setting value of registers TA4, TA1, and TA2 (of registers
	TA4, TA41, TA1, TA11, TA2, and TA21 when setting the INV11
	bit to 1), 0001h to FFFFh
	Count source: f1, f2, f8, f32, fC32
Dead time	Count source \times p, or no dead time
	p: Setting value of the DTT register, 01h to FFh
	Count source: f1, f2, f1 divided by 2, f2 divided by 2
Active level	Enable to select "H" or "L"
Positive and negative-phase concurrent	Positive and negative-phases concurrent active disable function
active disable function	Positive and negative-phases concurrent active detect function
Interrupt frequency	For timer B2 interrupt, select a carrier wave cycle-to-cycle basis
	through 15 times carrier wave cycle-to-cycle basis

Table 14.1	Three-Phase Moto	or Control Timer	Function Si	pecifications
				scomoutons

NOTE:

1. Forced cutoff with $\overline{\text{NMI}}$ input is effective when the IVPCR1 bit in the TB2SC register is set to 1 (three-phase output forcible cutoff by $\overline{\text{NMI}}$ input enabled). If an "L" signal is applied to the $\overline{\text{NMI}}$ pin when the IVPCR1 bit is 1, the related pins go to a high-impedance state regardless of which functions of those pins are being used.

Related pins: • P7_2/CLK2/TA1OUT/V

- P7_3/CTS2/RTS2/TA1IN/V
- P7_4/TA2OUT/W
- P7_5/TA2IN/W
- P8_0/TA4OUT/U
- P8_1/TA4IN/U

Figure 14.1 Three-Phase Motor Control Timer Function Block Diagram

	- Oyi	nbol Address	After Reset	
	INV	/C0 01C8h	00h	
Symbol INV00 Interrupt enpolarity sele INV01 Interrupt enspecification INV02 Mode select INV03 Output cont INV04 Positive and phases condisable funct INV05 Positive and phases conducted to the select bit (8) INV06 Modulation select bit (8) INV07 Software trip bit ES: Set the INVC0 register after the PRC1 bit in Rewrite bits INV00 to INV02, and INV06 whete Bits INV00 and INV01 are enabled only who counter is incremented by one every time the when the INV11 bit is set to 0 (three-phase n) When setting the INV01 bit to 1, set the time When the INV02 bit to 1 to operate the dead ti counter. When the INV03 bit is set to 1, the pins appli Pins U, Ū, V, W, and W, including pins sha states when the following conditions are all r • The INV03 bit is set to 1 (three-phase co) • The INV03 bit is set to 0 (three-phase co) • The INV03 bit is set to 1 (three-phase co) • The INV03 bit is set to 0 (three-phase co) • The INV03 bit is set to 1 (three-phase co)	Bit Name	Function	RW	
		Interrupt enable output polarity select bit	 0: The ICTB2 counter is incremented by one on the rising edge of the timer A1 reload control signal 1: The ICTB2 counter is incremented by one on the falling edge of the timer A1 reload control signal ⁽²⁾ 	RW
	INV01	Interrupt enable output specification bit ⁽³⁾	0: ICTB2 counter is incremented by one when timer B2 underflows 1: Selected by the INV00 bit ⁽²⁾	RW
	INV02	Mode select bit ⁽⁴⁾	0: No three-phase control timer functions 1: Three-phase control timer function ⁽⁵⁾	RW
	INV03	Output control bit	0: Three-phase control timer output disabled ⁽⁵⁾ 1: Three-phase control timer output enabled ⁽⁶⁾	RW
	INV04	Positive and negative- phases concurrent active disable function enable bit	0: Concurrent active output enabled 1: Concurrent active output disabled	RW
	INV05	Positive and negative- phases concurrent active output detect flag	0: Not detected 1: Detected (7)	RW
	INV06	Modulation mode select bit ⁽⁸⁾	0: Triangular wave modulation mode 1: Sawtooth wave modulation mode ⁽⁹⁾	RW
	INV07	Software trigger select bit	Transfer trigger is generated when the INV07 bit is set to 1. Trigger to the dead time timer is also generated when setting the INV06 bit to 1. Its value is 0 when read.	
 Rewrite bits INV00 to II 2. Bits INV00 and INV01 counter is incremented when the INV11 bit is s When setting the INV01 When the INV00 bit is s the value set in the ICTI 3. Set the INV01 bit to 1 at 4. Set the INV02 bit to 1 t counter. 5. When the INV03 bit is s Pins U, Ū, V, V, W, and states when the following the set of the se	NV02, ar are ena by one e et to 0 (t I bit to 1, set to 1, B2 count after setti o operat set to 1, i W, inclu ng condi	nd INV06 when the timers A bled only when the INV11 every time the timer B2 under hree-phase mode 0). , set the timer A1 count star the first interrupt is genera er. Subsequent interrupts ar ing the ICTB2 register . e the dead time timer, U-, ' the pins applied to U/V/W co ding pins shared with other tions are all met.	A1, A2, A4, and B2 stop. bit is set to 1 (three-phase mode 1). The learning of the first timer B2 underflow. ted when the timer B2 underflows <i>n-1</i> times, re generated every <i>n</i> times the timer B2 under V-, and W-phase output control circuits and output three-phase PWM. routput functions, are all placed in high-impe	if <i>n</i> flows
 The INV03 bit is set Direction registers of 6. The INV03 bit is set to 	to 0 (thr each po	ee-phase control timer outp	put disabled)	
 Reset 		urs while INV04 bit is set to	<u>\</u> 1	

8. The following table describes how the INV06 bit works. INV06 = 0 INV06 = 1 Item Mode Triangular wave modulation mode Sawtooth wave modulation mode Timing to transfer from registers Transferred once by generating a Transferred every time a transfer trigger IDB0 and IDB1 to three-phase transfer trigger after setting registers is generated output shift register IDB0 and IDB1 Timing to trigger the dead time On the falling edge of a one-shot pulse By a transfer trigger, or the falling edge of timer when the INV16 bit=0 of timer A1, A2, or A4 a one-shot pulse of timer A1, A2, or A4 INV13 bit Enabled when the INV11 bit=1 and the Disabled INV06 bit=0

Transfer trigger : Timer B2 underflows and write to the INV07 bit, or write to the TB2 register when INV10 = 1

9. When the INV06 bit is set to 1, set the INV11 bit to 0 (three-phase mode 0) and the PWCON bit in the TB2SC register to 0 (reload timer B2 with timer B2 underflow).

Figure 14.2 INVC0 Register

Three-Phase PWM Control Register 1⁽¹⁾

		0		
b7 b6 b5 b4 b3 b2 b1 b0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Symb INV0		After Reset 00h	
	Bit Symbol	Bit Name	Function	RW
	INV10	Timers A1, A2, and A4 start trigger select bit	0: Timer B2 underflow 1: Timer B2 underflow and write to timer B2	RW
	INV11	Timer A1-1, A2-1, A4-1 control bit ⁽²⁾	0: Three-phase mode 0 ⁽³⁾ 1: Three-phase mode 1	RW
	INV12	Dead time timer count source select bit	0 : f1 or f2 ⁽⁶⁾ 1 : f1 divided-by-2 or f2 divided-by-2	RW
	INV13	Carrier wave detect flag ⁽⁴⁾	0: Timer A1 reload control signal is 0 1: Timer A1 reload control signal is 1	RO
	INV14	Output polarity control bit	0 : Active "L" of an output waveform 1 : Active "H" of an output waveform	RW
	INV15	Dead time disable bit	0: Dead time enabled 1: Dead time disabled	RW
	INV16	Dead time timer trigger select bit	 0: Falling edge of a one-shot pulse of timers A1, A2, and A4 ⁽⁵⁾ 1: Rising edge of the three-phase output shift register (U-, V-, W-phase) 	RW
	_ (b7)	Reserved bit	Set to 0	RW

NOTES:

1. Rewrite the INVC1 register after the PRC1 bit in the PRCR register is set to 1 (write enabled).

Timers A1, A2, A4, and B2 must be stopped during rewrite.

2. The following table lists how the INV11 bit works.

Item	INV11 = 0	INV11 = 1
Mode	Three-phase mode 0	Three-phase mode 1
Registers TA11, TA21, and TA41	Not used	Used
Bits INV00 and INV01	Disabled. The ICTB2 counter is incremented whenever the timer B2 underflows	Enabled
INV13 bit	Disabled	Enabled when INV11=1 and INV06=0

3. When the INV06 bit is set to 1 (sawtooth wave modulation mode), set the INV11 bit to 0 (three-phase mode 0). Also, when the INV11 bit is set to 0, set the PWCON bit in the TB2SC register to 0 (timer B2 is reloaded when the timer B2 underflows).

4. The INV13 bit is enabled only when the INV06 bit is set to 0 (Triangular wave modulation mode) and the INV11 bit to 1 (three-phase mode 1).

5. If the following conditions are all met, set the INV16 bit to 1 (rising edge of the three-phase output shift register).

- The INV15 bit is set to 0 (dead time timer enabled)
- The Dij bit (i=U, V or W, j=0, 1) and DiBj bit always have different values when the INV03 bit is set to 1. (The positive-phase and negative-phase always output opposite level signals.)

If above conditions are not met, set the INV16 bit to 0 (falling edge of a one-shot pulse of timers A1, A2, and A4).

6. Selected by the PCLK0 bit in the PCLKR register.

Figure 14.3 INVC1 Register

b15 b8 b7	b0	r (i = 1, 2, 4) ⁽¹⁾ Symbol TA1, TA2, TA4 TA11, TA21, TA41 ⁽⁷⁾	Address 0389h - 0388h, 038Bh - 038Ah, 03	8Fh - 038Eh U	fter Reset ndefined ndefined
			Function	Setting Rang	ge RW
		source is counted a Positive phase chai	the timer stops when the nth count fter a start trigger is generated. nges to negative phase, and vice A1, A2, and A4 stop.	0000h to FFFF	h WO
 When the INV inactive level to When the INV1 is transferred to When the INV1 	15 bit in an activ 11 bit in t o the relo	ve level when the do the INVC1 register i bad register by a tin	er is set to 0 (dead timer enable ead time timer stops. is set to 0 (three-phase mode 0),	the value of the	TAi registe
trigger. The val timer Ai start tri 6. Do not write to 7. Follow the proc (a) Write value (b) Wait one tir	ster by a lues of re igger. these re cedure b to the T mer Ai co	timer Ai start trigge egisters TAi1 and T gisters when the tir elow to set the TAi1	er. Then, the value of the TAi regis Ai are transferred alternately to th mer B2 underflows. I register. and	ter is transferred	by the nex
trigger. The val timer Ai start tri 6. Do not write to 7. Follow the proc (a) Write value (b) Wait one tir	ster by a lues of re igger. these re cedure be to the T mer Ai co ame valu	timer Ai start trigge egisters TAi1 and T gisters when the tir elow to set the TAi1 Ai1 register, ount source cycle, a	er. Then, the value of the TAi regis Ai are transferred alternately to the mer B2 underflows. I register. and I register.	ter is transferred	by the nex
trigger. The val timer Ai start tri 6. Do not write to 7. Follow the proc (a) Write value (b) Wait one tir (c) Write the sa	ster by a lues of re igger. these re cedure be to the T mer Ai co ame valu ter ⁽¹⁾	timer Ai start trigge egisters TAi1 and T gisters when the tir elow to set the TAi1 Ai1 register, ount source cycle, a ue as (a) to the TAi1 Symbol	er. Then, the value of the TAi regis Ai are transferred alternately to the mer B2 underflows. I register. and I register. Address	ter is transferred ne reload register After Reset	by the nex

Figure 14.5 Registers TA1, TA2, TA4, TA11, TA21, TA41, and TB2

Figure 14.6 Registers ICTB2 and TB2SC

7 b6 b5 b4 b3 b2 b1 b	Sym Sym		After Reset 00h	
	Bit Symbol	Bit Name	Function	RW
	TA1TGL	Timer A1 event/trigger	Set to 01b (TB2 underflow) before	RW
	TA1TGH	select bits	using a V-phase output control circuit	RW
	···· TA2TGL	Timer A2 event/trigger	Set to 01b (TB2 underflow) before	RW
	TA2TGH	select bits	using a W-phase output control circuit	RW
	TA3TGL	Timer A3 event/trigger	 b5 b4 0 0: Input on TA3IN pin is selected ⁽¹⁾ 0 1: TB2 is selected ⁽²⁾ 	RW
	···- TA3TGH	select bits	1 0: TA2 is selected ⁽²⁾ 1 1: TA4 is selected ⁽²⁾	RW
<u>.</u>	TA4TGL	Timer A4 event/trigger	Set to 01b (TB2 underflow) before	RW
	TA4TGH	select bits	using a U-phase output control circuit	RW
	•	ion bit to 0 (input mode).		
2. Overflow or underflo ount Start Flag	•	nbol Address	After Reset 00h	
1. Set the correspondir 2. Overflow or underflo ount Start Flag	∞. ∞ Sym TAB	nbol Address SR 0380h	00h	
1. Set the correspondir 2. Overflow or underflo ount Start Flag	²⁰ Sym TAB: Bit Symbol	nbol Address SR 0380h Bit Name	00h Function	
1. Set the correspondir 2. Overflow or underflo ount Start Flag	²⁰ Sym TAB: Bit Symbol	nbol Address SR 0380h Bit Name Timer A0 count start flag	00h Function 0 : Count stops	RW
1. Set the correspondir 2. Overflow or underflo ount Start Flag	²⁰ Sym TAB Bit Symbol TA0S TA1S	bol Address SR 0380h Bit Name Timer A0 count start flag Timer A1 count start flag	00h Function	RW RW
1. Set the correspondir 2. Overflow or underflo ount Start Flag	²⁰ Sym TAB Bit Symbol TA0S TA1S TA2S	bol Address SR 0380h Bit Name Timer A0 count start flag Timer A1 count start flag Timer A2 count start flag	00h Function 0 : Count stops	RW RW RW
1. Set the correspondir 2. Overflow or underflo ount Start Flag	²⁰ Sym TAB Symbol TAOS TA1S TA2S TA3S	bol Address SR 0380h Bit Name Timer A0 count start flag Timer A1 count start flag Timer A2 count start flag Timer A3 count start flag	00h Function 0 : Count stops	RW RW RW
1. Set the correspondir 2. Overflow or underflo ount Start Flag	 ²⁰ Sym TAB ³⁰ Bit Symbol ³¹ TA0S ³² TA1S ³³ TA2S ³⁴ TA3S ³⁵ TA4S 	bol Address SR 0380h Bit Name Timer A0 count start flag Timer A1 count start flag Timer A2 count start flag Timer A3 count start flag Timer A4 count start flag	00h Function 0 : Count stops	RW RW RW RW
1. Set the correspondir 2. Overflow or underflo ount Start Flag	²⁰ Sym TAB Symbol TAOS TA1S TA2S TA3S	bol Address SR 0380h Bit Name Timer A0 count start flag Timer A1 count start flag Timer A2 count start flag Timer A3 count start flag	00h Function 0 : Count stops	RW RW RW

Figure 14.7 Registers TRGSR and TRBSR

b7 b6 b5 b4 b3 b2 b1 b0 0 1 0 0 1 0	TA1	Symbol MR, TA2MR, TA4MR	Address After Reset 0397h, 0398h, 039Ah 00h	
	Bit Symbol	Bit Name	Function	RW
	TMOD0	Operating mode	Set to 10b (one-shot timer mode)	RW
	TMOD1	select bits	when using the three-phase motor control timer function	RW
	MR0	Pulse output function select bit	Set to 0 when using the three-phase motor control timer function	RW
	MR1	External trigger select bit	Set to 0 when using the three-phase motor control timer function	RW
	MR2	Trigger select bit	Set to 1 (selected by the TRGSR register) when using the three-phase motor control timer function	RW
	MR3	Set to 0 when using the th	nree-phase motor control timer function	RW
	TCK0		^{b7 b6} 0 0 : f1 or f2 ⁽¹⁾ 0 1 : f8	RW
	TCK1	Count source select bits	1 0 : f32 1 1 : fC32	RW
IOTE: 1. Selected by the PCL				

Timer B2 Mode Register

b7 b6 b5 b4 b3 b2 b1 b0	Symb TB2N		After Reset 00XX0000b	
	Bit Symbol	Bit Name	Function	RW
	TMOD0	Operating mode	Set to 00b (timer mode) when using the three-phase motor control timer	RW
	TMOD1	select bits	function	RW
	MR0	Disabled when using the the final structure of the theory of the term of t	nree-phase motor control timer function.	RW
	MR1	When read, the content is	s undefined.	RW
	MR2	Set to 0 when using the th	nree-phase motor control timer function	RW
	MR3	timer function.	n using the three-phase motor control the three-phase motor control timer ndefined.	RO
	TCK0	Count source select bits	^{b7 b6} 0 0 : f1 or f2 ⁽¹⁾ 0 1 : f8	RW
i	TCK1	Count Source Select Dits	1 0 : f32 1 1 : fC32	RW
NOTE: 1. Selected by the PCL	.K0 bit in	the PCLKR register.		

1. Beledice by the Poerto bit in the Poertie

Figure 14.8 Registers TA1MR, TA2MR, TA4MR, and TB2MR

The three-phase motor control timer function is enabled by setting the INV02 bit in the INVC0 register to 1. When this function is selected, timer B2 is used to control the carrier wave, and timers A4, A1, and A2 are used to control three-phase PWM outputs (U, \overline{U} , V, \overline{V} , W, and \overline{W}). The dead time is controlled by a dedicated dead-time timer. Figure 14.9 shows an Example of Triangular Wave Modulation Opertation and Figure 14.10 shows an Example of Sawtooth Wave Modulation Operation.

Figure 14.10 Sawtooth Wave Modulation Operation

15. Serial Interface

Serial interface is configured with 4 channels: UART0 to UART2 and SI/O3.

15.1 UARTi (i = 0 to 2)

UARTi each have an exclusive timer to generate a transfer clock, so they operate independently of each other. Figures 15.1 to 15.3 show the UARTi Block Diagram. Figure 15.4 shows the UARTi Transmit/Receive Unit.

UARTi has the following modes:

- Clock synchronous serial I/O mode
- Clock asynchronous serial I/O mode (UART mode).
- Special mode 1 (I²C mode)
- Special mode 2
- Special mode 3 (Bus collision detection function, IE mode)
- Special mode 4 (SIM mode) : UART2

Figures 15.5 to 15.10 show the UARTi-related registers. Refer to tables listing each mode for register setting.

Figure 15.1 UART0 Block Diagram

Figure 15.2 UART1 Block Diagram

Figure 15.3 UART2 Block Diagram

Figure 15.5 Registers U0TB to U2TB, U0RB to U2RB, and U0BRG to U2BRG

7 b6 b5 b4 b3 b2 b1 b0		ymbol R to U2MR 03/	Address A0h, 03A8h, 01F8h	After Reset 00h	
	Bit Symbol	Bit Name	Function		RW
	SMD0		0 0 0 : Serial interface dis 0 0 1 : Clock synchronous		RW
•	SMD1	Serial I/O mode select bits ⁽¹⁾	0 1 0 : I ² C mode ⁽²⁾ 1 0 0 : UART mode transfe 1 0 1 : UART mode transfe		RW
	SMD2		1 1 0 : UART mode transfe Do not set a value excep	er data 9-bit long	RW
	CKDIR	Internal/external clock select bit	0 : Internal clock 1 : External clock ⁽³⁾		RW
	STPS	Stop bit length select bit	0 : 1 stop bit 1 : 2 stop bits		RW
	PRY	Odd/even parity select bit	Effective when the PRYI 0 : Odd parity 1 : Even parity	E bit = 1	RW
l	PRYE	Parity enable bit	0 : Parity disabled 1 : Parity enabled		RW
	IOPOL	TXD, RXD I/O polarity reverse bit	0 : No reverse 1 : Reverse		RW

NOTES:

1. To receive data, set the corresponding port direction bit for each RXDi pin to 0 (input mode).

2. Set the corresponding port direction bit for pins SCL and SDA to 0 (input mode).

3. Set the corresponding port direction bit for each CLKi pin to 0 (input mode).

UARTi Transmit/Receive Control Register 0 (i = 0 to 2)

Symbol CLK0 UiBRG count source b150 0 0 : f1SIO or f2SIO is selected (6) 0 1 : f8SIO is selected 1 0 : f32SIO is selected 1 0 : f32SIO is selected F CLK1 CLK1 Effective when CRD = 0 0 : CTS function selected (2) 1 : RTS function is selected F CRS CTS/RTS function select bit (1) Effective when CRD = 0 0 : CTS function is selected F TXEPT Transmit register empty flag 0 : Data present in transmit register (during transmission) 1 : No data present in transmit register (transmission completed) F	
Image: Select bits in the select bit in the select bits in the select bits in the select bits in the select bit	RW
CLK1 select bits (5) 1 0 : f32SIO is selected 1 1 : Do not set a value F CRS CTS/RTS function select bit (1) Effective when CRD = 0 0 : CTS function is selected (2) 1 : RTS function is selected F TXEPT Transmit register empty flag 0 : Data present in transmit register (during transmission) 0 : Data present in transmit register (transmission completed) F	RW
Image: Creating select bit (1) Creating select bit (1) 0 : Creating creating selected (2) F Image: Creating select bit (1) Image: Creating selected (1) 0 : Creating creating selected (2) F Image: Creating select bit (1) Image: Creating selected (1) 0 : Data present in transmit register (during transmission) 0 : Data present in transmit register (during transmission) F Image: Creating selected bit (1) Image: Creating selected (1) Image: Creating selected (1) F Image: Creating selected bit (1) Image: Creating selected (1) Image: Creating selected (1) F Image: Creating selected selected selected (1) Image: Creating selected (1) Image: Creating selected (1) F Image: Creating selected selected selected selected selected (1) Image: Creating selected (1) Image: Creating selected (1) F Image: Creating selected sel	RW
TXEPT Transmit register empty flag (during transmission) 1 : No data present in transmit register (transmission completed) F 0 : CTS/RTS 0 : CTS/RTS function enabled	RW
	RO
(P6_0, P6_4, P7_3 can be used as I/O ports)	RW
NCH Data output select bit ⁽³⁾ 0 : Pins TXDi/SDAi and SCLi are CMOS output 1 : Pins TXDi/SDAi and SCLi are N channel open-drain output F	RW
CKPOL CLK polarity select bit CLK polarity select bit CLK polarity select bit 0 : Transmit data is output at falling edge of transfer clock and receive data is input at rising edge 1 : Transmit data is output at rising edge of transfer clock and receive data is input at falling edge	RW
UFORM Transfer format 0 : LSB first Select bit ⁽⁴⁾ 1 : MSB first F	RW

1. CTS1/RTS1 can be used when the CLKMD1 bit in the UCON register = 0 (only CLK1 output) and the RCSP bit in the UCON register = 0 ($\overline{CTS0}/\overline{RTS0}$ not separated).

2. Set the corresponding port direction bit for each CTSi pin to 0 (input mode).

- 3. SCL2/P7_1 is N channel open-drain output. The NCH bit in the U2C0 register is N channel open-drain output regardless of the NCH bit.
- 4. The UFORM bit is enabled when bits SMD2 to SMD0 in the UiMR register are set to 001b (clock synchronous serial I/O mode), or 101b (UART mode, 8-bit transfer data).
 - Set this bit to 1 when bits SMD2 to SMD0 are set to 010b (I²C mode), and to 0 when bits SMD2 to SMD0 are set to 100b (UART mode, 7-bit transfer data) or 110b (UART mode, 9-bit transfer data).
- 5. When changing bits CLK1 to CLK0, set the UiBRG register.
- 6. Selected by the PCLK1 bit in the PCLKR register.

Figure 15.6 Registers U0MR to U2MR and U0C0 to U2C0

b7 b6 b5 b4 b3 b2 b1 b0		ymbol 01, U1C1	Address After Reset 03A5h, 03ADh 00XX0010b	
	Bit Symbol	Bit Name	Function	RW
	TE	Transmit enable bit	0 : Transmission disabled 1 : Transmission enabled	RW
	ΤI	Transmit buffer empty flag	0 : Data present in the UjTB register 1 : No data present in the UjTB register	RO
	RE	Receive enable bit	0 : Reception disabled 1 : Reception enabled	RW
	RI	Receive complete flag	0 : No data present in the UjRB register 1 : Data present in the UjRB register	RO
	_ (b5-b4)	Nothing is assigned. If When read, the conter	necessary, set to 0. ht is undefined.	-
	UjLCH	Data logic select bit ⁽¹⁾	0 : No reverse 1 : Reverse	RW
	UjERE	Error signal output enable bit	0 : Output disabled 1 : Output enabled	RW
_{data).} JART2 Transmit/Rece			(I ² C mode) or 110b (UART mode, 9-bit t	ranste
	eive Co s		Address After Reset 01FDh 0000010b	ransie
_{data).} JART2 Transmit/Rece	eive Co s Bit	ntrol Register 1	Address After Reset	
_{data).} JART2 Transmit/Rece	eive Co s	ntrol Register 1 ^{Symbol} J2C1	Address After Reset 01FDh 00000010b	RW
_{data).} JART2 Transmit/Rece	Bit Symbol	ntrol Register 1 ymbol J2C1 Bit Name	Address After Reset 01FDh 00000010b Function 0 : Transmission disabled	RW
_{data).} JART2 Transmit/Rece	Bit Symbol TE	ntrol Register 1 symbol J2C1 Bit Name Transmit enable bit Transmit buffer	Address After Reset 01FDh 00000010b Function 0 : Transmission disabled 1 : Transmission enabled 0 : Data present in U2TB register	RW RW RO
_{data).} JART2 Transmit/Rece	Bit Symbol TE TI	ntrol Register 1 symbol J2C1 Bit Name Transmit enable bit Transmit buffer empty flag	Address 01FDhAfter Reset 00000010bFunction0 : Transmission disabled 1 : Transmission enabled0 : Data present in U2TB register 1 : No data present in U2TB register 0 : Reception disabled	RW RW RO
_{data).} JART2 Transmit/Rece	Bit Symbol TE TI RE	ntrol Register 1 symbol J2C1 Bit Name Transmit enable bit Transmit buffer empty flag Receive enable bit Receive complete	Address 01FDhAfter Reset 00000010bFunctionFunction0 : Transmission disabled 1 : Transmission enabled0 : Data present in U2TB register 1 : No data present in U2TB register0 : Reception disabled 1 : Reception enabled0 : No data present in U2RB register0 : No data present in U2RB register	RW RW RO RW RO
_{data).} JART2 Transmit/Rece	Bit Symbol TE TI RE RI	ntrol Register 1 symbol J2C1 Bit Name Transmit enable bit Transmit buffer empty flag Receive enable bit Receive complete flag UART2 transmit interrupt	Address 01FDhAfter Reset 00000010bFunction0 : Transmission disabled 1 : Transmission enabled0 : Data present in U2TB register 1 : No data present in U2TB register 0 : Reception disabled 1 : Reception enabled0 : No data present in U2RB register 1 : Data present in U2RB register 1 : Data present in U2RB register 1 : Data present in U2RB register 0 : Transmit buffer empty (TI bit = 1)	RW RW RO RW RO RW
_{data).} JART2 Transmit/Rece	Bit Symbol TE TI RE RI U2IRS	ntrol Register 1 symbol J2C1 Bit Name Transmit enable bit Transmit buffer empty flag Receive enable bit Receive complete flag UART2 transmit interrupt source select bit UART2 continuous	Address 01FDh After Reset 00000010b Function 0 : Transmission disabled 1 : Transmission enabled 0 : Data present in U2TB register 1 : No data present in U2TB register 0 : Reception disabled 1 : Reception enabled 0 : No data present in U2TB register 0 : No data present in U2RB register 1 : Data present in U2RB register 0 : No data present in U2RB register 1 : Data present in U2RB register 0 : Transmit buffer empty (TI bit = 1) 1 : Transmission completed (TXEPT bit = 1 0 : Continuous receive mode disabled	RW RW RO RW RO RW
_{data).} JART2 Transmit/Rece	Bit Symbol TE TI RE RI U2IRS U2RRM	ntrol Register 1 Symbol J2C1 Bit Name Transmit enable bit Transmit buffer empty flag Receive enable bit Receive complete flag UART2 transmit interrupt source select bit UART2 continuous receive mode enable bit Data logic	Address 01FDh After Reset 00000010b Function 0 : Transmission disabled 1 : Transmission enabled 0 : Data present in U2TB register 1 : No data present in U2TB register 0 : Reception disabled 1 : Reception enabled 0 : No data present in U2RB register 1 : Data present in U2RB register 0 : No data present in U2RB register 1 : Data present in U2RB register 0 : Transmit buffer empty (TI bit = 1) 1 : Transmission completed (TXEPT bit = 1) 1 : Continuous receive mode disabled 1 : Continuous receive mode enabled 0 : No reverse	RW RW RO RW RO

UART Transmit/Rece	ive Con	trol Register 2			
b7 b6 b5 b4 b3 b2 b1 b0		ymbol JCON	Address 03B0h	After Reset X0000000b	
	Bit Symbol	Bit Name	Fund	tion	RW
	U0IRS	UART0 transmit interrupt source select bit	0 : Transmit buffer e 1 : Transmission com	empty (TI bit = 1) pleted (TXEPT bit = 1)	RW
	U1IRS	UART1 transmit interrupt source select bit	0 : Transmit buffer e 1 : Transmission com	empty (TI bit = 1) pleted (TXEPT bit = 1)	RW
	UORRM	UART0 continuous receive mode enable bit	0 : Continuous rece 1 : Continuous rece		RW
	U1RRM	UART1 continuous receive mode enable bit	0 : Continuous rece 1 : Continuous rece		RW
	CLKMD0	UART1 CLK/CLKS select bit 0	Effective when the 0 0 : Clock output from 1 : Clock output from	n CLK1	RW
	CLKMD1	UART1 CLK/CLKS select bit 1 ⁽¹⁾	0 : CLK output is on 1 : Transfer clock of pins function sel	utput from multiple	RW
	RCSP	Separate UART0 CTS/RTS bit	0 : CTS/RTS shared 1 : CTS/RTS separa (CTS0 supplied		RW
l	_ (b7)	Nothing is assigned. If When read, the conter			-

NOTE:

1. When using multiple transfer clock output pins, make sure the following conditions are met:

• The CKDIR bit in the U1MR register = 0 (internal clock)

•	•	(
b7 b6 b5 b4 b3 b2 b1 b0		Symbol R to U2SMR 01E	Address EFh, 01F3h, 01F7h	After Reset X0000000b	
	Bit	Bit Name	Functi		RW
	Symbol	Dit Name	Functi	UII	
	IICM	I ² C mode select bit	0 : Other than I ² C mo 1 : I ² C mode	de	RW
	ABC	Arbitration lost detecting flag control bit	0 : Update per bit 1 : Update per byte		RW
	BBS	Bus busy flag	0 : STOP condition de 1 : START condition of		RW (
	_ (b3)	Reserved bit	Set to 0		RW
	ABSCS	Bus collision detect sampling clock select bit	0 : Rising edge of tran 1 : Underflow signal of		RW
	ACSE	Auto clear function select bit of transmit enable bit	0 : No auto clear func 1 : Auto clear at occu collision		RW
	SSS	Transmit start condition select bit	0 : Not synchronized 1 : Synchronized to R		RW
i	_ (b7)	Nothing is assigned. If When read, the conter			-
NOTES:		•			

UARTi Special Mode Register (i = 0 to 2)

1. The BBS bit is set to 0 by writing 0 in a program (writing 1 has no effect).

2. Underflow signal of timer A3 in UART0, underflow signal of timer A4 in UART1, underflow signal of timer A0 in UART2.

3. When a transfer begins, the SSS bit is set to 0 (not synchronized to RXDi).

	U0SMR	Symbol 2 to U2SMR2 01	Address After Reset EEh, 01F2h, 01F6h X000000b	
	Bit Symbol	Bit Name	Function	F
	IICM2	I ² C mode select bit 2	See Table 15.12 I ² C Mode Functions	F
	CSC	Clock-synchronous bit	0 : Disabled 1 : Enabled	F
	SWC	SCL wait output bit	0 : Disabled 1 : Enabled	F
	ALS	SDA output stop bit	0 : Disabled 1 : Enabled	F
	STAC	UARTi initialization bit	0 : Disabled 1 : Enabled	F
	SWC2	SCL wait output bit 2	0: Transfer clock 1: "L" output	F
	SDHI	SDA output disable bit	0: Enabled 1: Disabled (high-impedance)	F
	_ (b7)	Nothing is assigned. If When read, the conte		
	U0SMR	Symbol	Address After Reset EDh, 01F1h, 01F5h 000X0X0Xb	
•	U0SMR	Symbol I3 to U2SMR3 01	EDh, 01F1h, 01F5h 000X0X0Xb	TE
•	U0SMR Bit Symbol	Symbol 3 to U2SMR3 01 Bit Name Nothing is assigned. I	EDh, 01F1h, 01F5h 000X0X0Xb Function f necessary, set to 0.	F
•	UOSMR Bit Symbol (b0)	Symbol 3 to U2SMR3 01 Bit Name Nothing is assigned. I When read, the conte	EDh, 01F1h, 01F5h 000X0X0Xb Function f necessary, set to 0. nt is undefined. 0 : Without clock delay	
•	U0SMR Bit Symbol	Symbol 3 to U2SMR3 01 Bit Name Nothing is assigned. I When read, the conte Clock phase set bit	EDh, 01F1h, 01F5h 000X0X0Xb Function f necessary, set to 0. nt is undefined. 0 : Without clock delay 1 : With clock delay	
•	UOSMR Bit Symbol (b0)	Symbol 3 to U2SMR3 01 Bit Name Nothing is assigned. I When read, the conte Clock phase set bit Nothing is assigned. I When read, the conte	EDh, 01F1h, 01F5h 000X0X0Xb Function f necessary, set to 0. nt is undefined. 0 : Without clock delay 1 : With clock delay f necessary, set to 0. nt is undefined.	
•	UOSMR Bit Symbol (b0) CKPH	Symbol 3 to U2SMR3 01 Bit Name Nothing is assigned. I When read, the conte Clock phase set bit Nothing is assigned. I When read, the conte Clock output select bit	EDh, 01F1h, 01F5h 000X0X0Xb Function f necessary, set to 0. nt is undefined. 0 : Without clock delay 1 : With clock delay f necessary, set to 0. nt is undefined. 0 : CLKi is CMOS output 1 : CLKi is N channel open-drain output	F
•	U0SMR Bit Symbol (b0) CKPH	Symbol 3 to U2SMR3 01 Bit Name Nothing is assigned. I When read, the conte Clock phase set bit Nothing is assigned. I When read, the conte Clock output select	EDh, 01F1h, 01F5h 000X0X0Xb Function f necessary, set to 0. nt is undefined. 0 : Without clock delay 1 : With clock delay f necessary, set to 0. nt is undefined. 0 : CLKi is CMOS output 1 : CLKi is N channel open-drain output f necessary, set to 0.	F
•	UOSMR Bit Symbol (b0) CKPH (b2) NODC	Symbol 3 to U2SMR3 01 Bit Name Nothing is assigned. I When read, the conte Clock phase set bit Nothing is assigned. I When read, the conte Clock output select bit Nothing is assigned. I	EDh, 01F1h, 01F5h 000X0X0Xb Function f necessary, set to 0. nt is undefined. 0 : Without clock delay 1 : With clock delay f necessary, set to 0. nt is undefined. 0 : CLKi is CMOS output 1 : CLKi is N channel open-drain output f necessary, set to 0. nt is undefined. b7 b6 b5 0 0 0 : Without delay 0 0 1 : 1 to 2 cycle(s) of UiBRG count source	F
•	UOSMR Bit Symbol (b0) CKPH (b2) NODC (b4)	Symbol 3 to U2SMR3 01 Bit Name Nothing is assigned. I When read, the conte Clock phase set bit Nothing is assigned. I When read, the conte Clock output select bit Nothing is assigned. I	EDh, 01F1h, 01F5h 000X0X0Xb Function f necessary, set to 0. nt is undefined. 0 : Without clock delay 1 : With clock delay f necessary, set to 0. nt is undefined. 0 : CLKi is CMOS output 1 : CLKi is N channel open-drain output f necessary, set to 0. nt is undefined. b7 b6 b5 0 0 0 : Without delay	F

Figure 15.9 Registers U0SMR2 to U2SMR2 and U0SMR3 to U2SMR3

b6 b5 b4 b3 b2 b1 b0		ymbol 4 to U2SMR4 01	Address After Rese 01ECh, 01F0h, 01F4h 00h		
	Bit Symbol	Bit Name	Bit Name Function		RW
	STAREQ	Start condition generate bit ⁽¹⁾	0 : Clear 1 : Start		RW
	RSTAREQ	Restart condition generate bit ⁽¹⁾	0 : Clear 1 : Start		RW
	STPREQ	Stop condition generate bit ⁽¹⁾	0 : Clear 1 : Start		RW
	STSPSEL	SCL,SDA output select bit	0 : Start and stop conditions not output 1 : Start and stop conditions output		RW
	ACKD	ACK data bit	0 : ACK 1 : NACK		RW
	ACKC	ACK data output enable bit	0 : Serial interface data output 1 : ACK data output		RW
	SCLHI	SCL output stop enable bit	0 : Disabled 1 : Enabled		RW
SWC9		SCL wait bit 3	0 : SCL "L" hold disabled 1 : SCL "L" hold enabled		RW

15.1.1 Clock Synchronous Serial I/O Mode

The clock synchronous serial I/O mode uses a transfer clock to transmit and receive data. Table 15.1 lists the Clock Synchronous Serial I/O Mode Specifications. Table 15.2 lists the Registers to be Used in and Setting in Clock Synchronous Serial I/O Mode.

Table 15.1	Clock Synchronous	Serial I/O	Mode Specifications
------------	--------------------------	------------	---------------------

Item	Specification			
Transfer data format	Transfer data length: 8 bits			
Transfer clock	The CKDIR bit in the UiMR register = 0 (internal clock) : $fj/(2(n+1))$			
	• fj = f1SIO, f2SIO, f8SIO, f32SIO. n: Setting value of the UiBRG register 00h to FFh			
	The CKDIR bit = 1 (external clock) : Input from CLKi pin			
Transmit/receive control	Selectable from CTS function, RTS function or CTS/RTS function disabled			
Transmit start condition	Before transmission can start, meet the following requirements (1)			
	 The TE bit in the UiC1 register = 1 (transmission enabled) 			
	• The TI bit in the UiC1 register = 0 (data present in the UiTB register)			
	• If $\overline{\text{CTS}}$ function is selected, input on the $\overline{\text{CTS}}$ i pin = L			
Receive start condition	Before reception can start, meet the following requirements (1)			
	• The RE bit in the UiC1 register = 1 (reception enabled)			
	• The TE bit in the UiC1 register = 1 (transmission enabled)			
	• The TI bit in the UiC1 register = 0 (data present in the UiTB register)			
Interrupt request	For transmission, one of the following conditions can be selected			
generation timing	• The UiIRS bit ⁽²⁾ = 0 (transmit buffer empty): when transferring data from the			
	UiTB register to the UARTi transmit register (at start of transmission)			
	• The UiIRS bit =1 (transmission completed): when the serial interface finished			
	transmitting data from the UARTi transmit register			
	For reception			
	• When transferring data from the UARTi receive register to the UiRB register (at			
	completion of reception)			
Error detection	Overrun error ⁽³⁾			
	This error occurs if the serial interface started receiving the next data before reading			
	the UiRB register and received the 7th bit of the next data			
Select function	CLK polarity selection			
	Transfer data input/output can be selected to occur synchronously with the rising or			
	the falling edge of the transfer clock			
	LSB first, MSB first selection			
	Whether to start transmitting or receiving data begins with bit 0 or begins with bit 7			
	can be selected			
	Continuous receive mode selection			
	Reception is enabled immediately by reading the UiRB register			
	Switching serial data logic			
	This function reverses the logic value of the transmit/receive data			
	Transfer clock output from multiple pins selection (UART1)			
	The output pin can be selected in a program from two UART1 transfer clock pins that			
	have been set			
	Separate CTS/RTS pins (UART0)			
	CTS0 and RTS0 are input/output from separate pins			
- 0 to 2				

i = 0 to 2

NOTES:

- 1. When an external clock is selected, the conditions must be met while if the CKPOL bit in the UiC0 register = 0 (transmit data output at the falling edge and the receive data taken in at the rising edge of the transfer clock), the external clock is in the high state; if the CKPOL bit in the UiC0 register = 1 (transmit data output at the rising edge and the receive data taken in at the receive data taken in at the falling edge of the transfer clock), the external clock is in the high state; if the CKPOL bit in the UiC0 register = 1 (transmit data output at the rising edge and the receive data taken in at the falling edge of the transfer clock), the external clock is in the low state.
- 2. Bits U0IRS and U1IRS are bits 0 and 1 in the UCON register; the U2IRS bit is bit 4 in the U2C1 register.
- 3. If an overrun error occurs, the receive data of UiRB register will be undefined. The IR bit in the SiRIC register remains unchanged.

Table 15.2 Registers to be Used and Settings in Clock Synchronous Serial I/O Mode

Register	Bit	Function			
UiTB ⁽¹⁾	0 to 7	Set transmit data			
UiRB ⁽¹⁾ 0 to 7		Receive data can be read			
	OER	Overrun error flag			
UiBRG	0 to 7	Set a bit rate			
UiMR ⁽¹⁾ SMD2 to SMD0		Set to 001b			
	CKDIR	Select the internal clock or external clock			
	IOPOL	Set to 0			
UiC0	CLK1 to CLK0	Select the count source for the UiBRG register			
	CRS	Select CTS or RTS to use			
	TXEPT	Transmit register empty flag			
	CRD	Select CTS/RTS function enabled or disabled			
	NCH	Select TXDi pin output mode			
	CKPOL	Select the transfer clock polarity			
	UFORM	Select the LSB first or MSB first			
UiC1	TE	Set this bit to 1 to enable transmission			
	ТІ	Transmit buffer empty flag			
	RE	Set this bit to 1 to enable reception			
	RI	Reception complete flag			
	U2IRS ⁽²⁾	Select the UART2 transmit interrupt source			
	U2RRM ⁽²⁾	Set this bit to 1 to use continuous receive mode			
	UiLCH	Set this bit to 1 to use inverted data logic			
	UiERE	Set to 0			
UiSMR	0 to 7	Set to 0			
UiSMR2	0 to 7	Set to 0			
UiSMR3	0 to 2	Set to 0			
	NODC	Select clock output mode			
	4 to 7	Set to 0			
UiSMR4	0 to 7	Set to 0			
UCON	U0IRS, U1IRS	Select the UART0/UART1 transmit interrupt source			
	U0RRM, U1RRM	Set this bit to 1 to use continuous receive mode			
	CLKMD0	Select the transfer clock output pin when the CLKMD1 bit = 1			
	CLKMD1	Set this bit to 1 to output UART1 transfer clock from two pins			
	RCSP	Set this bit to 1 to accept as input the $\overline{\text{CTS0}}$ signal of the UART0 from the P6_4 pin			
	7	Set to 0			

i = 0 to 2 NOTES:

1. Not all register bits are described above. Set those bits to 0 when writing to the registers in clock synchronous serial I/O mode.

2. Set bits 4 and 5 in registers U0C1 and U1C1 to 0. Bits U0IRS, U1IRS, U0RRM, and U1RRM are in the UCON register.

Table 15.3 lists the I/O Pin Functions (when not select multiple transfer clock output pin select function) in clock synchronous serial I/O mode. Table 15.4 lists the P6_4 Pin Functions in clock synchronous serial I/O mode.

Note that for a period from when the UARTi operating mode is selected to when transfer starts, the TXDi pin outputs an "H".

Figure 15.11 shows the Transmit/Receive Operation during clock synchronous serial I/O mode.

Pin Name	Function	Method of Selection	
TXDi	Serial data output	(Outputs dummy data when performing reception only)	
(P6_3, P6_7, P7_0)			
RXDi	Serial data input	Bits PD6_2 and PD6_6 in PD6 register = 0	
(P6_2, P6_6, P7_1)		PD7_1 bit in PD7 register = 0	
		(Can be used as an input port when performing transmission only)	
CLKi	Transfer clock output	CKDIR bit in UiMR register = 0	
(P6_1, P6_5, P7_2)	Transfer clock input	CKDIR bit = 1	
		Bits PD6_1 and PD6_5 in PD6 register = 0	
		PD7_2 bit in PD7 register = 0	
CTSi/RTSi	CTS input	CRD bit in UiC0 register = 0	
(P6_0, P6_4, P7_3)		CRS bit in UiC0 register = 0	
		Bits PD6_0 and PD6_4 in PD6 register = 0	
		PD7_3 bit in PD7 register = 0	
	RTS output	CRD bit = 0	
		CRS bit = 1	
	I/O port	CRD bit = 1	

i = 0 to 2

Table 15.4 P6_4 Pin Functions

	Bit set Value					
Pin Function	U1C0 Register		UCON Register			PD6 Register
	CRD bit	CRS bit	RCSP bit	CLKMD1 bit	CLKMD0 bit	PD6_4 bit
P6_4	1	-	0	0	-	Input: 0, Output: 1
CTS1	0	0	0	0	-	0
RTS1	0	1	0	0	-	-
CTS0 ⁽¹⁾	0	0	1	0	-	0
CLKS1	-	-	-	1 ⁽²⁾	1	-

-: 0 or 1

NOTES:

1. In addition to this, set the CRD bit in the U0C0 register to 0 (CTS0/RTS0 enabled) and the CRS bit in the U0C0 register to 1 (RTS0 selected).

- 2. When the CLKMD1 bit = 1 and the CLKMD0 bit = 0, the following logic levels are output:
 - High if the CLKPOL bit in the U1C0 register = 0
 - Low if the CLKPOL bit = 1

Figure 15.11 Transmit and Receive Operation

15.1.1.1 Counter Measure for Communication Error Occurs

If a communication error occurs while transmitting or receiving in clock synchronous serial I/O mode, follow the procedures below.

- Resetting the UiRB register (i = 0 to 2)
 - (1) Set the RE bit in the UiC1 register to 0 (reception disabled)
 - (2) Set bits SMD2 to SMD0 in the UiMR register to 000b (serial interface disabled)
 - (3) Set bits SMD2 to SMD0 in the UiMR register to 001b (clock synchronous serial I/O mode)
 - (4) Set the RE bit in the UiC1 register to 1 (reception enabled)
- Resetting the UiTB register (i = 0 to 2)
 - (1) Set bits SMD2 to SMD0 in the UiMR register to 000b (serial interface disabled)
 - (2) Set bits SMD2 to SMD0 in the UiMR register to 001b (clock synchronous serial I/O mode)
 - (3) 1 (transmission enabled) is written to the TE bit in the UiC1 register, regardless of the TE bit

15.1.1.2 CLK Polarity Select Function

Use the CKPOL bit in the UiC0 register (i = 0 to 2) to select the transfer clock polarity. Figure 15.12 shows the Transfer Clock Polarity.

(1) When the CKPOL bit in the UiC0 register = 0 (transmit data output edge and the receive data taken in at the rising edge of the transfer	at the falling r clock)
СССКИ	(NOTE 1)
TXDi D0 X D1 X D2 X D3 X D4 X D5 X D6 X D7	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
(2) When the CKPOL bit = 1 (transmit data output at the rising edge and data taken in at the falling edge of the transfer clock)	d the receive
СЬКІ	(NOTE 2)
TXDi D0 D1 D2 D3 D4 D5 D6 D7	
RXDi D0 \ D1 \ D2 \ D3 \ D4 \ D5 \ D6 \ D7	
i = 0 to 2 * This applies to the case where the UFORM bit in the UiC0 register = (LSB first) and the UiLCH bit in the UiC1 register = 0 (no reverse).	= 0
NOTES: 1. When not transferring, the CLKi pin outputs a high signal. 2. When not transferring, the CLKi pin outputs a low signal.	

Figure 15.12 Transfer Clock Polarity

15.1.1.3 LSB First/MSB First Select Function

Use the UFORM bit in the UiC0 register (i = 0 to 2) to select the transfer format. Figure 15.13 shows the Transfer Format.

Figure 15.13 Transfer Format

15.1.1.4 Continuous Receive Mode

In continuous receive mode, receive operation becomes enable when the receive buffer register is read. It is not necessary to write dummy data into the transmit buffer register to enable receive operation in this mode. However, a dummy read of the receive buffer register is required when starting the operating mode.

When the UiRRM bit (i = 0 to 2) = 1 (continuous receive mode), the TI bit in the UiC1 register is set to 0 (data present in UiTB register) by reading the UiRB register. In this case, i.e., UiRRM bit = 1, do not write dummy data to the UiTB register in a program. Bits U0RRM and U1RRM are bits 2 and 3 in the UCON register, respectively, and the U2RRM bit is the bit 5 in the U2C1 register.

15.1.1.5 Serial Data Logic Switching Function

When the UiLCH bit in the UiC1 register (i = 0 to 2) = 1 (reverse), the data written to the UiTB register has its logic reversed before being transmitted. Similarly, the receive data has its logic reversed when read from the UiRB register. Figure 15.14 shows the Serial Data Logic Switching.

Figure 15.14 Serial Data Logic Switching

15.1.1.6 Transfer Clock Output From Multiple Pins (UART1)

Use bits CLKMD1 to CLKMD0 in the UCON register to select one of the two transfer clock output pins. Figure 15.15 shows the Transfer Clock Output from Multiple Pins. This function can be used when the selected transfer clock for UART1 is an internal clock.

Figure 15.15 Transfer Clock Output from Multiple Pins

15.1.1.7 CTS/RTS Function

When the CTS function is used transmit and receive operation start when "L" is applied to the CTSi/RTSi (i = 0 to 2) pin. Transmit and receive operation begins when the $\overline{\text{CTSi/RTSi}}$ pin is held "L". If the "L" signal is switched to "H" during a transmit or receive operation, the operation stops before the next data.

When the RTS function is used, the CTSi/RTSi pin outputs on "L" signal when the MCU is ready to receive. The output level becomes "H" on the first falling edge of the CLKi pin.

- CRD bit in UiC0 register = 1 (CTS/RTS function disabled) CTSi/RTSi pin is programmable I/O function
- CRD bit = 0, CRS bit in UiC0 register = 0 (CTS function is selected)

 $\frac{\text{CTSi}/\text{RTSi}}{\text{CTSi}/\text{RTSi}} \text{ pin is } \frac{\text{CTS}}{\text{RTS}} \text{ function}$

• CRD bit = 0, CRS bit = 1 (\overline{RTS} function is selected)

15.1.1.8 CTS/RTS Separate Function (UART0)

This function separates $\overline{\text{CTS0}/\text{RTS0}}$, outputs $\overline{\text{RTS0}}$ from the P6_0 pin, and accepts as input the $\overline{\text{CTS0}}$ from the P6_4 pin. To use this function, set the register bits as shown below.

- CRD bit in U0C0 register = 0 ($\overline{CTS}/\overline{RTS}$ of UART0 enabled)
- CRS bit in U0C0 register = 1 (output RTS of UART0)
- CRD bit in U1C0 register = 0 ($\overline{CTS}/\overline{RTS}$ of UART1 enabled)
- CRS bit in U1C0 register = 0 (input CTS of UART1)
- RCSP bit in UCON register = 1 (input CTS0 from the P6_4 pin)
- CLKMD1 bit in UCON register = 0 (CLKS1 not used)

Note that when using the $\overline{\text{CTS}/\text{RTS}}$ separate function, $\overline{\text{CTS}/\text{RTS}}$ of UART1 separate function cannot be used.

Figure 15.16 shows the $\overline{\text{CTS}}/\overline{\text{RTS}}$ Separate Function.

Figure 15.16 CTS/RTS Separate Function

15.1.2 Clock Asynchronous Serial I/O (UART) Mode

The UART mode allows transmitting and receiving data after setting the desired bit rate and transfer data format. Table 15.5 lists the UART Mode Specifications. Table 15.6 lists the Registers to be Used and Setting in UART Mode.

Item	Specification			
Transfer data format	Character bit (transfer data): Selectable from 7, 8 or 9 bits			
	Start bit: 1 bit			
	Parity bit: Selectable from odd, even, or none			
	Stop bit: Selectable from 1 or 2 bits			
Transfer clock	CKDIR bit in UiMR register = 0 (internal clock) : fj/(16(n+1))			
	fj = f1SIO, f2SIO, f8SIO, f32SIO. n: Setting value of the UiBRG register 00h to FFh			
	• The CKDIR bit = 1 (external clock) : fEXT/(16(n+1))			
	fEXT: Input from CLKi pin. n :Setting value of the UiBRG register 00h to FFh			
Transmit/receive control	Selectable from CTS function, RTS function or CTS/RTS function disabled			
Transmit start condition	Before transmission can start, meet the following requirements			
	• The TE bit in the UiC1 register = 1 (transmission enabled)			
	• The TI bit in the UiC1 register = 0 (data present in UiTB register)			
	• If \overline{CTS} function is selected, input on the \overline{CTSi} pin = L			
Receive start condition	Before reception can start, meet the following requirements			
	• The RE bit in the UiC1 register = 1 (reception enabled)			
	Start bit detection			
Interrupt request	For transmission, one of the following conditions can be selected			
generation timing	• The UiIRS bit ⁽¹⁾ = 0 (transmit buffer empty): when transferring data from the UiTB register			
	to the UARTi transmit register (at start of transmission)			
	• The UiIRS bit =1 (transmission completed): when the serial interface finished			
	transmitting data from the UARTi transmit register			
	For reception			
	When transferring data from the UARTi receive register to the UiRB register			
	(at completion of reception)			
Error detection	• Overrun error ⁽²⁾			
	This error occurs if the serial interface started receiving the next data before reading			
	the UiRB register and received the bit one before the last stop bit of the next data			
	• Framing error ⁽³⁾			
	This error occurs when the number of stop bits set is not detected			
	• Parity error ⁽³⁾			
	This error occurs when if parity is enabled, the number of 1's in parity and character			
	bits does not match the number of 1's set			
	• Error sum flag			
	This flag is set to 1 when any of the overrun, framing, or parity errors occur			
Select function	LSB first, MSB first selection			
	Whether to start transmitting or receiving data begins with bit 0 or begins with bit 7 can			
	be selected			
	Serial data logic switch			
	This function reverses the logic of the transmit/receive data. The start and stop bits are not reversed.			
	• TXD, RXD I/O polarity switch			
	This function reverses the polarities of the TXD pin output and RXD pin input.			
	The logic levels of all I/O data is reversed.			
	Separate CTS/RTS pins (UART0)			
	CTS0 and RTS0 are input/output from separate pins			
0 to 0				

i = 0 to 2

NOTES:

1. Bits U0IRS and U1IRS are bits 0 and 1 in the UCON register. The U2IRS bit is bit 4 in the U2C1 register.

- 2. If an overrun error occurs, the receive data of UiRB register will be undefined. The IR bit in the SiRIC register remains unchanged.
- 3. The timing at which the framing error flag and the parity error flag are set is detected when data is transferred from the UARTi receive register to the UiRB register.

Table 15.6 Registers to Be Used and Settings in UART Mode

Register	Bit	Function				
UiTB	0 to 8	Set transmit data (1)				
UiRB	0 to 8	Receive data can be read (1)				
	OER,FER,PER,SUM	Error flag				
UiBRG	0 to 7	Set a bit rate				
UiMR	SMD2 to SMD0	Set these bits to 100b when transfer data is 7-bit long				
		Set these bits to 101b when transfer data is 8-bit long				
		Set these bits to 110b when transfer data is 9-bit long				
	CKDIR	Select the internal clock or external clock				
	STPS	Select the stop bit				
	PRY, PRYE	Select whether parity is included and whether odd or even				
	IOPOL	Select the TXD/RXD input/output polarity				
UiC0	CLK0 to CLK1	Select the count source for the UiBRG register				
	CRS	Select CTS or RTS to use				
	TXEPT	Transmit register empty flag				
	CRD	Select CTS/RTS function enabled or disabled				
	NCH	Select TXDi pin output mode				
	CKPOL	Set to 0				
	UFORM	LSB first or MSB first can be selected when transfer data is 8-bit long. Set this				
		bit to 0 when transfer data is 7- or 9-bit long.				
UiC1	TE	Set this bit to 1 to enable transmission				
	ТІ	Transmit buffer empty flag				
	RE	Set this bit to 1 to enable reception				
	RI	Reception complete flag				
	U2IRS ⁽²⁾	Select the UART2 transmit interrupt source				
	U2RRM ⁽²⁾	Set to 0				
	UILCH	Set this bit to 1 to use inverted data logic				
	UiERE	Set to 0				
UiSMR	0 to 7	Set to 0				
UiSMR2	0 to 7	Set to 0				
UiSMR3	0 to 7	Set to 0				
UiSMR4	0 to 7	Set to 0				
UCON	U0IRS, U1IRS	Select the UART0/UART1 transmit interrupt source				
	U0RRM, U1RRM	Set to 0				
	CLKMD0	Invalid because the CLKMD1 bit = 0				
	CLKMD1	Set to 0				
	RCSP	Set this bit to 1 to accept as input the CTS0 of UART0 signal from the P6_4 pin				
	7	Set to 0				

i = 0 to 2

NOTES:

- 1. The bits used for transmit/receive data are as follows:
 - Bits 0 to 6 when transfer data is 7-bit long
 - Bits 0 to 7 when transfer data is 8-bit long
 - Bits 0 to 8 when transfer data is 9-bit long.
- 2. Set bits 4 to 5 in registers U0C1 and U1C1 to 0. Bits U0IRS, U1IRS, U0RRM, and U1RRM are included in the UCON register.

Table 15.7 lists the I/O Pins Functions in UART mode. Table 15.8 lists the P6_4 Pin Functions in UART mode. Note that for a period from when the UARTi operating mode is selected to when transfer starts, the TXDi pin outputs an "H".

Figure 15.17 shows the Transmit Operation in UART mode. Figure 15.18 shows the Receive Operation in UART mode.

Pin Name	Function	Method of Selection
TXDi	Serial data output	(Outputs "H" when performing reception only)
(P6_3, P6_7, P7_0)		
RXDi	Serial data input	Bits PD6_2 and PD6_6 in PD6 register = 0
(P6_2, P6_6, P7_1)		PD7_1 bit in PD7 register = 0
		(Can be used as an input port when performing transmission only)
CLKi	I/O port	CKDIR bit in UiMR register = 0
(P6_1, P6_5, P7_2)	Transfer clock input	CKDIR bit in UiMR register = 1
		Bits PD6_1 and PD6_5 in PD6 register = 0
		PD7_2 bit in PD7 register = 0
CTSi/RTSi	CTS input	CRD bit in UiC0 register = 0
(P6_0, P6_4, P7_3)		CRS bit in UiC0 register = 0
		Bits PD6_0 and PD6_4 in PD6 register = 0
		PD7_3 bit in PD7 register = 0
	RTS output	CRD bit = 0
		CRS bit = 1
	I/O port	CRD bit = 1

Table 15.7 I/O Pin Functions

i = 0 to 2

Table 15.8 P6_4 Pin Functions

	Bit set Value					
Pin Function	U1C0 Register		UCON Register		PD6 Register	
	CRD bit	CRS bit	RCSP bit	CLKMD1 bit	PD6_4 bit	
P6_4	1	-	0	0	Input: 0, Output: 1	
CTS1	0	0	0	0	0	
RTS1	0	1	0	0	-	
CTS0 ⁽¹⁾	0	0	1	0	0	

-: 0 or 1

NOTE:

1. In addition to this, set the CRD bit in the U0C0 register to 0 (CTS0/RTS0 enabled) and the CRS bit in the U0C0 register to 1 (RTS0 selected).

Figure 15.17 Transmit Operation

Figure 15.18 Receive Operation

15.1.2.1 Bit Rates

In UART mode, the frequency set by the UiBRG register (i = 0 to 2) divided by 16 become the bit rates. Table 15.9 lists an Example of Bit Rates and Settings.

	-						
		Peripheral Function	on Clock: 16 MHz	Peripheral Function	on Clock: 20 MHz	Peripheral Function	n Clock: 24 MHz ⁽¹⁾
Bit Rate	Count Source	Set Value of	Bit Rate	Set Value of	Bit Rate	Set Value of	Bit Rate
(bps)	of UiBRG	UiBRG: n	(bps)	UiBRG: n	(bps)	UiBRG: n	(bps)
1200	f8	103 (67h)	1202	129(81h)	1202	155 (9Bh)	1202
2400	f8	51 (33h)	2404	64 (40h)	2404	77 (4Dh)	2404
4800	f8	25 (19h)	4808	32 (20h)	4735	38 (26h)	4808
9600	f1	103 (67h)	9615	129(81h)	9615	155 (9Bh)	9615
14400	f1	68 (44h)	14493	86 (56h)	14368	103 (67h)	14423
19200	f1	51 (33h)	19231	64 (40h)	19231	77 (4Dh)	19231
28800	f1	34 (22h)	28571	42 (2Ah)	29070	51 (33h)	28846
31250	f1	31 (1Fh)	31250	39 (27h)	31250	47 (2Fh)	31250
38400	f1	25 (19h)	38462	32 (20h)	37879	38 (26h)	38462
51200	f1	19 (13h)	50000	23(17h)	52083	28 (1Ch)	51724
01.0	-						

i = 0 to 2

NOTE:

1.24 MHz is available Normal-ver. only.

15.1.2.2 Counter Measure for Communication Error Occurs

If a communication error occurs while transmitting or receiving in UART mode, follow the procedures below.

- Resetting the UiRB register (i = 0 to 2)
 - (1) Set the RE bit in the UiC1 register to 0 (reception disabled)
 - (2) Set the RE bit in the UiC1 register to 1 (reception enabled)
- Resetting the UiTB register (i = 0 to 2)
 - (1) Set bits SMD2 to SMD0 in the UiMR register to 000b (serial interface disabled)
 - (2) Set bits SMD2 to SMD0 in the UiMR register to 001b, 101b, 110b
 - (3) 1 (transmission enabled) is written to the TE bit in the UiC1 register, regardless of the TE bit

15.1.2.3 LSB First/MSB First Select Function

As shown in Figure 15.19, use the UFORM bit in the UiC0 register to select the transfer format. Figure 15.19 shows the Transfer Format. This function is valid when transfer data is 8-bit long.

(1) When the UFORM bit in the UiC0 register = 0 (LSB first)
TXDi ST / D0 / D1 / D2 / D3 / D4 / D5 / D6 / D7 / P / SP
RXDi ST (D0) D1) D2) D3) D4) D5) D6) D7) P) SP
(2) When the UFORM bit = 1 (MSB first)
TXDi ST D7 D6 D5 D4 D3 D2 D1 D0 P SP
RXDi ST / D7 / D6 / D5 / D4 / D3 / D2 / D1 / D0 / P / SP
i = 0 to 2
ST: Start bit P: Parity bit SP: Stop bit
 NOTE: 1. This applies to the case where the register bits are set as follows: • CKPOL bit in UiC0 register = 0 (transmit data output at the falling edge and the receive data taken in at the rising edge of the transfer clock) • UiLCH bit in UiC1 register = 0 (no reverse) • STPS bit in UiMR register = 0 (1 stop bit) • PRYE bit in UiMR register = 1 (parity enabled)

Figure 15.19 Transfer Format

15.1.2.4 Serial Data Logic Switching Function

The data written to the UiTB register has its logic reversed before being transmitted. Similarly, the received data has its logic reversed when read from the UiRB register.

Figure 15.20 shows the Serial Data Logic Switching.

) When the UiLCH bit in the UiC1 register = 0 (no reverse)
TXDi "H"
) When the UiLCH bit = 1 (reverse)
TXDi "H" <u>ST (D0) D1) D2) D3) D4) D5) D6) D7) P</u> SP
: 0 to 2 I: Start bit Parity bit P: Stop bit
 OTE: 1. This applies to the case where the register bit are set as follows: • CKPOL bit in UiC0 register = 0 (transmit data output at the falling edge of the transfer clock) • UFORM bit in UiC0 register = 0 (LSB first) • STPS bit in UiMR register = 0 (1 stop bit) • PRYE bit in UiMR register = 1 (parity enabled)
2 T

Figure 15.20 Serial Data Logic Switching

15.1.2.5 TXD and RXD I/O Polarity Inverse Function

This function inverses the polarities of the TXDi pin output and RXDi pin input. The logic levels of all input/output data (including the start, stop and parity bits) are inversed.

Figure 15.21 shows the TXD and RXD I/O Polarity Inverse.

(1) When the IOPOL bit in the UiMR register = 0 (no reverse)
TXDi "H" ST (D0) D1) D2) D3) D4) D5) D6) D7) P) SP
RXDi "H" (no reverse) "L"
(2) When the IOPOL bit = 1 (reverse)
TXDi "H" (reverse) "L"/ ST (<u>D0 (D1 (D2 (D3 (D4 (D5 (D7 (P) SP</u>
RXDi "H"/ ST <u>/ D7 / D7 / D7 / D7 / D7 / P</u> SP
i = 0 to 2 ST: Start bit P: Parity bit SP: Stop bit
NOTE: 1. This applies to the case where the register bits are set as follows: • UFORM bit in UiC0 register = 0 (LSB first) • STPS bit in UiMR register = 0 (1 stop bit) • PRYE bit in UiMR register = 1 (parity enabled)

Figure 15.21 TXD and RXD I/O Polarity Inverse

15.1.2.6 CTS/RTS Function

When the CTS function is used transmit operation start when "L" is applied to the $\overline{\text{CTSi}/\text{RTSi}}$ (i = 0 to 2) pin. Transmit operation begins when the $\overline{\text{CTSi}/\text{RTSi}}$ pin is held "L". If the "L" signal is switched to "H" during a transmit operation, the operation stops before the next data.

When the RTS function is used, the CTSi/RTSi pin outputs on "L" signal when the MCU is ready to receive. The output level becomes "H" on the first falling edge of the CLKi pin.

• CRD bit in UiC0 register = 1 ($\overline{CTS}/\overline{RTS}$ function of UART0 disabled)

CTSi/RTSi pin is programmable I/O function

• CRD bit = 0, CRS bit in UiC0 register= 0 (\overline{CTS} function is selected)

CTSi/RTSi pin is CTS function

• CRD bit = 0, CRS bit = 1 (RTS function is selected) CTSi/RTSi pin is RTS function

15.1.2.7 CTS/RTS Separate Function (UART0)

This function separates $\overline{\text{CTS0}/\text{RTS0}}$, outputs $\overline{\text{RTS0}}$ from the P6_0 pin, and accepts as input the $\overline{\text{CTS0}}$ from the P6_4 pin. To use this function, set the register bits as shown below.

- CRD bit in U0C0 register = 0 (CTS/RTS of UART0 enabled)
- CRS bit in U0C0 register = 1 (output RTS of UART0)
- CRD bit in U1C0 register = 0 (CTS/RTS of UART1 enabled)
- CRS bit in U1C0 register = 0 (input $\overline{\text{CTS}}$ of UART1)
- RCSP bit in UCON register = 1 (input $\overline{\text{CTS}}$ 0 from the P6_4 pin)
- CLKMD1 bit in UCON register = 0 (CLKS1 not used)

Note that when using the CTS/RTS separate function, CTS/RTS of UART1 separate function cannot be used.

Figure 15.22 shows CTS/RTS separate function usage.

Figure 15.22 CTS/RTS Separate Function

15.1.3 Special Mode 1 (I²C Mode)

I²C mode is provided for use as a simplified I²C interface compatible mode. Table 15.10 lists the I²C Mode Specifications. Figure 15.23 shows the I²C Mode Block Diagram. Table 15.11 lists the Registers to be Used and Setting in I²C Mode. Table 15.12 lists the I²C Mode Functions. Figure 15.24 shows the Transfer to UiRB Register and Interrupt Timing.

As shown in Table 15.12, the MCU is placed in I²C mode by setting bits SMD2 to SMD0 to 010b and the IICM bit to 1. Because SDAi transmit output has a delay circuit attached, SDAi output does not change state until SCLi goes low and remains stably low.

Item	Specification		
Transfer data format	Transfer data length: 8 bits		
Transfer clock	During master		
	The CKDIR bit in the UiMR register = 0 (internal clock) : $fi/(2(n+1))$		
	fj = f1SIO, f2SIO, f8SIO, f32SIO. n: Setting value of the UiBRG register 00h to FFh		
	During slave		
	The CKDIR bit = 1 (external clock) : Input from SCLi pin		
Transmit start condition	Before transmission can start, meet the following requirements (1)		
	• The TE bit in the UiC1 register = 1 (transmission enabled)		
	• The TI bit in the UiC1 register = 0 (data present in the UiTB register)		
Receive start condition	Before reception can start, meet the following requirements (1)		
	• The RE bit in the UiC1 register = 1 (reception enabled)		
	• The TE bit in the UiC1 register = 1 (transmission enabled)		
	• The TI bit in the UiC1 register = 0 (data present in the UiTB register)		
Interrupt request	When start or stop condition is detected, acknowledge undetected, and acknowledge		
generation timing	detected		
Error detection	Overrun error ⁽²⁾		
	This error occurs if the serial I/O started receiving the next data before reading the		
	UiRB register and received the 8th bit of the next data		
Select function	Arbitration lost		
	Timing at which the ABT bit in the UiRB register is updated can be selected		
	SDAi digital delay		
	No digital delay or a delay of 2 to 8 UiBRG count source clock cycles selectable		
	Clock phase setting		
	With or without clock delay selectable		
-0 to 2	·		

Table 15.10 I²C Mode Specifications

i = 0 to 2

NOTES:

1. When an external clock is selected, the conditions must be met while the external clock is in the high state.

2. If an overrun error occurs, the value of UiRB register will be undefined. The IR bit in the SiRIC register remains unchanged.

Figure 15.23 I²C Mode Block Diagram

Table 15.11 Registers to Be Used and Settings in I²C Mode

Register	Bit	Master	ction Slave			
UITB (1)	0 to 7	Set transmit data				
UiRB (1)	0 to 7	Receive data can be read				
	8	ACK or NACK is set in this bit				
	ABT	Arbitration lost detection flag Invalid				
	OER	Overrun error flag				
JiBRG	0 to 7	Set a bit rate	Invalid			
JiMR (1)	SMD2 to SMD0	Set to 010b	invalid			
	CKDIR	Set to 0	Set to 1			
	IOPOL	Set to 0				
JiC0	CLK1 to CLK0	Select the count source for the UiBRG register	Invalid			
0100	CRS	Invalid because the CRD bit = 1				
	TXEPT					
	CRD (3)	Transmit register empty flag Set to 1				
	NCH	Set to 1				
	CKPOL	Set to 0				
	UFORM	Set to 1				
UiC1	TE	Set this bit to 1 to enable transmission				
	TI	Transmit buffer empty flag				
	RE	Set this bit to 1 to enable reception				
	RI	Reception complete flag				
	U2IRS (2)	Invalid				
	U2RRM ⁽²⁾ ,	Set to 0				
	UiLCH, UiERE					
UiSMR	IICM	Set to 1				
	ABC	Select the timing at which arbitration-lost	Invalid			
		is detected				
	BBS	Bus busy flag				
	3 to 7	Set to 0				
UiSMR2	IICM2	See Table 15.12 I ² C Mode Functions				
	CSC	Set this bit to 1 to enable clock synchronization Set to 0				
	SWC	Set this bit to 1 to have SCLi output fixed to "L" at the falling edge of the 9th bit of clock				
	ALS	Set this bit to 1 to have SDAi output	Set to 0			
		stopped when arbitration-lost is detected				
	STAC	Set to 0	Set this bit to 1 to initialize UARTi at			
			start condition detection			
	SWC2	Set this bit to 1 to have SCLi output forcibly pulled low				
	SDHI	Set this bit to 1 to disable SDAi output				
	7	Set to 0				
UiSMR3	0, 2, 4, and NODC	Set to 0				
	CKPH	See Table 15.12 I ² C Mode Functions				
	DL2 to DL0	Set the amount of SDAi digital delay				
UiSMR4	STAREQ	Set this bit to 1 to generate start condition	Set to 0			
01310164	RSTAREQ					
		Set this bit to 1 to generate restart condition	Set to 0			
	STPREQ	Set this bit to 1 to generate stop condition	Set to 0			
	STSPSEL	Set this bit to 1 to output each condition	Set to 0			
	ACKD	Select ACK or NACK				
	ACKC	Set this bit to 1 to output ACK data				
	SCLHI	Set this bit to 1 to have SCLi output	Set to 0			
		stopped when stop condition is detected	-			
	SWC9	Set to 0	Set this bit to 1 to set the SCLi to "L" hol at the falling edge of the 9th bit of clock			
FSR0	IFSR06, ISFR07	Set to 1				
JCON	U0IRS, U1IRS	Invalid				
	2 to 7	Set to 0				
	1210/	I Set to 0				

NOTES:

1. Not all register bits are described above. Set those bits to 0 when writing to the registers in I²C mode.

Set bits 4 and 5 in registers U0C1 and U1C1 to 0. Bits U0IRS, U1IRS, U0RRM, and U1RRM are in the UCON register.
 When using UART1 in I²C mode and enabling the CTS/RTS separate function of UART0, set the CRD bit in the U1C0

register to 0 ($\overline{CTS}/\overline{RTS}$ function enabled) and the CRS bit to 0 (\overline{CTS} input).

Table 15.12 I²C Mode Functions

	Clock	I^2C Mode (SMD2 to SMD0 = 010b, IICM = 1)			
Function	Synchronous Serial I/O Mode	IICM2 = 0 (NACK/ACK interrupt)		IICM2 = 1 (UART transmit/receive interrupt)	
	(SMD2 to SMD0 = 001b, IICM = 0)	CKPH = 0 (No clock delay)	CKPH = 1 (Clock delay)	CKPH = 0 (No clock delay)	CKPH = 1 (Clock delay)
Source of interrupt	-	Start condition de	tection or stop cor	dition detection	
number 6, 7, and 10 $^{(1)}$ $^{(5)}$ $^{(7)}$		(See Table 15.13	STSPSEL Bit Fu	nctions)	
Source of interrupt	UARTi transmission	No acknowledgm	ent detection	UARTi transmission	UARTi transmission
number 15, 17, and 19 $^{(1)}$ $^{(6)}$	Transmission started or completed (selected by UiIRS)	(NACK) Rising edge of SC	CLi 9th bit	Rising edge of SCLi 9th bit	Falling edge of SCLi next to the 9th bit
Source of interrupt	UARTi reception	Acknowledgment	detection (ACK)	UARTi reception	
number 16, 18, and 20 ^{(1) (6)}	When 8th bit received CKPOL = 0 (rising edge) CKPOL = 1 (falling edge)	, and the second s	. ,	Falling edge of S	CLi 9th bit
Timing for transferring		Rising edge of SC	CLi 9th bit	Falling edge of	Falling and rising
data from UART	CKPOL = 1 (falling edge)	5 5		SCLi 9th bit	edges of SCLi 9th
reception shift register					bit
to UiRB register					
UARTi transmission output delay	Not delayed	Delayed			
Functions of pins	TXDi output	SDAi input/output	t		
P6_3, P6_7, and P7_0					
Functions of pins	RXDi input	SCLi input/output			
P6_2, P6_6, and P7_1 Functions of pins	CLKi input or	- (Cannot be used	$\frac{1}{20}$ mode		
P6_1, P6_5, and P7_2		- (Cannot be used	a in i C mode)		
Noise filter width	15 ns	200 ns			
Read RXDi and	Possible when the		o matter how the c	orresponding port	direction bit is set
SCLi pins levels	corresponding port direction bit = 0			encepending pert	
Initial value of TXDi	CKPOL = 0 (H)	The value set in t	he port register be	fore setting I ² C mc	ode ⁽²⁾
and SDAi outputs	CKPOL = 1 (L)		-	-	
Initial and end	-	Н	L	Н	L
value of SCLi					
DMA1 source (6)	UARTi reception	Acknowledgment	detection (ACK)	UARTi reception Falling edge of S	CLi 9th bit
Store received data	1st to 8th bits of t 7 to 0 in the UiRB	the received data are stored into bits B register		bits 6 to 0 in the UiRB	ived data are stored into 1st to 8th bits are stored into bit 7 to bit 0 in UiRB register ⁽³⁾
Read received data	The UiRB registe	gister status is read			Bit 6 to bit 0 in the UiRB register ⁽⁴⁾ are read as bit 7 to bit 1. Bit 8 in the UiRB register is read as bit 0.
-0 to 2					

i = 0 to 2 NOTES:

It for a for the bits shown below is changed, the IR bit in the interrupt control register for the changed interrupt may inadvertently be set to 1 (interrupt requested). (Refer to 23.6 Interrupts.)
If one of the bits shown below is changed, the interrupt source, the interrupt timing, etc. change. Therefore, always be sure to set the IR bit to 0 (interrupt not requested) after changing those bits.
Bits SMD2 to SMD0 in UiMR register
IICM2 bit in UiSMR2 register
IICM2 bit in UiSMR2 register
CKPH bit in UiSMR3 register
Second data transfer to the UiRB register (rising edge of SCLi 9th bit)
First data transfer to the UiRB register (falling edge of SCLi 9th bit)
See Figure 15.26 STSPSEL Bit Functions

- 5.

See Figure 15.26 STSPSEL Bit Functions. See Figure 15.24 Transfer to UIRB Register and Interrupt Timing. When using UART0, be sure to set the IFSR06 bit in the IFSR0 register to 1 (interrupt source: UART0 bus collision detection). When using UART1, be sure to set the IFSR07 bit in the IFSR0 register to 1 (interrupt source: UART1 bus collision detection). 6. 7.

SCLi	
SDAi	D7 \ D6 \ D5 \ D4 \ D3 \ D2 \ D1 \ D0 \ D8(ACK, NACK)
	T ACK interrupt (DMA1 request), NACK interrupt ♣
	Transfer to UiRB register
	b15 b9 b8 b7 b0
(2) IIC	M2 = 0, CKPH = 1 (clock delay)
SCLi	1st bit 2nd bit 3rd bit 4th bit 5th bit 6th bit 7th bit 8th bit 9th bit
SDAi	D7 X D6 X D5 X D4 X D3 X D2 X D1 X D0 X D8(ACK, NACK)
	ACK interrupt (DMA1 request), NACK interrupt
	Transfer to UiRB register
	UiRB register
(3) IIC	M2 = 1 (UART transmit/receive interrupt), CKPH = 0
SCLi	1st bit 2nd bit 3rd bit 4th bit 5th bit 6th bit 7th bit 8th bit 9th bit
SDAi	7 D7 16 D5 14 D3 12 D1 10 D8(ACK, NACK)
	Receive interrupt Transmit interrupt (DMA1 request)
	Transfer to UiRB register
	b15 b9 b8 b7 b0
(4) IIC	M2 = 1, CKPH = 1 UiRB register
SCLi	1st bit 2nd bit 3rd bit 4th bit 5th bit 6th bit 7th bit 8th bit 9th bit
SDAi	D7 \ D6 \ D5 \ D4 \ D3 \ D2 \ D1 \ D0 \ D8 (ACK, NACK)
	Receive interrupt Transmit interrupt
	(DMA1 request)
	Transfer to UiRB register Transfer to UiRB register
	b15 b9 b8 b7 b0 b0 b15 b0 b0 b15 b0 b0 b15 b0 b1
: .	to 2 UiRB register UiRB register

Figure 15.24 Transfer to UiRB Register and Interrupt Timing

15.1.3.1 Detection of Start and Stop Condition

Whether a start or a stop condition has been detected is determined.

A start condition-detected interrupt request is generated when the SDAi pin changes state from high to low while the SCLi pin is in the high state. A stop condition-detected interrupt request is generated when the SDAi pin changes state from low to high while the SCLi pin is in the high state.

Figure 15.25 shows the Detection of Start and Stop Condition.

Because the start and stop condition-detected interrupts share the interrupt control register and vector, check the BBS bit in the UiSMR register to determine which interrupt source is requesting the interrupt.

Figure 15.25 Detection of Start and Stop Condition

15.1.3.2 Output of Start and Stop Condition

- A start condition is generated by setting the STAREQ bit in the UiSMR4 register (i = 0 to 2) to 1 (start). A restart condition is generated by setting the RSTAREQ bit in the UiSMR4 register to 1 (start).
- A stop condition is generated by setting the STPREQ bit in the UiSMR4 register to 1 (start).
- The output procedure is described below.
- (1) Set the STAREQ bit, RSTAREQ bit or STPREQ bit to 1 (start).
- (2) Set the STSPSEL bit in the UiSMR4 register to 1 (output).

Table 15.13 and Figure 15.26 show the STSPSEL Bit Functions.

Table 15.13 STSPSEL Bit Functions

Function	STSPSEL Bit = 0	STSPSEL Bit = 1
Output of pins SCLi and SDAi	Output of transfer clock and	Output of a start/stop condition
	data	depending on bits STAREQ,
	Output of start/stop condition is	RSTAREQ, and STPREQ
	accomplished by a program	
	using ports (not automatically	
	generated in hardware)	
Start/stop condition interrupt	Start/stop condition detection	Finish generating start/stop
request generation timing		condition

Figure 15.26 STSPSEL Bit Functions

15.1.3.3 Arbitration

Unmatching of the transmit data and SDAi pin input data is checked synchronously with the rising edge of SCLi. Use the ABC bit in the UiSMR register to select the timing at which the ABT bit in the UiRB register is updated. If the ABC bit = 0 (updated per bit), the ABT bit is set to 1 at the same time unmatching is detected during check, and is set to 0 when not detected. In cases when the ABC bit is set to 1, if unmatching is detected even once during check, the ABT bit is set to 1 (unmatching detected) at the falling edge of the clock pulse of 9th bit. If the ABT bit needs to be updated per byte, set the ABT bit to 0 (undetected) after detecting acknowledge in the first byte, before transferring the next byte. Setting the ALS bit in the UiSMR2 register to 1 (SDA output stop enabled) causes arbitration-lost to

occur, in which case the SDAi pin is placed in the high-impedance state at the same time the ABT bit is set to 1 (unmatching detected).

15.1.3.4 Transfer Clock

Data is transmitted/received using a transfer clock like the one shown in Figure 15.24 Transfer to UiRB Register and Interrupt Timing.

The CSC bit in the UiSMR2 register is used to synchronize the internally generated clock (internal SCLi) and an external clock supplied to the SCLi pin. In cases when the CSC bit is set to 1 (clock synchronization enabled), if a falling edge on the SCLi pin is detected while the internal SCLi is high, the internal SCLi goes low, at which time the value of the UiBRG register is reloaded with and starts counting in the low-level interval. If the internal SCLi changes state from low to high while the SCLi pin is low, counting stops, and when the SCLi pin goes high, counting restarts.

In this way, the UARTi transfer clock is comprised of the logical product of the internal SCLi and SCLi pin signal. The transfer clock works from a half period before the falling edge of the internal SCLi 1st bit to the rising edge of the 9th bit. To use this function, select an internal clock for the transfer clock.

The SWC bit in the UiSMR2 register allows to select whether the SCLi pin should be fixed to or freed from low-level output at the falling edge of the 9th clock pulse.

If the SCLHI bit in the UiSMR4 register is set to 1 (enabled), SCLi output is turned off (placed in the highimpedance state) when a stop condition is detected.

Setting the SWC2 bit in the UiSMR2 register = 1 (0 output) makes it possible to forcibly output a low-level signal from the SCLi pin even while sending or receiving data. Setting the SWC2 bit to 0 (transfer clock) allows the transfer clock to be output from or supplied to the SCLi pin, instead of outputting a low-level signal. If the SWC9 bit in the UiSMR4 register is set to 1 (SCL hold low enabled) when the CKPH bit in the UiSMR3 register = 1, the SCLi pin is fixed to low-level output at the falling edge of the clock pulse next to the 9th. Setting the SWC9 bit = 0 (SCL hold low disabled) frees the SCLi pin from low-level output.

15.1.3.5 SDA Output

The data written to bits 7 to 0 (D7 to D0) in the UiTB register is sequentially output beginning with D7. The 9th bit (D8) is ACK or NACK.

The initial value of SDAi transmit output can only be set when IICM = 1 (I^2C mode) and bits SMD2 to SMD0 in the UiMR register = 000b (serial interface disabled).

Bits DL2 to DL0 in the UiSMR3 register allow to add no delays or a delay of 2 to 8 UiBRG count source clock cycles to SDAi output.

Setting the SDHI bit in the UiSMR2 register = 1 (SDA output disabled) forcibly places the SDAi pin in the high-impedance state. Do not write to the SDHI bit synchronously with the rising edge of the UARTi transfer clock. This is because the ABT bit may inadvertently be set to 1 (detected).

15.1.3.6 SDA Input

When the IICM2 bit = 0, 1st to 8th bits (D7 to D0) of receive data are stored in bits 7 to 0 in the UiRB register. The 9th bit (D8) is ACK or NACK.

When the IICM2 bit = 1, the 1st to 7th bits (D7 to D1) of receive data are stored in bits 6 to 0 in the UiRB register and the 8th bit (D0) is stored in the bit 8 in the UiRB register. Even when the IICM2 bit = 1, providing the CKPH bit = 1, the same data as when the IICM2 bit = 0 can be read out by reading the UiRB register after the rising edge of the corresponding clock pulse of 9th bit.

15.1.3.7 ACK and NACK

If the STSPSEL bit in the UiSMR4 register is set to 0 (start and stop conditions not generated) and the ACKC bit in the UiSMR4 register is set to 1 (ACK data output), the value of the ACKD bit in the UiSMR4 register is output from the SDAi pin.

If the IICM2 bit = 0, a NACK interrupt request is generated if the SDAi pin remains high at the rising edge of the 9th bit of transmit clock pulse. An ACK interrupt request is generated if the SDAi pin is low at the rising edge of the 9th bit of transmit clock pulse.

If ACKi is selected for the DMA1 request source, a DMA transfer can be activated by detection of an acknowledge.

15.1.3.8 Initialization of Transmission/Reception

If a start condition is detected while the STAC bit = 1 (UARTi initialization enabled), the serial interface operates as described below.

- The transmit shift register is initialized, and the content of the UiTB register is transferred to the transmit shift register. In this way, the serial interface starts transmitting data synchronously with the next clock pulse applied. However, the UARTi output value does not change state and remains the same as when a start condition was detected until the first bit of data is output synchronously with the input clock.
- The receive shift register is initialized, and the serial interface starts receiving data synchronously with the next clock pulse applied.
- The SWC bit is set to 1 (SCL wait output enabled). Consequently, the SCLi pin is pulled low at the falling edge of the 9th clock pulse.

Note that when UARTi transmission/reception is started using this function, the TI bit does not change state. Note also that when using this function, the selected transfer clock should be an external clock.

15.1.4 Special Mode 2

Multiple slaves can be serially communicated from one master. Transfer clock polarity and phase are selectable. Table 15.14 lists the Special Mode 2 Specifications. Figure 15.27 shows the Serial Bus Communication Control Example (UART2). Table 15.15 lists the Registers to be Used an Settings in Special Mode 2.

Item	Specification
Transfer data format	Transfer data length: 8 bits
Transfer clock	Master mode
	The CKDIR bit in the UiMR register = 0 (internal clock) : $fj/(2(n+1))$
	fj = f1SIO, f2SIO, f8SIO, f32SIO. n: Setting value of the UiBRG register 00h to FFh
	Slave mode
	The CKDIR bit = 1 (external clock selected) : Input from CLKi pin
Transmit/receive control	Controlled by input/output ports
Transmit start condition	Before transmission can start, meet the following requirements (1)
	 The TE bit in the UiC1 register = 1 (transmission enabled)
	 The TI bit in the UiC1 register = 0 (data present in the UiTB register)
Receive start condition	Before reception can start, meet the following requirements ⁽¹⁾
	 The RE bit in the UiC1 register = 1 (reception enabled)
	 The TE bit in the UiC1 register = 1 (transmission enabled)
	 The TI bit in the UiC1 register = 0 (data present in the UiTB register)
Interrupt request	For transmission, one of the following conditions can be selected
generation timing	• The UiIRS bit $^{(2)} = 0$ (transmit buffer empty): when transferring data from the UiTB
	register to the UARTi transmit register (at start of transmission)
	• The UiIRS bit =1 (transmission completed): when the serial interface finished
	transmitting data from the UARTi transmit register
	For reception
	• When transferring data from the UARTi receive register to the UiRB register (at
	completion of reception)
Error detection	Overrun error ⁽³⁾
	This error occurs if the serial interface started receiving the next data before reading
	the UiRB register and received the 7th bit of the next data
Select function	Clock phase setting
	Selectable from four combinations of transfer clock polarities and phases

Table 15.14 Special Mode 2 Specifications

i = 0 to 2

NOTES:

- 1. When an external clock is selected, the conditions must be met while if the CKPOL bit in the UiC0 register = 0 (transmit data output at the falling edge and the receive data taken in at the rising edge of the transfer clock), the external clock is in the high state; if the CKPOL bit = 1 (transmit data output at the rising edge and the receive data taken in at the falling edge of the transfer clock), the external clock is in the falling edge of the transfer clock), the external clock is in the falling edge of the transfer clock), the external clock is in the falling edge of the transfer clock), the external clock is in the falling edge of the transfer clock).
- 2. Bits U0IRS and U1IRS are bits 0 and 1 in the UCON register ; the U2IRS bit is bit 4 in the U2C1 register.
- 3. If an overrun error occurs, the value of UiRB register will be undefined. The IR bit in SiRIC register remains unchanged.

Figure 15.27 Serial Bus Communication Control Example (UART2)

Table 15.15 Registers to Be Used and Settings in Special Mode 2

Register	Bit	Function			
UiTB ⁽¹⁾	0 to 7	Set transmit data			
UiRB ⁽¹⁾	0 to 7	Receive data can be read			
	OER	Overrun error flag			
UiBRG	0 to 7	Set a bit rate			
UiMR ⁽¹⁾	SMD2 to SMD0	Set to 001b			
	CKDIR	Set this bit to 0 for master mode or 1 for slave mode			
	IOPOL	Set to 0			
UiC0	CLK1 to CLK0	Select the count source for the UiBRG register			
	CRS	Invalid because the CRD bit = 1			
	TXEPT	Transmit register empty flag			
	CRD	Set to 1			
	NCH	Select TXDi pin output format			
	CKPOL	Clock phases can be set in combination with the CKPH bit in the UiSMR3 register			
	UFORM	Set to 0			
UiC1	TE	Set this bit to 1 to enable transmission			
	TI	Transmit buffer empty flag			
	RE	Set this bit to 1 to enable reception			
	RI	Reception complete flag			
	U2IRS ⁽²⁾	Select the UART2 transmit interrupt source			
	U2RRM ⁽²⁾ ,	Set to 0			
	UiLCH, UiERE				
UiSMR	0 to 7	Set to 0			
UiSMR2	0 to 7	Set to 0			
UiSMR3	СКРН	Clock phases can be set in combination with the CKPOL bit in the UiC0 register			
	NODC	Set to 0			
	0, 2, 4 to 7	Set to 0			
UiSMR4	0 to 7	Set to 0			
UCON	U0IRS, U1IRS	Select the UART0 and UART1 transmit interrupt source			
	U0RRM, U1RRM	Set to 0			
	CLKMD0	Invalid because the CLKMD1 bit = 0			
	CLKMD1, RCSP, 7	Set to 0			

i = 0 to 2

NOTES:

- 1. Not all register bits are described above. Set those bits to 0 when writing to the registers in Special Mode 2.
- 2. Set bits 4 and 5 in registers U0C1 and U1C1 to 0. Bits U0IRS, U1IRS, U0RRM, and U1RRM are in the UCON register.

15.1.4.1 Clock Phase Setting Function

One of four combinations of transfer clock phases and polarities can be selected using the CKPH bit in the UiSMR3 register and the CKPOL bit in the UiC0 register.

Make sure the transfer clock polarity and phase are the same for the master and salves to be communicated. Figure 15.28 shows the Transmission and Reception Timing in Master Mode (internal clock).

Figure 15.29 shows the Transmission and Reception Timing (CKPH = 0) in Slave Mode (external clock). Figure 15.30 shows the Transmission and Reception Timing (CKPH = 1) in Slave Mode (external clock).

Figure 15.28 Transmission and Reception Timing in Master Mode (Internal Clock)

Figure 15.29 Transmission and Reception Timing (CKPH = 0) in Slave Mode (External Clock)

Figure 15.30 Transmission and Reception Timing (CKPH = 1) in Slave Mode (External Clock)

15.1.5 Special Mode 3 (IE Mode)

In this mode, one bit of IEBus is approximated with one byte of UART mode waveform.

Table 15.16 lists the Registers to be Used and Settings in IE mode. Figure 15.31 shows the Bus Collision Detect Function-Related Bits.

If the TXDi pin (i = 0 to 2) output level and RXDi pin input level do not match, a UARTi bus collision detect interrupt request is generated.

Use bits IFSR06 and IFSR07 in the IFSR0 register to enable the UART0/UART1 bus collision detect function.

Register	Bit	Function		
UiTB	0 to 8	Set transmit data		
UiRB ⁽¹⁾	0 to 8	Receive data can be read		
	OER,FER,PER,SUM	Error flag		
UiBRG	0 to 7	Set a bit rate		
UiMR	SMD2 to SMD0	Set to 110b		
	CKDIR	Select the internal clock or external clock		
	STPS	Set to 0		
	PRY	Invalid because the PRYE bit = 0		
	PRYE	Set to 0		
	IOPOL	Select the TXD/RXD input/output polarity		
UiC0	CLK1 to CLK0	Select the count source for the UiBRG register		
	CRS	Invalid because the CRD bit = 1		
	TXEPT	Transmit register empty flag		
	CRD	Set to 1		
	NCH	Select TXDi pin output mode		
	CKPOL	Set to 0		
	UFORM	Set to 0		
UiC1	TE	Set this bit to 1 to enable transmission		
	TI	Transmit buffer empty flag		
	RE	Set this bit to 1 to enable reception		
	RI	Reception complete flag		
	U2IRS ⁽²⁾	Select the UART2 transmit interrupt source		
	U2RRM ⁽²⁾ ,	Set to 0		
	UiLCH, UiERE			
UiSMR	0 to 3, 7	Set to 0		
	ABSCS	Select the sampling timing at which to detect a bus collision		
	ACSE	Set this bit to 1 to use the auto clear function of transmit enable bit		
	SSS	Select the transmit start condition		
UiSMR2	0 to 7	Set to 0		
UiSMR3	0 to 7	Set to 0		
UiSMR4	0 to 7	Set to 0		
IFSR0	IFSR06, IFSR07	Set to 1		
UCON	U0IRS, U1IRS	Select the UART0/UART1 transmit interrupt source		
	U0RRM, U1RRM	Set to 0		
	CLKMD0	Invalid because the CLKMD1 bit = 0		
	CLKMD1, RCSP, 7	Set to 0		

Table 15.16	Registers t	to Be Used	and Settings	in IE Mode

i= 0 to 2

NOTES:

- 1. Not all register bits are described above. Set those bits to 0 when writing to the registers in IE mode.
- 2. Set bits 4 and 5 in registers U0C1 and U1C1 to 0. Bits U0IRS, U1IRS, U0RRM, and U1RRM are in the UCON register.

(1) The ABSCS bit in	UiSMR register (bus collision detect sampling clock select)
	If ABSCS bit = 0, bus collision is determined at the rising edge of the transfer clock
Transfer clock	ST D0 D1 D2 D3 D4 D5 D6 D7 D8 SP
TXDi	
RXDi	Trigger signal is applied to the TAjIN pin
Timer Aj	
	If ABSCS bit $=$ 1, bus collision is determined when timer Aj (one-shot timer mode) underflows.
	timer Aj: timer A3 when UART0; timer A4 when UART1; timer A0 when UART2
2) The ACSE bit in U	iSMR register (auto clear of transmit enable bit)
Transfer clock	
TXDi	ST D0 D1 D2 D3 D4 D5 D6 D7 D8 SP
RXDi	
IR bit in UiBCNIC register	If the ACSE bit = 1 (automatically clear when bus collision occurs), the TE bit is set to 0
TE bit in	(transmission disabled) when the IR bit in the UIBCNIC register = 1
UiC1 register	(unmatching detected).
-	MR register (transmit start condition select) rial interface starts transmitting data one transfer clock cycle after the transmission enable condition is met
Transfer clock	ST D0 D1 D2 D3 D4 D5 D6 D7 D8 SP
TXDi	
Transmis	ssion enable condition is met
If SSS bit = 1, the se	erial interface starts transmitting data at the rising edge $^{(1)}$ of RXDi
CLKi	ST D0 D1 D2 D3 D4 D5 D6 D7 D8 SP
TXDi	(NOTE 2)
RXDi	
	Di when IOPOL bit = 0; the rising edge of RXDi when IOPOL bit = 1. must be met before the falling edge $^{(1)}$ of RXDi.
= 0 to 2 This diagram applies to the	case where IOPOL bit =1 (reversed).

Figure 15.31 Bus Collision Detect Function-Related Bits

15.1.6 Special Mode 4 (SIM Mode) (UART2)

Based on UART mode, this is an SIM interface compatible mode. Direct and inverse formats can be implemented, and this mode allows to output a low from the TXD2 pin when a parity error is detected. Table 15.17 lists the SIM Mode Specifications. Table 15.18 lists the Registers to be Used and Settings in SIM Mode. Figure 15.32 shows the Transmit and Receive Riming in SIM Mode.

Item	Specification		
Transfer data format	Direct format		
	Inverse format		
Transfer clock	• The CKDIR bit in the U2MR register = 0 (internal clock) : fi/(16(n+1))		
	fi = f1SIO, f2SIO, f8SIO, f32SIO. n: Setting value of the U2BRG register 00h to FFh		
	• The CKDIR bit = 1 (external clock) : fEXT/(16(n+1))		
	fEXT: Input from CLK2 pin. n: Setting value of the U2BRG register 00h to FFh		
Transmit start condition	Before transmission can start, meet the following requirements		
	• The TE bit in the U2C1 register = 1 (transmission enabled)		
	• The TI bit in the U2C1 register = 0 (data present in the U2TB register)		
Receive start condition	Before reception can start, meet the following requirements		
	 The RE bit in the U2C1 register = 1 (reception enabled) 		
	Start bit detection		
Interrupt request	For transmission		
generation timing ⁽²⁾	When the serial interface finished sending data from the U2TB transfer register		
	(U2IRS bit = 1)		
	For reception		
	When transferring data from the UART2 receive register to the U2RB register (at		
	completion of reception)		
Error detection	Overrun error (1)		
	This error occurs if the serial interface started receiving the next data before reading		
	the U2RB register and received the bit one before the last stop bit of the next data		
	• Framing error ⁽³⁾		
	This error occurs when the number of stop bits set is not detected		
	• Parity error ⁽³⁾		
	During reception, if a parity error is detected, parity error signal is output from the		
	TXD2 pin.		
	During transmission, a parity error is detected by the level of input to the RXD2 pin		
	when a transmission interrupt occurs		
	• Error sum flag		
	This flag is set to 1 when any of the overrun, framing, and parity errors is encountered		

Table 15.17 SIM Mode Specifications

NOTES:

- 1. If an overrun error occurs, the value of the U2RB register will be undefined. The IR bit in the S2RIC register remains unchanged.
- 2. A transmit interrupt request is generated by setting the U2IRS bit in the U2C1 register to 1 (transmission completed) and U2ERE bit in the U2C1 register to 1 (error signal output) after reset. Therefore, when using SIM mode, set the IR bit to 0 (interrupt not requested) after setting these bits.
- 3. The timing at which the framing error flag and the parity error flag are set is detected when data is transferred from the UARTi receive register to the UiRB register.

Table 15.18 Registers to Be Used and Settings in SIM Mode

Register	Bit	Function
U2TB ⁽¹⁾	0 to 7	Set transmit data
U2RB ⁽¹⁾	0 to 7	Receive data can be read
	OER,FER,PER,SUM	Error flag
U2BRG	0 to 7	Set a bit rate
U2MR	SMD2 to SMD0	Set to 101b
	CKDIR	Select the internal clock or external clock
	STPS	Set to 0
	PRY	Set this bit to 1 for direct format or 0 for inverse format
	PRYE	Set to 1
	IOPOL	Set to 0
U2C0	CLK1 to CLK0	Select the count source for the U2BRG register
	CRS	Invalid because the CRD bit = 1
	TXEPT	Transmit register empty flag
	CRD	Set to 1
	NCH	Set to 0
	CKPOL	Set to 0
	UFORM	Set this bit to 0 for direct format or 1 for inverse format
U2C1	TE	Set this bit to 1 to enable transmission
	ТІ	Transmit buffer empty flag
	RE	Set this bit to 1 to enable reception
	RI	Reception complete flag
	U2IRS	Set to 1
	U2RRM	Set to 0
	U2LCH	Set this bit to 0 for direct format or 1 for inverse format
	U2ERE	Set to 1
U2SMR ⁽¹⁾	0 to 3	Set to 0
U2SMR2	0 to 7	Set to 0
U2SMR3	0 to 7	Set to 0
U2SMR4	0 to 7	Set to 0

NOTE:

1. Not all register bits are described above. Set those bits to 0 when writing to the registers in SIM mode.

Figure 15.33 shows the SIM Interface Connection. Connect TXD2 and RXD2 and apply pull-up.

Figure 15.33 SIM Interface Connection

15.1.6.1 Parity Error Signal Output

The parity error signal is enabled by setting the U2ERE bit in the U2C1 register to 1 (output enabled). The parity error signal is output when a parity error is detected while receiving data. This is achieved by pulling the TXD2 output low with the timing shown in Figure 15.32. If the U2RB register is read while outputting a parity error signal, the PER bit in the U2RB register is set to 0 (no parity error) and at the same time the TXD2 output is returned high.

When transmitting, a transmission-finished interrupt request is generated at the falling edge of the transfer clock pulse that immediately follows the stop bit. Therefore, whether a parity signal has been returned can be determined by reading the port that shares the UXD2 pin in a transmission-finished interrupt routine.

Transfer clock		
RXD2	"H" ST (D0 (D1 (D2 (D3 (D4 (D5 (D6 (D	7 X P Y SP
TXD2	"H" (NOTE 1)	
RI bit in U2C1 register	1	
implemented.	gram applies to the case where the direct format is	ST: Start bit P: Even Parity SP: Stop bit
NOTE: 1: The outp	ut of MCU is in the high-impedance state (pulled up ex	·

Figure 15.34 shows the output timing of the parity error signal

15.1.6.2 Format

When direct format, set the PRYE bit in the U2MR register to 1, the PRY bit to 1, the UFORM bit in the U2C0 register to 0 and the U2LCH bit in the U2C1 register to 0. When data are transmitted, data set in the U2TB register are transmitted with the even-numbered parity, starting from D0. When data are received, received data are stored in the U2RB register, starting from D0. The even-numbered parity determines whether a parity error occurs.

When inverse format, set the PRYE bit to 1, the PRY bit to 0, the UFORM bit to 1 and the U2LCH bit to 1. When data are transmitted, values set in the U2TB register are logically inversed and are transmitted with the odd-numbered parity, starting from D7. When data are received, received data are logically inversed to be stored in the U2RB register, starting from D7. The odd-numbered parity determines whether a parity error occurs.

Figure 15.35 shows the SIM Interface Format.

Figure 15.35 SIM Interface Format

15.2 SI/O3

SI/O3 is exclusive clock-synchronous serial I/Os.

Figure 15.36 shows the SI/O3 Block Diagram, and Figure 15.37 shows the SI/O3-related registers. Table 15.19 lists the SI/O3 Specifications.

Figure 15.36 SI/O3 Block Diagram

SI/O3 Control Regist				
]	-)	ddress After Reset 1E2h 0100000b	
	Bit Symbol	Bit Name	Description	RW
	SM30	Internal synchronous	^{b1 b0} 0 0 : f1SIO or f2SIO is selected ⁽⁶⁾ 0 1 : f8SIO is selected	RW
	SM31	clock select bits ⁽⁵⁾	1 0 : f32SIO is selected 1 1 : Do not set a value	RW
	SM32	SOUT3 output disable bit ⁽²⁾	0 : SOUT3 output 1 : SOUT3 output disabled (high-impedance)	RW
	SM33	SI/O3 port select bit	0 : Input/output port 1 : SOUT3 output, CLK3 function	RW
	SM34	CLK polarity select bit	 0 : Transmit data is output at falling edge of transfer clock and receive data is input at rising edge 1 : Transmit data is output at rising edge of transfer clock and receive data is input at falling edge 	RW
	SM35	Transfer direction select bit	0 : LSB first 1 : MSB first	RW
	SM36	Synchronous clock select bit	0 : External clock ⁽³⁾ 1 : Internal clock ⁽⁴⁾	RW
	SM37	SOUT3 initial value set bit	Effective when the SM33 bit = 0 0 : "L" output 1 : "H" output	RW

NOTES:

1. Make sure this register is written to by the next instruction after setting the PRC2 bit in the PRCR register to 1 (write enabled).

2. When the SM32 bit is set to 1, the target pin goes to a high-impedance state regardless of which functions of the pin is being used.

3. Set the SM33 bit to 1 (SOUT3 output, CLK3 function) and the corresponding port direction bit to 0 (input mode).

4. Set the SM33 bit to 1 (SOUT3 output, CLK3 function).

5. When changing bits SM31 to SM30, set the S3BRG register.

6. Selected by the PCLK1 bit in the PCLKR register.

SI/O3 Bit Rate Register (1) (2) (3)

Table 15.19 SI/O3 Specifications

Item	Specification
Transfer data format	Transfer data length: 8 bits
Transfer clock	• SM36 bit in S3C register = 1 (internal clock) : fj/(2(n+1))
	fj = f1SIO, f8SIO, f32SIO. n = Setting value of S3BRG register 00h to FFh
	• SM36 bit = 0 (external clock) : Input from CLK3 pin ⁽¹⁾
Transmit/receive	Before transmission/reception can start, meet the following requirements
start condition	Write transmit data to the S3TRR register (2) (3)
Interrupt request	• When SM34 bit in S3C register = 0
generation timing	The rising edge of the last transfer clock pulse (4)
	• When SM34 bit = 1
	The falling edge of the last transfer clock pulse (4)
CLK3 pin function	I/O port, transfer clock input, transfer clock output
SOUT3 pin function	I/O port, transmit data output, high-impedance
SIN3 pin function	I/O port, receive data input
Select function	LSB first or MSB first selection
	Whether to start transmitting or receiving data begins with bit 0 or begins
	with bit 7 can be selected
	 Function for setting an SOUT3 initial value set function
	When the SM36 bit in the S3C register = 0 (external clock), the SOUT3 pin
	output level while not transmitting can be selected.
	CLK polarity selection
	Whether transmit data is output/input timing at the rising edge or falling
	edge of transfer clock can be selected.

NOTES:

1. To set the SM36 bit in the S3C register to 0 (external clock), follow the procedure described below.

- If the SM34 bit in the S3C register = 0, write transmit data to the S3TRR register while input on the CLK3 pin is high. The same applies when rewriting the SM37 bit in the S3C register.
- If the SM34 bit = 1, write transmit data to the S3TRR register while input on the CLK3 pin is low. The same applies when rewriting the SM37 bit.
- Because shift operation continues as long as the transfer clock is supplied to the SI/O3 circuit, stop the transfer clock after supplying eight pulses. If the SM36 bit = 1 (internal clock), the transfer clock automatically stops.
- 2. Unlike UART0 to UART2, SI/O3 is not separated between the transfer register and buffer. Therefore, do not write the next transmit data to the S3TRR register during transmission.
- 3. When the SM36 bit = 1 (internal clock), SOUT3 retains the last data for a 1/2 transfer clock period after completion of transfer and, thereafter, goes to a high-impedance state. However, if transmit data is written to the S3TRR register during this period, SOUT3 immediately goes to a high-impedance state, with the data hold time thereby reduced.
- 4. When the SM36 bit = 1 (internal clock), the transfer clock stops in the high state if the SM34 bit = 0, or stops in the low state if the SM34 bit = 1.

15.2.1 SI/O3 Operation Timing

Figure 15.38 shows the SI/O3 Operation Timing.

Figure 15.38 SI/O3 Operation Timing

15.2.2 CLK Polarity Selection

The SM34 bit in the S3C register allows selection of the polarity of the transfer clock. Figure 15.39 shows the Polarity of Transfer Clock.

(1) When SM34 bit in S3C register = 0	
CLK3 (NOTE 1)	
SOUT3 D0 D1 D2 D3 D4 D5 D6 D7	
SIN3 D0 D1 D2 D3 D4 D5 D6 D7	
(2) When SM34 bit = 1	
CLK3 (NOTE 2)	
SOUT3 D0 D1 D2 D3 D4 D5 D6 D7	
SIN3 D0 D1 D2 D3 D4 D5 D6 D7	
 *This diagram applies to the case where the bits in the S3C register are set as follows: • SM35 = 0 (LSB first) • SM36 = 1 (internal clock) 	
 NOTES: 1. When the SM36 bit = 1 (internal clock), a high level is output from the CLK3 pin if not transferring data. 2. When the SM36 bit = 1 (internal clock), a low level is output from the CLK3 pin if not transferring data. 	

Figure 15.39 Polarity of Transfer Clock

15.2.3 Functions for Setting SOUT3 Initial Value

If the SM36 bit in the S3C register is set to 0 (external clock), the SOUT3 pin output can be fixed high or low when not transferring. However, the last bit value of the former data is retained between data and data when transmitting the continuous data.

Figure 15.40 shows the timing chart and how to set it for the SOUT3's Initial Value Setting.

Figure 15.40 SOUT3's Initial Value Setting
16. A/D Converter

The MCU contains one A/D converter circuit based on 10-bit successive approximation method configured with a capacitive-coupling amplifier. The analog inputs share the pins with P10_0 to P10_7, P9_5, P9_6, P0_0 to P0_7, and P2_0 to P2_7. Similarly, ADTRG input shares the pin with P9_7. Therefore, when using these inputs, make sure the corresponding port direction bits are set to 0 (input mode).

When not using the A/D converter, set the VCUT bit to 0 (VREF unconnected), so that no current will flow from the VREF pin into the resistor ladder, helping to reduce the power consumption of the chip.

The A/D conversion result is stored in the bits in the ADi register for pins ANi, AN0_i, and AN2_i (i = 0 to 7). Table 16.1 shows the A/D Converter Performance. Figure 16.1 shows the A/D Converter Block Diagram, and Figures 16.2 and 16.3 show the A/D converter-related registers.

Item	Performance
Method of A/D conversion	Successive approximation (capacitive coupling amplifier)
Analog input voltage (1)	0 V to AVCC (VCC)
Operating clock ϕ AD ⁽²⁾	fAD, divide-by-2 of fAD, divide-by-3 of fAD, divide-by-4 of fAD,
	divide-by-6 of fAD, divide-by-12 of fAD
Resolution	8 bits or 10 bits (selectable)
Integral nonlinearity error	When AVCC = VREF = 5 V
	With 8-bit resolution: ±2 LSB
	With 10-bit resolution: ±3 LSB
	When external operation amp connection mode is selected: ±7 LSB
	When AVCC = VREF = 3.3 V
	• With 8-bit resolution: ±2 LSB
	• With 10-bit resolution: ±5 LSB
	When external operation amp connection mode is selected: ±7 LSB
Operating modes	One-shot mode, repeat mode, single sweep mode, repeat sweep mode 0,
	and repeat sweep mode 1
Analog input pins	8 pins (AN0 to AN7) + 2 pins (ANEX0 and ANEX1) + 8 pins (AN0_0 to AN0_7)
	+ 8 pins (AN2_0 to AN2_7)
A/D conversion	Software trigger
start condition	The ADST bit in the ADCON0 register is set to 1 (A/D conversion starts)
	• External trigger (retriggerable)
	Input on the ADTRG pin changes state from high to low after the ADST bit
	is set to 1 (A/D conversion starts)
Conversion speed per pin	Without sample and hold
	8-bit resolution: 49 φAD cycles, 10-bit resolution: 59 φAD cycles
	With sample and hold
	8-bit resolution: 28 φAD cycles, 10-bit resolution: 33 φAD cycles

Table 16.1 A/D Converter Performance

NOTES:

1. Does not depend on use of sample and hold.

 $2.\phi AD$ frequency must be 10 MHz or less.

When sample and hold is disabled, ϕAD frequency must be 250 kHz or more.

When sample and hold is enabled, ϕAD frequency must be 1 MHz or more.

Figure 16.1 A/D Converter Block Diagram

b5 b4 b3 b2 b1 b0	Symbol		After Reset 00000XXXb	
	Bit Symbol	Bit Name	Function	R
	CH0			R
	CH1	Analog input pin select bits	Function varies depending on operating mode	R
	CH2			R۱
	MD0	A/D operating mode	0 0 : One-shot mode 0 1 : Repeat mode	R
	MD1	select bits 0	1 0 : Single sweep mode 1 1 : Repeat sweep mode 0 or Repeat sweep mode 1	R
	TRG	Trigger select bit	0 : Software trigger 1 : ADTRG trigger	R
	ADST	A/D conversion start flag	0 : A/D conversion disabled 1 : A/D conversion started	R۱
		Frequency select bit 0	Refer to NOTE 2 for ADCON2	
the ADCON0 register		uring A/D conversion, the cor	Register nversion result will be undefined. After Reset 00h	
ontrol Register	r is rewritten d 1 ⁽¹⁾ Symbol ADCON	Address 03D7h	After Reset 00h	_
ntrol Register	r is rewritten d 1 ⁽¹⁾ Symbol ADCON ⁻ Bit symbol	uring A/D conversion, the cor	After Reset 00h Function	R
ntrol Register	r is rewritten d 1 ⁽¹⁾ Symbol ADCON	Address 03D7h	After Reset 00h	R\ R\ R\ R\
trol Register	r is rewritten d 1 ⁽¹⁾ Symbol ADCON ⁻ Bit symbol SCAN0	Address 03D7h Bit name	After Reset 00h Function Function on	R'
rol Register	r is rewritten d 1 ⁽¹⁾ Symbol ADCON ⁻ Bit symbol SCAN0 SCAN1	Address 03D7h A/D sweep pin select bits	After Reset 00h Function Function varies depending on operating mode 0 : Any mode other than repeat sweep mode 1	R'
trol Register	r is rewritten d 1 ⁽¹⁾ Symbol ADCON ⁻ Bit symbol SCAN0 SCAN1 MD2	Address Address 03D7h Bit name A/D sweep pin select bits A/D operating mode select bit 1	After Reset 00h Function Function varies depending on operating mode 0 : Any mode other than repeat sweep mode 1 1 : Repeat sweep mode 1 0 : 8-bit mode	R' R'
htrol Register	r is rewritten di 1 ⁽¹⁾ Symbol ADCON ⁻ Bit symbol SCAN0 SCAN1 MD2 BITS	Address 03D7h Bit name A/D sweep pin select bits A/D operating mode select bit 1 8/10-bit mode select bit	After Reset 00h Function Function Out O : Any mode other than repeat sweep mode 1 1 : Repeat sweep mode 1 0 : 8-bit mode 1 : 10-bit mode Refer to NOTE 2 for ADCON2	R' R' R' R'
ontrol Register	r is rewritten dr 1 ⁽¹⁾ Symbol ADCON ⁻ Bit symbol SCAN0 SCAN1 MD2 BITS CKS1	Address 03D7h Bit name A/D sweep pin select bits A/D operating mode select bit 1 8/10-bit mode select bit Frequency select bit 1	After Reset 00h Function Function Ob Ob Function varies depending on operating mode 0 : Any mode other than repeat sweep mode 1 1 : Repeat sweep mode 1 0 : 8-bit mode 1 : 10-bit mode Refer to NOTE 2 for ADCON2 Register 0 : VREF not connected	R' R' R'

	0 b1	ь0	Symbo ADCON	bl Address After Reset 42 03D4h 00h	
		Bit	Symbol	Bit Name Function	RV
			SMP	A/D conversion method select bit 0 : Without sample and hold 1 : With sample and hold	RV
		AD	GSEL0	A/D input group select bits 0 1 : Do not set a value	RV
		AD	GSEL1	1 0 : Port P0 group is selected 1 1 : Port P2 group is selected	RV
			_ (b3)	Reserved bit Set to 0	RV
		(CKS2	Frequency select bit 2 (2)0 : Selects fAD, divide-by-2 of fAD, divide-by-4 of fAD. 1 : Selects divide-by-3 of fAD, divide- of fAD, or divide-by-12 of fAD.	BV
		(_ b7-b5)	Nothing is assigned. If necessary, set to 0. When read, the content is 0.	-
CKS2	1	-		CKS1 bit in the ADCON1 register, and the CKS2 bit in the ADCON2	register.
CKS2	CKS1	CKS0			register.
CKS2 0	1	-			register.
	CKS1	CKS0	Divide-	φAD	register.
0	CKS1	CKS0	Divide-	φAD by-4 of fAD	register.
0	CKS1 0 0	CKS0 0 1	Divide- Divide- fAD	φAD by-4 of fAD by-2 of fAD	register.
0 0 0	CKS1 0 0 1	CKS0 0 1 0	Divide- Divide- fAD Divide-	φAD by-4 of fAD by-2 of fAD by-12 of fAD	register.
0 0 0	CKS1 0 0 1 1	CKS0 0 1 0 1	Divide- Divide- fAD Divide-	φAD by-4 of fAD by-2 of fAD	register.
0 0 0 1	CKS1 0 1 1 0	CKS0 0 1 0 1 0	Divide- Divide- fAD Divide- Divide-	φAD by-4 of fAD by-2 of fAD by-12 of fAD by-6 of fAD	register.
0 0 0 1 1	CKS1 0 1 1 0 0	CKS0 0 1 0 1 0 1	Divide- Divide- fAD Divide- Divide-	φAD by-4 of fAD by-2 of fAD by-12 of fAD	register.
0 0 0 1 1 1 1 1 0 0 0 1 1	CKS1 0 1 1 0 0 1 1	CKS0 0 1 0 1 0 1 0 1	Divide- Divide- fAD Divide- Divide-	φAD by-4 of fAD by-2 of fAD by-12 of fAD by-6 of fAD by-3 of fAD by-3 of fAD by-3 of fAD by-3 of fAD by-4 of fAD by-6 of fAD by-6 of fAD by-6 of fAD by-73 of fAD by-12 of fAD by-6 of fAD by-73 of fAD by-12 of fAD by-6 of fAD by-73 of fAD by -12 of fAD AD1 AD2 AD2 AD3 AD4 AD5 by AD6 by AD6 by AD6	Reset efined efined efined efined efined efined efined efined efined
0 0 0 1 1 1 1 1 0 0 0 1 1	CKS1 0 1 1 0 0 1 1	CKS0 0 1 0 1 0 1 0 1 0 0 1 0 0 0 0 0 7)	Divide- Divide- fAD Divide- Divide-	φAD by-4 of fAD by-2 of fAD by-12 of fAD by-6 of fAD by-3 of fAD by-3 of fAD AD0 03C1h to 03C0h AD1 03C3h to 03C2h AD2 03C5h to 03C4h AD3 03C7h to 03C6h AD4 03C9h to 03C8h b0 AD5 AD6 03CDh to 03CCh	Reset efined efined efined efined efined efined efined
0 0 0 1 1 1 1 1 0 0 0 1 1	CKS1 0 1 1 0 0 1 1	CKS0 0 1 0 1 0 1 0 1 0 0 1 0 0 0 0 0 7)	Divide- Divide- fAD Divide- Divide-	φAD by-4 of fAD by-2 of fAD by-2 of fAD by-6 of fAD by-6 of fAD by-3 of fAD by-3 of fAD by-3 of fAD by-3 of fAD by-3 of fAD by-4 of fAD by-4 of fAD by-4 of fAD by-3 of fAD by-3 of fAD by-4 of fAD by-3 of fAD by-4 of fAD by-4 of fAD by-3 of fAD by-4 of fAD by-3 of fAD by-4 of fAD by-4 of fAD by-3 of fAD by-3 of fAD by-4 of fAD by-4 of fAD by-3 of fAD by-4 of fAD b	Reset efined efined efined efined efined efined efined
0 0 0 1 1 1	CKS1 0 1 1 0 0 1 1	CKS0 0 1 0 1 0 1 0 1 0 0 1 0 0 0 0 0 7)	Divide- Divide- fAD Divide- Divide-	φAD by-4 of fAD by-2 of fAD by-2 of fAD by-6 of fAD by-6 of fAD by-3 of fAD by-3 of fAD by-3 of fAD by-3 of fAD by-4 of fAD by-2 of fAD by-4 of fAD by-2 of fAD by-6 of fAD by-6 of fAD by-3 of fAD by-3 of fAD by-6 of fAD by-6 of fAD by-12 of fAD by-12 of fAD by-6 of fAD by-6 of fAD by-6 of fAD by-3 of fAD by-12 of fAD by-12 of fAD by-12 of fAD by-12 of fAD by-6 of fAD by-6 of fAD by-3 of fAD by-6 of fAD by-3 of fAD by-6 of fAD by-10 03C1h to 03C0h Unc AD2 03C5h to 03C4h Unc AD3 03C7h to 03C6h Unc AD4 03C9h to 03C6h Unc AD5 03CBh to 03CAh Unc AD7 03CFh to 03CEh Unc AD7 03CFh to 03CEh Unc AD7 03CFh to 03CEh Unc	Reset efined efined efined efined efined efined efined
0 0 0 1 1 1 1 1 0 0 0 1 1	CKS1 0 1 1 0 0 1 1	CKS0 0 1 0 1 0 1 0 1 0 0 1 0 0 0 0 0 7)	Divide- Divide- fAD Divide- Divide-	φAD by-4 of fAD by-2 of fAD by-12 of fAD by-6 of fAD by-3 of fAD by-3 of fAD by-3 of fAD by-4 of fAD by-6 of fAD by-6 of fAD by-72 of fAD by-6 of fAD by-72 of fAD by-72 of fAD by-6 of fAD by-72 of fAD AD1 03C1h to 03C0h AD2 03C5h to 03C4h AD4 03C9h to 03C8h AD5 03CBh to 03CAh AD6 03CDh to 03CCh AD7 03CFh to 03CEh AD7 03CFh to 03CEh When BITS bit in ADCON1 When BITS bit is 0 (8-bit mode) (A/D conversion result	Reset efined efined efined efined efined efined efined

Figure 16.3 Registers ADCON2, and AD0 to AD7

16.1 Mode Description

16.1.1 One-shot Mode

In one-shot mode, analog voltage applied to a selected pin is converted to a digital code once. Table 16.2 lists the One-shot Mode Specifications. Figure 16.4 shows Registers ADCON0 and ADCON1 in One-shot Mode.

Table 16.2	One-shot Mod	le Specifications
-------------------	--------------	-------------------

Item	Specification
Function	Bits CH2 to CH0 in the ADCON0 register, bits ADGSEL1 to ADGSEL0 in
	the ADCON2 register, and bits OPA1 to OPA0 in the ADCON1 register select
	a pin Analog voltage applied to the pin is converted to a digital code once.
A/D conversion	• When the TRG bit in the ADCON0 register is 0 (software trigger)
start condition	The ADST bit in the ADCON0 register is set to 1 (A/D conversion starts)
	• When the TRG bit is 1 (ADTRG trigger)
	Input on the ADTRG pin changes state from high to low after the ADST
	bit is set to 1 (A/D conversion starts)
A/D conversion	• Completion of A/D conversion (If a software trigger is selected, the ADST
stop condition	bit is set to 0 (A/D conversion halted).)
	Set the ADST bit to 0
Interrupt request	Completion of A/D conversion
generation timing	
Analog input pin	Select one pin from AN0 to AN7, AN0_0 to AN0_7, AN2_0 to AN2_7,
	ANEX0 to ANEX1
Reading of result of	Read one of registers AD0 to AD7 that corresponds to the selected pin
A/D converter	

b6 b5 b4 b3 b2 b1 b0	Symbol		After Reset 00000XXXb	
	Bit Symbol	Bit Name	Function	RV
	CH0		b2 b1 b0 0 0 0 : AN0 is selected 0 0 1 : AN1 is selected	R۷
	CH1	Analog input pin select bits	0 1 0 : AN2 is selected 0 1 1 : AN3 is selected 1 0 0 : AN4 is selected	R۷
	CH2		1 0 1 : AN5 is selected 1 1 0 : AN6 is selected 1 1 1 : AN7 is selected ^{(2) (3)}	R۷
	MD0	A/D operating mode	b4 b3	RV
	MD1	select bits 0	0 0 : One-shot mode ⁽³⁾	RV
	TRG	Trigger select bit	0 : Software trigger 1 : ADTRG trigger	RV
 	ADST	A/D conversion start flag	0 : A/D conversion disabled 1 : A/D conversion started	RV
	CKS0	Frequency select bit 0	Refer to NOTE 2 for ADCON2 Register	RV
AN0_0 to AN0_7, and ADGSEL0 in the ADC	AN2_0 to AN2 ON2 register to 1 to MD0, set b	2_7 can be used in same w	nversion result will be undefined. ay as AN0 to AN7. Use bits ADGSI sing another instruction.	EL1
2. AN0_0 to AN0_7, and ADGSEL0 in the ADC(3. After rewriting bits MD	I AN2_0 to AN2 DN2 register to 1 to MD0, set b 1 ⁽¹⁾ Symbol ADCON1	2_7 can be used in same w select the desired pin. its CH2 to CH0 over again u Address	ay as AN0 to AN7. Use bits ADGSI	EL1
2. AN0_0 to AN0_7, and ADGSEL0 in the ADC0 3. After rewriting bits MD O Control Register	I AN2_0 to AN2 ON2 register to 1 to MD0, set b 1 ⁽¹⁾ J Symbol	2_7 can be used in same w select the desired pin. its CH2 to CH0 over again u Address	ay as AN0 to AN7. Use bits ADGSI sing another instruction. After Reset	
2. AN0_0 to AN0_7, and ADGSEL0 in the ADC0 3. After rewriting bits MD O Control Register	I AN2_0 to AN2 DN2 register to 1 to MD0, set b 1 ⁽¹⁾ Symbol ADCON1	2_7 can be used in same w select the desired pin. its CH2 to CH0 over again u Address 03D7h	ay as AN0 to AN7. Use bits ADGSI sing another instruction. After Reset 00h	RV
2. AN0_0 to AN0_7, and ADGSEL0 in the ADC0 3. After rewriting bits MD O Control Register	I AN2_0 to AN2 DN2 register to 1 to MD0, set b 1 ⁽¹⁾ Symbol ADCON1 Bit Symbol	2_7 can be used in same w select the desired pin. its CH2 to CH0 over again u Address 03D7h Bit Name	ay as AN0 to AN7. Use bits ADGSI sing another instruction. After Reset 00h Function	RV
2. AN0_0 to AN0_7, and ADGSEL0 in the ADC0 3. After rewriting bits MD 0 Control Register <u>b6 b5 b4 b3 b2 b1 b0</u> 1 0	AN2_0 to AN2 DN2 register to 1 to MD0, set b 1 ⁽¹⁾ Symbol ADCON1 Bit Symbol SCAN0	2_7 can be used in same w select the desired pin. its CH2 to CH0 over again u Address 03D7h Bit Name	ay as AN0 to AN7. Use bits ADGSI sing another instruction. After Reset 00h Function	RV RV
2. AN0_0 to AN0_7, and ADGSEL0 in the ADC0 3. After rewriting bits MD 0 Control Register <u>b6 b5 b4 b3 b2 b1 b0</u> 1 0	AN2_0 to AN2 DN2 register to 1 to MD0, set b 1 ⁽¹⁾ Symbol ADCON1 Bit Symbol SCAN0 SCAN1	2_7 can be used in same w select the desired pin. its CH2 to CH0 over again u Address 03D7h Bit Name A/D sweep pin select bits A/D operating mode	ay as AN0 to AN7. Use bits ADGSI sing another instruction. After Reset 00h Function Invalid in one-shot mode Set to 0 when one-shot mode	RV RV RV
2. AN0_0 to AN0_7, and ADGSEL0 in the ADC0 3. After rewriting bits MD 0 Control Register <u>b6 b5 b4 b3 b2 b1 b0</u> 1 0	AN2_0 to AN2 DN2 register to 1 to MD0, set b 1 ⁽¹⁾ Bit Symbol SCAN0 SCAN1 MD2	2_7 can be used in same w select the desired pin. its CH2 to CH0 over again u Address 03D7h Bit Name A/D sweep pin select bits A/D operating mode select bit 1	ay as AN0 to AN7. Use bits ADGSI sing another instruction. After Reset 00h Function Invalid in one-shot mode Set to 0 when one-shot mode is selected 0 : 8-bit mode	RV RV RV
2. AN0_0 to AN0_7, and ADGSEL0 in the ADC0 3. After rewriting bits MD 0 Control Register <u>b6 b5 b4 b3 b2 b1 b0</u> 1 0	AN2_0 to AN2 DN2 register to 1 to MD0, set b 1 ⁽¹⁾ Symbol ADCON1 Bit Symbol SCAN0 SCAN1 MD2 BITS	2_7 can be used in same w select the desired pin. its CH2 to CH0 over again u Address 03D7h Bit Name A/D sweep pin select bits A/D operating mode select bit 1 8/10-bit mode select bit	ay as AN0 to AN7. Use bits ADGSI sing another instruction. After Reset 00h Function Invalid in one-shot mode Set to 0 when one-shot mode is selected 0 : 8-bit mode 1 : 10-bit mode Refer to NOTE 2 for ADCON2	RV RV RV RV RV RV
2. AN0_0 to AN0_7, and ADGSEL0 in the ADC0 3. After rewriting bits MD 0 Control Register <u>b6 b5 b4 b3 b2 b1 b0</u> 1 0	AN2_0 to AN2 DN2 register to 1 to MD0, set b 1 ⁽¹⁾ Symbol ADCON1 Bit Symbol SCAN0 SCAN1 MD2 BITS CKS1	2_7 can be used in same w select the desired pin. its CH2 to CH0 over again u Address 03D7h Bit Name A/D sweep pin select bits A/D operating mode select bit 1 8/10-bit mode select bit Frequency select bit 1	ay as AN0 to AN7. Use bits ADGSI sing another instruction. After Reset 00h Function Invalid in one-shot mode Set to 0 when one-shot mode is selected 0 : 8-bit mode 1 : 10-bit mode Refer to NOTE 2 for ADCON2 Register	RV RV RV RV

1. If the ADCON1 register is rewritten during A/D conversion, the conversion result will be undefined.

2. If the VCUT bit is reset from 0 (VREF unconnected) to 1 (VREF connected), wait for 1 μ s or more before starting A/D conversion.

Figure 16.4 Registers ADCON0 and ADCON1 in One-shot Mode

16.1.2 Repeat Mode

In repeat mode, analog voltage applied to a selected pin is repeatedly converted to a digital code. Table 16.3 lists the Repeat Mode Specifications. Figure 16.5 shows Registers ADCON0 and ADCON1 in Repeat Mode.

Item	Specification
Function	Bits CH2 to CH0 in the ADCON0 register, bits ADGSEL1 to ADGSEL0 in
	the ADCON2 register, and bits OPA1 to OPA0 in the ADCON1 register select
	a pin. Analog voltage applied to this pin is repeatedly converted to a digital
	code.
A/D conversion	When the TRG bit in the ADCON0 register is 0 (software trigger)
start condition	The ADST bit in the ADCON0 register is set to 1 (A/D conversion starts)
	When the TRG bit is 1 (ADTRG trigger)
	Input on the ADTRG pin changes state from high to low after the ADST
	bit is set to 1 (A/D conversion starts)
A/D conversion	Set the ADST bit to 0 (A/D conversion halted)
stop condition	
Interrupt request	None generated
generation timing	
Analog input pin	Select one pin from AN0 to AN7, AN0_0 to AN0_7, AN2_0 to AN2_7,
	ANEX0 to ANEX1
Reading of result of	Read one of registers AD0 to AD7 that corresponds to the selected pin
A/D converter	

Table 16.3 Repeat Mode Specifications

b6 b5 b4 b3 b2 b1 b0	Symbol		After Reset 00000XXXb	
	Bit Symbol	Bit Name	Function	RV
	CH0		^{b2 b1 b0} 0 0 0 : AN0 is selected 0 0 1 : AN1 is selected	R١
· · · · · · · · · · · · · · · · · · ·	CH1	Analog input pin select bits	0 1 0 : AN2 is selected 0 1 1 : AN3 is selected 1 0 0 : AN4 is selected	R٧
	CH2		1 0 1 : AN5 is selected 1 1 0 : AN6 is selected 1 1 1 : AN7 is selected ^{(2) (3)}	R٧
· · · · · · · · · · · · · · · · · · ·	MD0	A/D operating mode	b4 b3	R۷
	MD1	select bits 0	0 1 : Repeat mode ⁽³⁾	R١
	TRG	Trigger select bit	0 : Software trigger 1 : ADTRG trigger	R۷
	ADST	A/D conversion start flag	0 : A/D conversion disabled 1 : A/D conversion started	RV
	CKS0	Frequency select bit 0	Refer to NOTE 2 for ADCON2 Register	RV
2. AN0_0 to AN0_7, and ADGSEL0 in the ADC	AN2_0 to AN2 AN2 register to 1 to MD0, set b	2_7 can be used in same wa	oversion result will be undefined. ay as AN0 to AN7. Use bits ADGSE sing another instruction.	EL1
2. AN0_0 to AN0_7, and ADGSEL0 in the ADC(3. After rewriting bits MD	AN2_0 to AN2 AN2 register to 1 to MD0, set b	2_7 can be used in same wa select the desired pin. its CH2 to CH0 over again us Address	ay as AN0 to AN7. Use bits ADGSE	EL1
2. AN0_0 to AN0_7, and ADGSEL0 in the ADC0 3. After rewriting bits MD O Control Register	AN2_0 to AN2 DN2 register to 1 to MD0, set b 1 ⁽¹⁾ Symbol	2_7 can be used in same wa select the desired pin. its CH2 to CH0 over again us Address	ay as AN0 to AN7. Use bits ADGSE sing another instruction. After Reset	
2. AN0_0 to AN0_7, and ADGSEL0 in the ADC0 3. After rewriting bits MD O Control Register	AN2_0 to AN2 DN2 register to 1 to MD0, set b 1 ⁽¹⁾ Symbol ADCON1	2_7 can be used in same wa select the desired pin. its CH2 to CH0 over again us Address 03D7h Bit Name	ay as AN0 to AN7. Use bits ADGSE sing another instruction. After Reset 00h Function	RV
2. AN0_0 to AN0_7, and ADGSEL0 in the ADC0 3. After rewriting bits MD O Control Register	AN2_0 to AN2 DN2 register to 1 to MD0, set b 1 ⁽¹⁾ Symbol ADCON1 Bit Symbol	2_7 can be used in same wa select the desired pin. its CH2 to CH0 over again us Address 03D7h	ay as AN0 to AN7. Use bits ADGSE sing another instruction. After Reset 00h	RV
2. AN0_0 to AN0_7, and ADGSEL0 in the ADC0 3. After rewriting bits MD O Control Register	AN2_0 to AN2 DN2 register to 1 to MD0, set b 1 ⁽¹⁾ Symbol ADCON1 Bit Symbol SCAN0	2_7 can be used in same wa select the desired pin. its CH2 to CH0 over again us Address 03D7h Bit Name	ay as AN0 to AN7. Use bits ADGSE sing another instruction. After Reset 00h Function	RV RV
2. AN0_0 to AN0_7, and ADGSEL0 in the ADC0 3. After rewriting bits MD O Control Register	AN2_0 to AN2 DN2 register to 1 to MD0, set b 1 ⁽¹⁾ Symbol ADCON1 Bit Symbol SCAN0 SCAN1	2_7 can be used in same wa select the desired pin. its CH2 to CH0 over again us Address 03D7h Bit Name A/D sweep pin select bits A/D operating mode	ay as AN0 to AN7. Use bits ADGSE sing another instruction. After Reset 00h Function Invalid in repeat mode Set to 0 when repeat mode is	RV RV RV
2. AN0_0 to AN0_7, and ADGSEL0 in the ADC0 3. After rewriting bits MD O Control Register	AN2_0 to AN2 DN2 register to 1 to MD0, set b 1 ⁽¹⁾ Symbol ADCON1 Bit Symbol SCAN0 SCAN1 MD2	2_7 can be used in same wa select the desired pin. its CH2 to CH0 over again us Address 03D7h Bit Name A/D sweep pin select bits A/D operating mode select bit 1	ay as AN0 to AN7. Use bits ADGSE sing another instruction. After Reset 00h Function Invalid in repeat mode Set to 0 when repeat mode is selected 0 : 8-bit mode	RV RV RV
2. AN0_0 to AN0_7, and ADGSEL0 in the ADC0 3. After rewriting bits MD O Control Register	AN2_0 to AN2 DN2 register to 1 to MD0, set b 1 ⁽¹⁾ Symbol ADCON1 Bit Symbol SCAN0 SCAN1 MD2 BITS	2_7 can be used in same wa select the desired pin. its CH2 to CH0 over again us Address 03D7h Bit Name A/D sweep pin select bits A/D operating mode select bit 1 8/10-bit mode select bit	ay as AN0 to AN7. Use bits ADGSE sing another instruction. After Reset 00h Function Invalid in repeat mode Set to 0 when repeat mode is selected 0 : 8-bit mode 1 : 10-bit mode Refer to NOTE 2 for ADCON2	RV RV RV RV RV RV
2. AN0_0 to AN0_7, and ADGSEL0 in the ADC0 3. After rewriting bits MD O Control Register	AN2_0 to AN2 DN2 register to 1 to MD0, set b 1 ⁽¹⁾ Bit Symbol SCAN0 SCAN1 MD2 BITS CKS1	2_7 can be used in same wa select the desired pin. its CH2 to CH0 over again us Address 03D7h Bit Name A/D sweep pin select bits A/D operating mode select bit 1 8/10-bit mode select bit Frequency select bit 1	ay as AN0 to AN7. Use bits ADGSE sing another instruction. After Reset 00h Function Invalid in repeat mode Set to 0 when repeat mode is selected 0 : 8-bit mode 1 : 10-bit mode Refer to NOTE 2 for ADCON2 Register	RV RV RV RV

2. If the VCUT bit is reset from 0 (VREF unconnected) to 1 (VREF connected), wait for 1 μ s or more before starting A/D conversion.

Figure 16.5 Registers ADCON0 and ADCON1 in Repeat Mode

16.1.3 Single Sweep Mode

In single sweep mode, analog voltage that is applied to selected pins is converted one-by-one to a digital code. Table 16.4 lists the Single Sweep Mode Specifications. Figure 16.6 shows Registers ADCON0 and ADCON1 in Single Sweep Mode.

Item	Specification
Function	Bits SCAN1 to SCAN0 in the ADCON1 register and bits ADGSEL1 to ADGSEL0
	in the ADCON2 register select pins. Analog voltage applied to this pins is
	converted one-by-one to a digital code.
A/D conversion	When the TRG bit in the ADCON0 register is 0 (software trigger)
start condition	The ADST bit in the ADCON0 register is set to 1 (A/D conversion starts)
	When the TRG bit is 1 (ADTRG trigger)
	Input on the ADTRG pin changes state from high to low after the ADST
	bit is set to 1 (A/D conversion starts)
A/D conversion	Completion of A/D conversion (If a software trigger is selected, the ADST
stop condition	bit is set to 0 (A/D conversion halted).)
	Set the ADST bit to 0
Interrupt request	Completion of A/D conversion
generation timing	
Analog input pin	Select from AN0 to AN1 (2 pins), AN0 to AN3 (4 pins), AN0 to AN5 (6 pins),
	AN0 to AN7 (8 pins) ⁽¹⁾
Reading of result of	Read one of registers AD0 to AD7 that corresponds to the selected pin
A/D converter	
NOTE	

Table 16.4	Single	Sweep	Mode	Specifications
------------	--------	-------	------	----------------

NOTE:

1. AN0_0 to AN0_7, and AN2_0 to AN2_7 can be used in the same way as AN0 to AN7.

b7 b6 b5 b4 b3 b2 b1 b0	Symbol ADCON0		After Reset 00000XXXb	
	Bit Symbol	Bit Name	Function	RW
	CH0			RW
	CH1	Analog input pin select bits	Invalid in single sweep mode	RW
	CH2			RW
	MD0	A/D operating mode	b4 b3	RW
	MD1	select bits 0	1 0 : Single sweep mode	RW
	TRG	Trigger select bit	0 : <u>Softwar</u> e trigger 1 : ADTRG trigger	RW
	ADST	A/D conversion start flag	0 : A/D conversion disabled 1 : A/D conversion started	RW
	CKS0	Frequency select bit 0	Refer to NOTE 2 for ADCON2 Register	RW
OTE: 1. If the ADCON0 registe /D Control Register 1. If the ADCON0 register 1. If the ADCON0 register 1. If the ADCON0 register		Address	After Reset 00h	<u> </u>
1. If the ADCON0 registe /D Control Register	1 ⁽¹⁾ Symbol ADCON1	Address 03D7h	After Reset 00h	BW
1. If the ADCON0 registe /D Control Register	1 ⁽¹⁾ I Symbol	Address	After Reset 00h Function	RW
1. If the ADCON0 registe /D Control Register	1 ⁽¹⁾ Symbol ADCON1	Address 03D7h Bit Name	After Reset 00h Function When single sweep mode is selected 0 0 : ANO, AN1 (2 pins)	
1. If the ADCON0 registe /D Control Register	1 ⁽¹⁾ Symbol ADCON1 Bit Symbol	Address 03D7h	After Reset 00h Function When single sweep mode is selected	RW
1. If the ADCON0 registe /D Control Register	1 ⁽¹⁾ Symbol ADCON1 Bit Symbol SCAN0	Address 03D7h Bit Name	After Reset 00h Function When single sweep mode is selected b1b0 0 0 : AN0, AN1 (2 pins) 0 1 : AN0 to AN3 (4 pins) 1 0 : AN0 to AN5 (6 pins)	RW
1. If the ADCON0 registe /D Control Register	1 ⁽¹⁾ Symbol ADCON1 Bit Symbol SCAN0 SCAN1	Address 03D7h Bit Name A/D sweep pin select bits A/D operating mode	After Reset 00h Function When single sweep mode is selected ^{b1 b0} 0 0 : AN0, AN1 (2 pins) 0 1 : AN0 to AN3 (4 pins) 1 0 : AN0 to AN5 (6 pins) 1 1 : AN0 to AN7 (8 pins) ⁽²⁾ Set to 0 when single sweep mode	RW RW RW
1. If the ADCON0 registe /D Control Register	1 ⁽¹⁾ Symbol ADCON1 Bit Symbol SCAN0 SCAN1 MD2	Address 03D7h Bit Name A/D sweep pin select bits A/D operating mode select bit 1	After Reset 00h Function When single sweep mode is selected b1b0 0 0 : AN0, AN1 (2 pins) 0 1 : AN0 to AN3 (4 pins) 1 0 : AN0 to AN3 (4 pins) 1 1 : AN0 to AN5 (6 pins) 1 1 : AN0 to AN7 (8 pins) ⁽²⁾ Set to 0 when single sweep mode is selected 0 : 8-bit mode	RW RW RW
1. If the ADCON0 registe /D Control Register	1 ⁽¹⁾ Symbol ADCON1 Bit Symbol SCAN0 SCAN1 MD2 BITS	Address 03D7h Bit Name A/D sweep pin select bits A/D operating mode select bit 1 8/10-bit mode select bit	After Reset 00h Function When single sweep mode is selected b1 b0 0 0 : AN0, AN1 (2 pins) 0 1 : AN0 to AN3 (4 pins) 1 0 : AN0 to AN3 (4 pins) 1 0 : AN0 to AN5 (6 pins) 1 1 : AN0 to AN7 (8 pins) ⁽²⁾ Set to 0 when single sweep mode is selected 0 : 8-bit mode 1 : 10-bit mode Refer to NOTE 2 for ADCON2	RW
1. If the ADCON0 registe /D Control Register	1 ⁽¹⁾ Symbol ADCON1 Bit Symbol SCAN0 SCAN1 MD2 BITS CKS1	Address 03D7h Bit Name A/D sweep pin select bits A/D operating mode select bit 1 8/10-bit mode select bit Frequency select bit 1	After Reset 00h Function When single sweep mode is selected b1 b0 0 0 : AN0, AN1 (2 pins) 0 1 : AN0 to AN3 (4 pins) 1 0 : AN0 to AN3 (4 pins) 1 0 : AN0 to AN5 (6 pins) 1 1 : AN0 to AN7 (8 pins) ⁽²⁾ Set to 0 when single sweep mode is selected 0 : 8-bit mode 1 : 10-bit mode Refer to NOTE 2 for ADCON2 Register	RW RW RW RW

3. If the VCUT bit is reset from 0 (VREF unconnected) to 1 (VREF connected), wait for 1 μ s or more before starting A/D conversion.

Figure 16.6 Registers ADCON0 and ADCON1 in Single Sweep Mode

16.1.4 Repeat Sweep Mode 0

In repeat sweep mode 0, analog voltage applied to selected pins is repeatedly converted to a digital code. Table 16.5 lists the Repeat Sweep Mode 0 Specifications. Figure 16.7 shows Registers ADCON0 and ADCON1 in Repeat Sweep Mode 0.

Item	Specification
Function	Bits SCAN1 to SCAN0 in the ADCON1 register and bits ADGSEL1 to ADGSEL0
	in the ADCON2 register select pins. Analog voltage applied to the pins is
	repeatedly converted to a digital code.
A/D conversion	When the TRG bit in the ADCON0 register is 0 (software trigger)
start condition	The ADST bit in the ADCON0 register is set to 1 (A/D conversion starts)
	When the TRG bit is 1 (ADTRG trigger)
	Input on the ADTRG pin changes state from high to low after the ADST
	bit is set to 1 (A/D conversion starts)
A/D conversion	Set the ADST bit to 0 (A/D conversion halted)
stop condition	
Interrupt request	None generated
generation timing	
Analog input pin	Select from AN0 to AN1 (2 pins), AN0 to AN3 (4 pins), AN0 to AN5 (6 pins),
	AN0 to AN7 (8 pins) ⁽¹⁾
Reading of result of	Read one of registers AD0 to AD7 that corresponds to the selected pin
A/D converter	
NOTE:	

Table 16.5 Repeat Sweep Mode 0 Specifications	Table 16.5	Repeat Sweep	Mode 0 S	pecifications
---	------------	---------------------	----------	---------------

NOTE:

1. AN0_0 to AN0_7, and AN2_0 to AN2_7 can be used in the same way as AN0 to AN7.

1 1 1 1	Symbol ADCONC		After Reset 00000XXXb	
	Bit Symbol	Bit Name	Function	RW
	CH0			RW
	CH1	Analog input pin select bits	Invalid in repeat sweep mode 0	RW
	CH2			RW
	MD0 MD1	A/D operating mode select bits 0	1 1 : Repeat sweep mode 0 or Repeat sweep mode 1	RW RW
· · · · · · · · · · · · · · · · · · ·	TRG	Trigger select bit	0 : Software trigger 1 : ADTRG trigger	RW
	ADST	A/D conversion start flag	0 : A/D conversion disabled 1 : A/D conversion started	RW
	CKS0	Frequency select bit 0	Refer to NOTE 2 for ADCON2	RW
E: If the ADCON0 registe Control Register	r is rewritten du	Address	Register oversion result will be undefined. After reset 00h	
If the ADCON0 register	r is rewritten du 1 ⁽¹⁾ Symbol ADCON1	Address	After reset	<u> </u>
If the ADCON0 register	r is rewritten du 1 ⁽¹⁾ ₁ Symbol	Address 03D7h	After reset 00h Function When repeat sweep mode 0 is selected	RW
If the ADCON0 register	r is rewritten du 1 ⁽¹⁾ Bit Symbol	Address 03D7h	After reset 00h Function When repeat sweep mode 0 is selected	RW
If the ADCON0 register	r is rewritten du 1 ⁽¹⁾ Bit Symbol SCAN0	Address 03D7h Bit Name	After reset 00h Function When repeat sweep mode 0 is selected b1 b0 0 0 : AN0, AN1 (2 pins) 0 1 : AN0 to AN3 (4 pins) 1 0 : AN0 to AN5 (6 pins)	RW
If the ADCON0 register	r is rewritten du 1 ⁽¹⁾ Bit Symbol SCAN0 SCAN1	Address 03D7h Bit Name A/D sweep pin select bits A/D operating mode	After reset 00h Function When repeat sweep mode 0 is selected b1 b0 0 0 : AN0, AN1 (2 pins) 0 1 : AN0 to AN3 (4 pins) 1 0 : AN0 to AN3 (6 pins) 1 1 : AN0 to AN7 (8 pins) (2) Set to 0 when repeat sweep	RW RW RW
If the ADCON0 register	r is rewritten du 1 ⁽¹⁾ Bit Symbol SCAN0 SCAN1 MD2	Address 03D7h Bit Name A/D sweep pin select bits A/D operating mode select bit 1	After reset 00h Function When repeat sweep mode 0 is selected b1b0 0 0 : AN0, AN1 (2 pins) 0 1 : AN0 to AN3 (4 pins) 1 0 : AN0 to AN3 (4 pins) 1 0 : AN0 to AN5 (6 pins) 1 1 : AN0 to AN7 (8 pins) ⁽²⁾ Set to 0 when repeat sweep mode 0 is selected 0 : 8-bit mode	RW RW RW RW
If the ADCON0 register	r is rewritten du 1 ⁽¹⁾ Bit Symbol SCAN0 SCAN1 MD2 BITS	Address 03D7h Bit Name A/D sweep pin select bits A/D operating mode select bit 1 8/10-bit mode select bit	After reset 00h Function When repeat sweep mode 0 is selected ^{b1 b0} 0 0 : AN0, AN1 (2 pins) 0 1 : AN0 to AN3 (4 pins) 1 0 : AN0 to AN3 (6 pins) 1 1 : AN0 to AN7 (8 pins) (2) Set to 0 when repeat sweep mode 0 is selected 0 : 8-bit mode 1 : 10-bit mode Refer to NOTE 2 for ADCON2	RW RW RW RW
If the ADCON0 register	r is rewritten du 1 ⁽¹⁾ Symbol ADCON1 Bit Symbol SCAN0 SCAN1 MD2 BITS CKS1	Address 03D7h Bit Name A/D sweep pin select bits A/D operating mode select bit 1 8/10-bit mode select bit Frequency select bit 1	After reset 00h Function When repeat sweep mode 0 is selected ^{b1 b0} 0 0 : AN0, AN1 (2 pins) 0 1 : AN0 to AN3 (4 pins) 1 0 : AN0 to AN3 (4 pins) 1 0 : AN0 to AN7 (8 pins) 1 1 : AN0 to AN7 (8 pins) (2) Set to 0 when repeat sweep mode 0 is selected 0 : 8-bit mode 1 : 10-bit mode Refer to NOTE 2 for ADCON2 Register	RW RW RW RW RW

3. If the VCUT bit is reset from 0 (VREF unconnected) to 1 (VREF connected), wait for 1 μ s or more before starting A/D conversion.

16.1.5 Repeat Sweep Mode 1

In repeat sweep mode 1, analog voltage selectively applied to all pins is repeatedly converted to a digital code. Table 16.6 lists the Repeat Sweep Mode 1 Specifications. Figure 16.8 shows Registers ADCON0 and ADCON1 in Repeat Sweep Mode 1.

Item	Specification
Function	The input voltages on all pins selected by bits ADGSEL1 to ADGSEL0 in
	the ADCON2 register are A/D converted repeatedly, with priority given to
	pins selected by bits SCAN1 to SCAN0 in the ADCON1 register and bits
	ADGSEL1 to ADGSEL0.
	Example : If AN0 selected, input voltages are A/D converted in order of
	AN0 \rightarrow AN1 \rightarrow AN0 \rightarrow AN2 \rightarrow AN0 \rightarrow AN3, and so on.
A/D conversion	 When the TRG bit in the ADCON0 register is 0 (software trigger)
start condition	The ADST bit in the ADCON0 register is set to 1 (A/D conversion starts)
	When the TRG bit is 1 (ADTRG trigger)
	Input on the \overline{ADTRG} pin changes state from high to low after the ADST
	bit is set to 1 (A/D conversion starts)
A/D conversion	Set the ADST bit to 0 (A/D conversion halted)
stop condition	
Interrupt request	None generated
generation timing	
Analog input pins to be given	Select from AN0 (1 pin), AN0 to AN1 (2 pins), AN0 to AN2 (3 pins),
priority when A/D converted	AN0 to AN3 (4 pins) ⁽¹⁾
Reading of result of	Read one of registers AD0 to AD7 that corresponds to the selected pin
A/D converter	

NOTE:

1. AN0_0 to AN0_7, and AN2_0 to AN2_7 can be used in the same way as AN0 to AN7.

7 b6 b5 b4 b3 b2 b1 b0	Symbol ADCONC		After Reset 00000XXXb	
	Bit Symbol	Bit Name	Function	RW
	CH0			RW
	CH1	Analog input pin select bits	Invalid in repeat sweep mode 1	RW
	CH2			RW
	MD0	A/D operating mode	1 1 : Repeat sweep mode 0 or	RW
	MD1	select bits 0	Repeat sweep mode 1	RW
	TRG	Trigger select bit	0 : Software trigger 1 : ADTRG trigger	RW
	ADST	A/D conversion start flag	0 : A/D conversion disabled 1 : A/D conversion started	RW
	CKS0	Frequency select bit 0	Refer to NOTE 2 for ADCON2	RW
DTE: 1. If the ADCON0 registe /D Control Register 7 b6 b5 b4 b3 b2 b1 b0 1 1 1 1	r is rewritten du	Address	Register oversion result will be undefined. After Reset 00h	<u> </u>
1. If the ADCON0 registe /D Control Register	r is rewritten du 1 ⁽¹⁾ Symbol ADCON1	Address 03D7h	After Reset 00h	<u> </u>
1. If the ADCON0 registe /D Control Register	r is rewritten du 1 ⁽¹⁾ Symbol	Address	After Reset 00h Function When repeat sweep mode 1 is selected	RW
1. If the ADCON0 registe /D Control Register	r is rewritten du 1 ⁽¹⁾ Symbol ADCON1 Bit Symbol	Address 03D7h	After Reset 00h Function When repeat sweep mode 1 is selected	RW
1. If the ADCON0 registe /D Control Register	r is rewritten du 1 ⁽¹⁾ Bit Symbol SCAN0	Address 03D7h Bit Name	After Reset 00h Function When repeat sweep mode 1 is selected b1 b0 0 0 : AN0 (1 pin) 0 1 : AN0, AN1 (2 pins) 1 0 : AN0 to AN2 (3 pins)	RW
1. If the ADCON0 registe /D Control Register	r is rewritten du 1 ⁽¹⁾ Bit Symbol SCAN0 SCAN1	Address 03D7h Bit Name A/D sweep pin select bits A/D operating mode	After Reset 00h Function When repeat sweep mode 1 is selected ^{b1 b0} 0 0 : AN0 (1 pin) 0 1 : AN0, AN1 (2 pins) 1 0 : AN0 to AN2 (3 pins) 1 1 : AN0 to AN3 (4 pins) ⁽²⁾ Set to 1 when repeat sweep	RW
1. If the ADCON0 registe /D Control Register	r is rewritten du 1 ⁽¹⁾ Symbol ADCON1 Bit Symbol SCAN0 SCAN1 MD2	Address 03D7h Bit Name A/D sweep pin select bits A/D operating mode select bit 1	After Reset 00h Function When repeat sweep mode 1 is selected b1b0 0 0 : AN0 (1 pin) 0 1 : AN0, AN1 (2 pins) 1 0 : AN0 to AN2 (3 pins) 1 1 : AN0 to AN3 (4 pins) ⁽²⁾ Set to 1 when repeat sweep mode 1 is selected 0 : 8-bit mode	RW RW RW RW
1. If the ADCON0 registe /D Control Register	r is rewritten du 1 ⁽¹⁾ Symbol ADCON1 Bit Symbol SCAN0 SCAN1 MD2 BITS	Address 03D7h Bit Name A/D sweep pin select bits A/D operating mode select bit 1 8/10-bit mode select bit	After Reset 00h Function When repeat sweep mode 1 is selected ^{b1 b0} 0 0 : AN0 (1 pin) 0 1 : AN0, AN1 (2 pins) 1 0 : AN0 to AN2 (3 pins) 1 1 : AN0 to AN3 (4 pins) ⁽²⁾ Set to 1 when repeat sweep mode 1 is selected 0 : 8-bit mode 1 : 10-bit mode Refer to NOTE 2 for ADCON2	RW RW RW RW
1. If the ADCON0 registe /D Control Register	r is rewritten du 1 ⁽¹⁾ Symbol ADCON1 Bit Symbol SCAN0 SCAN1 MD2 BITS CKS1	Address 03D7h Bit Name A/D sweep pin select bits A/D operating mode select bit 1 8/10-bit mode select bit Frequency select bit 1	After Reset 00h Function When repeat sweep mode 1 is selected ^{b1 b0} 0 0 : AN0 (1 pin) 0 1 : AN0, AN1 (2 pins) 1 0 : AN0 to AN2 (3 pins) 1 1 : AN0 to AN3 (4 pins) ⁽²⁾ Set to 1 when repeat sweep mode 1 is selected 0 : 8-bit mode 1 : 10-bit mode Refer to NOTE 2 for ADCON2 Register	RW RW RW RW RW RW

3. If the VCUT bit is reset from 0 (VREF unconnected) to 1 (VREF connected), wait for 1 μ s or more before starting A/D conversion.

Figure 16.8 Registers ADCON0 and ADCON1 in Repeat Sweep Mode 1

16.2 Function

16.2.1 Resolution Select Function

The desired resolution can be selected using the BITS bit in the ADCON1 register. If the BITS bit is set to 1 (10-bit conversion accuracy), the A/D conversion result is stored in the bits 0 to 9 in the ADi register (i = 0 to 7). If the BITS bit is set to 0 (8-bit conversion accuracy), the A/D conversion result is stored in the bits 0 to 7 in the ADi register.

16.2.2 Sample and Hold

If the SMP bit in the ADCON2 register is set to 1 (with sample and hold), the conversion speed per pin is increased to 28 ϕ AD cycles for 8-bit resolution or 33 ϕ AD cycles for 10-bit resolution. Sample and hold is effective in all operating modes. Select whether or not to use the sample and hold function before starting A/D conversion.

16.2.3 Extended Analog Input Pins

In one-shot and repeat modes, pins ANEX0 and ANEX1 can be used as analog input pins. Use bits OPA1 to OPA0 in the ADCON1 register to select whether or not use ANEX0 and ANEX1. The A/D conversion results of ANEX0 and ANEX1 inputs are stored in registers AD0 and AD1, respectively.

16.2.4 External Operation Amplifier (Op-Amp) Connection Mode

Multiple analog inputs can be amplified using a single external op-amp via pins ANEX0 and ANEX1. Set bits OPA1 to OPA0 in the ADCON1 register to 11b (external op-amp connection mode). The inputs from ANi (i = 0 to 7) ⁽¹⁾ are output from the ANEX0 pin. Amplify this output with an external op-amp before sending it back to the ANEX1 pin. The A/D conversion result is stored in the corresponding ADi register. The A/D conversion speed depends on the response characteristics of the external op-amp. Figure 16.9 shows an External Op-Amp Connection.

NOTE:

1. AN0_i and AN2_i can be used the same as ANi.

Figure 16.9 External Op-Amp Connection

16.2.5 Current Consumption Reducing Function

When not using the A/D converter, its resistor ladder and reference voltage input pin (VREF) can be separated using the VCUT bit in the ADCON1 register. When separated, no current will flow from the VREF pin into the resistor ladder, helping to reduce the power consumption of the chip.

To use the A/D converter, set the VCUT bit to 1 (VREF connected) and then set the ADST bit in the ADCON0 register to 1 (A/D conversion start). The VCUT and ADST bits cannot be set to 1 at the same time.

Nor can the VCUT bit be set to 0 (VREF unconnected) during A/D conversion.

Note that this does not affect VREF for the D/A converter (irrelevant).

16.2.6 Output Impedance of Sensor under A/D Conversion

To carry out A/D conversion properly, charging the internal capacitor C shown in Figure 16.10 has to be completed within a specified period of time. T (sampling time) as the specified time. Let output impedance of sensor equivalent circuit be R0, internal resistance of MCU be R, precision (error) of the A/D converter be X, and the resolution of A/D converter be Y (Y is 1024 in 10-bit mode, and 256 in 8-bit mode).

VC is generally VC = VIN {1 - e<sup>-
$$\frac{1}{C(R0 + R)}t$$</sup>}
And when t = T, VC=VIN - $\frac{X}{Y}$ VIN = VIN(1 - $\frac{X}{Y}$)
 $e^{-\frac{1}{C(R0 + R)}T} = \frac{X}{Y}$
 $-\frac{1}{C(R0 + R)}T = ln\frac{X}{Y}$
Hence, R0 = $-\frac{T}{C \cdot ln\frac{X}{Y}} - R$

Figure 16.10 shows the Analog Input Pin and External Sensor Equivalent Circuit.

When the difference between VIN and VC becomes 0.1 LSB, we find impedance R0 when voltage between pins VC changes from 0 to VIN-(0.1/1024) VIN in time T. (0.1/1024) means that A/D precision drop due to insufficient capacitor charge is held to 0.1 LSB at time of A/D conversion in 10-bit mode. Actual error however is the value of absolute precision added to 0.1 LSB.

When $f(\phi AD) = 10$ MHz, T = 0.3 µs in the A/D conversion mode with sample & hold. Output impedance R0 for sufficiently charging capacitor C within time T is determined as follows.

T = 0.3 $\mu s,\,R$ = 7.8 $k\Omega,\,C$ = 1.5 pF, X = 0.1, and Y = 1024. Hence,

$$R0 = -\frac{0.3 \times 10^{-6}}{1.5 \times 10^{-12} \cdot \ln \frac{0.1}{1024}} -7.8 \times 10^{3} = 13.9 \times 10^{3}$$

Thus, the allowable output impedance of the sensor equivalent circuit, making the precision (error) 0.1 LSB or less, is approximately 13.9 k Ω . maximum.

Figure 16.10 Analog Input Pin and External Sensor Equivalent Circuit

This is an 8-bit, R-2R type D/A converter. These are two independent D/A converters.

D/A conversion is performed by writing to the DAi register (i = 0, 1). To output the result of conversion, set the DAiE bit in the DACON register to 1 (output enabled). Before D/A conversion can be used, the corresponding port direction bit is set to 0 (input mode). Setting the DAiE bit to 1 removes a pull-up from the corresponding port.

Output analog voltage (V) is determined by a set value (n : decimal) in the DAi register.

 $V = VREF \times n/256$ (n = 0 to 255)

VREF : reference voltage

Table 17.1 lists the D/A converter Performance. Figure 17.1 shows the D/A Converter Block Diagram. Figure 17.2 shows the D/A converter-related registers. Figure 17.3 shows the D/A Converter Equivalent Circuit.

Table 17.1 D/A Converter Performance	Table 17.1	D/A Converter Performance	è
--------------------------------------	------------	---------------------------	---

Item	Performance
D/A conversion method	R-2R method
Resolution	8 bits
Analog output pin	2 channels (DA0 and DA1)

Figure 17.1 D/A Converter Block Diagram

Figure 17.2 Registers DACON, DA0, and DA1

Figure 17.3 D/A Converter Equivalent Circuit

18. CRC Calculation

The Cyclic Redundancy Check (CRC) operation detects an error in data blocks. The MCU uses a generator polynomial of CRC-CCITT ($X^{16} + X^{12} + X^{5} + 1$) to generate CRC code.

The CRC code consists of 16 bits which are generated for each data block in given length, separated in 8-bit unit. After the initial value is set in the CRCD register, the CRC code is set in that register each time one byte of data is written to the CRCIN register. CRC code generation for one-byte data is finished in two cycles. Figure 18.1 shows the CRC Circuit Block Diagram. Figure 18.2 shows the CRC-related registers. Figure

18.3 shows the calculation example using the CRC operation.

Figure 18.1 CRC Circuit Block Diagram

Figure 18.3 CRC Calculation

19. CAN Module

The CAN (Controller Area Network) module for the M16C/6N Group (M16C/6N4) of MCUs is a communication controller implementing the CAN 2.0B protocol. The M16C/6N Group (M16C/6N4) contains two CAN modules which can transmit and receive messages in both standard (11-bit) ID and extended (29-bit) ID formats. Figure 19.1 shows the CAN Module Block Diagram.

External CAN bus driver and receiver are required.

Figure 19.1 CAN Module Block Diagram

CTX/CRX:	CAN I/O pins.
Protocol controller:	This controller handles the bus arbitration and the CAN protocol services, i.e. bit timing, stuffing, error status etc.
Message box:	This memory block consists of 16 slots that can be configured either as transmitter or receiver. Each slot contains an individual ID, data length code, a data field (8 bytes), and a time stamp.
Acceptance filter:	This block performs filtering operation for received messages. For the filtering operation, the CiGMR register ($i = 0, 1$), the CiLMAR register, or the CiLMBR register is used.
16 bit timer:	Used for the time stamp function. When the received message is stored in the message memory, the timer value is stored as a time stamp.
Wake-up function:	CAN0/1 wake-up interrupt request is generated by a message from the CAN bus.
Interrupt generation function:	The interrupt requests are generated by the CAN module. CANi successful reception
	interrupt, CANi successful transmission interrupt, CAN0/1 error interrupt, and
	CAN0/1 wake-up interrupt.

19.1 CAN Module-Related Registers

The CANi (i = 0, 1) module has the following registers.

19.1.1 CANi Message Box (i = 0, 1)

A CAN module is equipped with 16 slots (16 bytes or 8 words each). Slots 14 and 15 can be used as Basic CAN.

- Priority of the slots: The smaller the number of the slot, the higher the priority, in both transmission and reception.
- A program can define whether a slot is defined as transmitter or receiver.

19.1.2 Acceptance Mask Registers

A CAN module is equipped with 3 masks for the acceptance filter.

- CANi global mask register (i = 0, 1) (CiGMR register: 6 bytes)
 Configuration of the masking condition for acceptance filtering processing to slots 0 to 13
- CANi local mask A register (CiLMAR register: 6 bytes) Configuration of the masking condition for acceptance filtering processing to slot 14
- CANi local mask B register (CiLMBR register: 6 bytes) Configuration of the masking condition for acceptance filtering processing to slot 15

19.1.3 CAN SFR Registers

- CANi message control register j (i = 0, 1, j = 0 to 15) (CiMCTLj register: 8 bits \times 16) Control of transmission and reception of a corresponding slot
- CANi control register (CiCTLR register: 16 bits) Control of the CAN protocol
- CANi status register (CiSTR register: 16 bits) Indication of the protocol status
- CANi slot status register (CiSSTR register: 16 bits) Indication of the status of contents of each slot
- CANi interrupt control register (CiICR register: 16 bits) Selection of "interrupt enabled or disabled" for each slot
- CANi extended ID register (CiIDR register: 16 bits) Selection of ID format (standard or extended) for each slot
- CANi configuration register (CiCONR register: 16 bits) Configuration of the bus timing
- CANi receive error count register (CiRECR register: 8 bits) Indication of the error status of the CAN module in reception: the counter value is incremented or decremented according to the error occurrence.
- CANi transmit error count register (CiTECR register: 8 bits) Indication of the error status of the CAN module in transmission: the counter value is incremented or decremented according to the error occurrence.
- CANi time stamp register (CiTSR register: 16 bits) Indication of the value of the time stamp counter
- CANi acceptance filter support register (CiAFS register: 16 bits) Decoding the received ID for use by the acceptance filter support unit

Explanation of each register is given below.

19.2 CANi Message Box (i = 0, 1)

Table 19.1 shows the CANi Message Box Memory Mapping.

It is possible to access to the message box in byte or word.

Mapping of the message contents differs from byte access to word access. Byte access or word access can be selected by the MsgOrder bit in the CiCTLR register.

Add	ress	Message Content	(Memory Mapping)	
CAN0	CAN1	Word Access (16 bits)		
0060h + n × 16 + 0	0260h + n × 16 + 0	SID10 to SID6	SID5 to SID0	
0060h + n × 16 + 1	0260h + n × 16 + 1	SID5 to SID0	SID10 to SID6	
0060h + n × 16 + 2	0260h + n × 16 + 2	EID17 to EID14	EID13 to EID6	
0060h + n × 16 + 3	0260h + n × 16 + 3	EID13 to EID6	EID17 to EID14	
0060h + n × 16 + 4	0260h + n × 16 + 4	EID5 to EID0	Data length code (DLC)	
0060h + n × 16 + 5	0260h + n × 16 + 5	Data length code (DLC)	EID5 to EID0	
0060h + n × 16 + 6	0260h + n × 16 + 6	Data byte 0	Data byte 1	
$0060h + n \times 16 + 7$	$0260h + n \times 16 + 7$	Data byte 1	Data byte 0	
0060h + n × 16 + 13	0260h + n × 16 + 13	Data byte 7	Data byte 6	
0060h + n × 16 + 14	0260h + n × 16 + 14	Time stamp high-order byte	Time stamp low-order byte	
0060h + n × 16 + 15	0260h + n × 16 + 15	Time stamp low-order byte	Time stamp high-order byte	

Table 19.1 CANi Message Box Memory Mapping

i = 0, 1

n = 0 to 15: the number of the slot

Figures 19.2 and 19.3 show the Bit Mapping in Byte Access and Word Access. The content of each slot remains unchanged unless transmission or reception of a new message is performed.

	b7							b0		
	\geq	\searrow	\searrow	SID1	0 SID) SID	B SID	7 SID6		
		\searrow	SID5	SID4	I SID:	3 SID	2 SID	1 SID0		
	\geq	\searrow		\searrow	EID1	7 EID1	6 EID	I5 EID14		
	EID13	EID12	EID11	EID1	0 EID	eida	B EID	7 EID6		
		\searrow	EID5	EID4	EID:	B EID	2 EID	1 EID0		
		\searrow	\searrow	\searrow		3 DLC	2 DLC	DLC0		
				D	ata byte 0]	
		Data byte 1								
									-	
				D	ata byte 7					
		Time stamp high-order byte								
				Time star	np low-orde	byte				
AN data	frame:									
SID10 to 6	SID5 to 0	EID17 to 14	EID13 to 6	EID5 to 0	DLC3 to 0	Data byte 0	Data byte 1		- Data byte	
SID10 to 6 IOTE: 1. When	SID5 to 0								- Data t	

Figure 19.2 Bit Mapping in Byte Access

Figure 19.3 Bit Mapping in Word Access

19.3 Acceptance Mask Registers

Figures 19.4 and 19.5 show the Mask registers Bit Mapping (registers CiGMR (i = 0, 1), CiLMAR, and CiLMBR) in Byte Access and Word Access.

b7							b0	CAN0	esses CAN1	
\geq	\ge	\ge	SID10	SID9	SID8	SID7	SID6	0160h	0360h	
\ge	\succ	SID5	SID4	SID3	SID2	SID1	SID0	0161h	0361h	
\ge	\ge	\ge	\ge	EID17	EID16	EID15	EID14	0162h	0362h	CiGMR register
EID13	EID12	EID11	EID10	EID9	EID8	EID7	EID6	0163h	0363h	
\geq	\ge	EID5	EID4	EID3	EID2	EID1	EID0	0164h	0364h	J
\ge	\ge	\succ	SID10	SID9	SID8	SID7	SID6	0166h	0366h	
\succ	\succ	SID5	SID4	SID3	SID2	SID1	SID0	0167h	0367h	
\times	\ge	\ge	\succ	EID17	EID16	EID15	EID14	0168h	0368h	CiLMAR register
EID13	EID12	EID11	EID10	EID9	EID8	EID7	EID6	0169h	0369h	
\ge	\ge	EID5	EID4	EID3	EID2	EID1	EID0	016Ah	036Ah	J
\ge	\succ	\succ	SID10	SID9	SID8	SID7	SID6	016Ch	036Ch	
\ge	\ge	SID5	SID4	SID3	SID2	SID1	SID0	016Dh	036Dh	
\geq	\ge	\ge	\ge	EID17	EID16	EID15	EID14	016Eh	036Eh	CiLMBR register
EID13	EID12	EID11	EID10	EID9	EID8	EID7	EID6	016Fh	036Fh	
\ge	\ge	EID5	EID4	EID3	EID2	EID1	EID0	0170h	0370h	J
	⊴ is unde		e written	in CAN re	eset/initia	lization m	ode of th	e CAN modu	lle.	

Figure 19.4 Mask Registers Bit Mapping in Byte Access

Figure 19.5 Mask Registers Bit Mapping in Word Access

19.4 CAN SFR Registers

Figures 19.6 to 19.11 show the CAN SFR registers.

	COMCTLO	rmbol to C0MCTL15 to C1MCTL15	AddressAfter Reset0200h to 020Fh00h0220h to 022Fh00h	
	Bit Symbol	Bit Name	Function	RW
	NewData	Successful reception flag	 When set to reception slot O: The content of the slot is read or still under processing by the CPU. 1 The CAN module has stored new data in the slot. 	RO ⁽¹⁾
	SentData	Successful transmission flag	When set to transmission slot 0: Transmission is not started or completed yet. 1: Transmission is successfully completed.	RO ⁽¹⁾
	InvalData	"Under reception" flag	When set to reception slot 0: The message is valid. 1: The message is invalid. (The message is being updated.)	RO
	TrmActive	"Under transmission" flag	When set to transmission slot 0: Waiting for bus idle or completion of arbitration. 1: Transmitting	RO
	MsgLost	Overwrite flag	 When set to reception slot 0: No message has been overwritten in this slot. 1: This slot already contained a message, but it has been overwritten by a new one. 	RO ⁽¹⁾
	RemActive	Remote frame transmission/ reception status flag ⁽²⁾	0: Data frame transmission/reception status 1: Remote frame transmission/reception status	RW
	RspLock	Auto response lock mode select bit	 When set to reception remote frame slot O: After a remote frame is received, it will be answered automatically. 1: After a remote frame is received, no transmission will be started as long as this bit is set to 1. (Not responding) 	RW
	Remote	Remote frame corresponding slot select bit	0: Slot not corresponding to remote frame 1: Slot corresponding to remote frame	RW
 	RecReq	Reception slot request bit ⁽³⁾	0: Not reception slot 1: Reception slot	RW
 	TrmReq	Transmission slot request bit ⁽³⁾	0: Not transmission slot 1: Transmission slot	RW

NOTES:

1. As for write, only writing 0 is possible. The value of each bit is written when the CAN module enters the respective state.

2. In Basic CAN mode, slots 14 and 15 serve as data format identification flag.

The RemActive bit is set to 0 if the data frame is received and it is set to 1 if the remote frame is received.

One slot cannot be defined as reception slot and transmission slot at the same time.
 This register cannot be set in CAN reset/initialization mode of the CAN module.

NOTES:

1. When the TSReset bit = 1, the CiTSR register is set to 0000h. After this, the bit is automatically set to 0.

2. When the RetBusOff bit = 1, registers CiRECR and CiTECR are set to 00h. After this, this bit is automatically set to 0.

3. Change this bit only in CAN reset/initialization mode.

4. When Listen-only mode is selected, do not request the transmission.

Figure 19.8 Registers COSTR and C1STR

Figure 19.9 Registers C0SSTR, C1SSTR, C0ICR, C1ICR, C0IDR, and C1IDR

Figure 19.11 Registers CORECR, C1RECR, C0TECR, C1TECR, C0TSR, C1TSR, C0AFS, and C1AFS

19.5 Operational Modes

The CAN module has the following four operational modes.

- CAN reset/Initialization mode
- CAN operation mode
- CAN sleep mode
- CAN interface sleep mode

Figure 19.12 shows the Transition between Operational Modes.

Figure 19.12 Transition between Operational Modes

19.5.1 CAN Reset/Initialization Mode

CAN reset/initialization mode is activated upon MCU reset or by setting the Reset bit in the CiCTLR register (i = 0, 1) to 1. If the Reset bit is set to 1, check that the State_Reset bit in the CiSTR register is set to 1.

Entering CAN reset/initialization mode initiates the following functions by the module:

- CAN communication is impossible.
- When CAN reset/initialization mode is activated during an ongoing transmission in operation mode, the module suspends the mode transition until completion of the transmission (successful, arbitration loss, or error detection). Then, the State_Reset bit is set to 1, and CAN reset/initialization mode is activated.
- Registers CiMCTLj (j = 0 to 15), CiSTR, CiICR, CiIDR, CiRECR, CiTECR, and CiTSR are initialized. All these registers are locked to prevent CPU modification.
- Registers CiCTLR, CiCONR, CiGMR, CiLMAR, and CiLMBR, and the CANi message box retain their contents and are available for CPU access.

19.5.2 CAN Operation Mode

CAN operation mode is activated by setting the Reset bit in the CiCTLR register (i = 0, 1) to 0. If the Reset bit is set to 0, check that the State_Reset bit in the CiSTR register is set to 0.

If 11 consecutive recessive bits are detected after entering CAN operation mode, the module initiates the following functions:

- The module's communication functions are released and it becomes an active node on the network and may transmit and receive CAN messages.
- Release the internal fault confinement logic including receive and transmit error counters. The module may leave CAN operation mode depending on the error counts.

Within CAN operation mode, the module may be in three different sub modes, depending on which type of communication functions are performed:

- Module idle : The modules receive and transmit sections are inactive.
- Module receives : The module receives a CAN message sent by another node.
- Module transmits : The module transmits a CAN message. The module may receive its own message simultaneously when the LoopBack bit in the CiCTLR register = 1 (Loop back mode enabled).

Figure 19.13 shows the Sub Modes of CAN Operation Mode.

Figure 19.13 Sub Modes of CAN Operation Mode

19.5.3 CAN Sleep Mode

CAN sleep mode is activated by setting the Sleep bit to 1 in the CiCTLR register. It should never be activated from CAN operation mode but only via CAN reset/initialization mode.

Entering CAN sleep mode instantly stops the clock supply to the module and thereby reduces power dissipation.

19.5.4 CAN Interface Sleep Mode

CAN interface sleep mode is activated by setting the CCLK3 or CCLK7 bit in the CCLKR register to 1. It should never be activated but only via CAN sleep mode.

Entering CAN interface sleep mode instantly stops the clock supply to the CPU Interface in the module and thereby reduces power dissipation.

19.5.5 Bus Off State

The bus off state is entered according to the fault confinement rules of the CAN specification. When returning to CAN operation mode from the bus off state, the module has the following two cases. In this time, the value of any CAN registers, except registers CiSTR, CiRECR, and CiTECR, does not change.

(1) When 11 consecutive recessive bits are detected 128 times

The module enters instantly into error active state and the CAN communication becomes possible immediately.

(2) When the RetBusOff bit in the CiCTLR register = 1 (Force return from buss off)

The module enters instantly into error active state, and the CAN communication becomes possible again after 11 consecutive recessive bits are detected.

19.6 CAN Module System Clock Configuration

The M16C/6N Group (M16C/6N4) has a CAN module system clock select circuit.

Configuration of the CAN module system clock can be done through manipulating the CCLKR register and the BRP bit in the CiCONR register (i = 0, 1).

For the CCLKR register, refer to 8. Clock Generation Circuit.

Figure 19.14 shows the CAN Module System Clock Generation Circuit Block Diagram.

Figure 19.14 CAN Module System Clock Generation Circuit Block Diagram

19.7 Bit Timing Configuration

The bit time consists of the following four segments:

• Synchronization segment (SS)

This serves for monitoring a falling edge for synchronization.

- Propagation time segment (PTS)
 This segment absorbs physical delay on the CAN network which amounts to double the total sum of delay on the CAN bus, the input comparator delay, and the output driver delay.
- Phase buffer segment 1 (PBS1)
 This serves for compensating the phase error. When the falling edge of the bit falls later than expected, the segment can become longer by the maximum of the value defined in SJW.
- Phase buffer segment 2 (PBS2)

This segment has the same function as the phase buffer segment 1. When the falling edge of the bit falls earlier than expected, the segment can become shorter by the maximum of the value defined in SJW.

Figure 19.15 shows the Bit Timing.

19.8 Bit-rate

Bit-rate depends on f1, the division value of the CAN module system clock, the division value of the baud rate prescaler, and the number of Tq of one bit.

Table 19.2 shows the Examples of Bit-rate.

Bit-rate	24 MHz (2)	20 MHz	16 MHz	10 MHz	8 MHz
1 Mbps	12 Tq (1)	10 Tq (1)	8 Tq (1)	_	-
500 kbps	8 Tq (3)	10 Tq (2)	8 Tq (2)	10 Tq (1)	8 Tq (1)
	12 Tq (2)	20 Tq (1)	16 Tq (1)	_	-
	24 Tq (1)	_	_	_	-
125 kbps	8 Tq (12)	8 Tq (10)	8 Tq (8)	8 Tq (5)	8 Tq (4)
	12 Tq (8)	10 Tq (8)	16 Tq (4)	10 Tq (4)	16 Tq (2)
	16 Tq (6)	16 Tq (5)	_	20 Tq (2)	-
	24 Tq (4)	20 Tq (4)	_	_	-
83.3 kbps	8 Tq (18)	8 Tq (15)	8 Tq (12)	10 Tq (6)	8 Tq (6)
	12 Tq (12)	10 Tq (12)	16 Tq (6)	20 Tq (3)	16 Tq (3)
	16 Tq (9)	20 Tq (6)	_	_	-
	24 Tq (6)	_	_	_	-
33.3 kbps	10 Tq (36)	10 Tq (30)	8 Tq (30)	10 Tq (15)	8 Tq (15)
	12 Tq (30)	20 Tq (15)	10 Tq (24)	_	10 Tq (12)
	20 Tq (18)	_	16 Tq (15)	_	20 Tq (6)
	24 Tq (15)	_	20 Tq (12)	_	_

Table 19.2 Examples of Bit-rate

NOTES:

1. The number in () indicates a value of "fCAN division value" multiplied by "baud rate prescaler division value".

2. 24 MHz is available Normal-ver. only.

19.8.1 Calculation of Bit-rate

f1

 $2 \times$ "fCAN division value ⁽¹⁾" \times "baud rate prescaler division value ⁽²⁾" \times "number of Tq of one bit"

NOTES:

1. fCAN division value = 1, 2, 4, 8, 16

fCAN division value: a value selected in the CCLKR register

2. Baud rate prescaler division value = P + 1 (P: 0 to 15)

P: a value selected in the BRP bit in the CiCONR register (i = 0, 1)

19.9 Acceptance Filtering Function and Masking Function

These functions serve the users to select and receive a facultative message. Registers CiGMR (i = 0, 1), CiLMAR, and CiLMBR can perform masking to the standard ID and the extended ID of 29 bits. The CiGMR register corresponds to slots 0 to 13, the CiLMAR register corresponds to slot 14, and the CiLMBR register corresponds to slot 15. The masking function becomes valid to 11 bits or 29 bits of a received ID according to the value in the corresponding slot of the CiIDR register upon acceptance filtering operation. When the masking function is employed, it is possible to receive a certain range of IDs.

Figure 19.16 shows the Correspondence of Mask Registers to Slots, Figure 19.17 shows the Acceptance Function.

Figure 19.16 Correspondence of Mask Registers to Slots

Figure 19.17 Acceptance Function

When using the acceptance function, note the following points.

- (1) When one ID is defined in two slots, the one with a smaller number alone is valid.
- (2) When it is configured that slots 14 and 15 receive all IDs with Basic CAN mode, slots 14 and 15 receive all IDs which are not stored into slots 0 to 13.

19.10 Acceptance Filter Support Unit (ASU)

The acceptance filter support unit has a function to judge valid/invalid of a received ID through table search. The IDs to receive are registered in the data table; a received ID is stored in the CiAFS register (i = 0, 1), and table search is performed with a decoded received ID. The acceptance filter support unit can be used for the IDs of the standard frame only.

The acceptance filter support unit is valid in the following cases.

- When the ID to receive cannot be masked by the acceptance filter. (Example) IDs to receive: 078h, 087h, 111h
- When there are too many IDs to receive; it would take too much time to filter them by software.

Figure 19.18 shows the Write/Read of CiAFS Register in Word Access.

Figure 19.18 Write/read of CiAFS Register in Word Access

19.11 Basic CAN Mode

When the BasicCAN bit in the CiCTLR register (i = 0, 1) is set to 1 (Basic CAN mode enabled), slots 14 and 15 correspond to Basic CAN mode. In normal operation mode, each slot can handle only one type message at a time, either a data frame or a remote frame by setting CiMCTLj register (j = 0 to 15). However, in Basic CAN mode, slots 14 and 15 can receive both types of message at the same time.

When slots 14 and 15 are defined as reception slots in Basic CAN mode, received messages are stored in slots 14 and 15 alternately.

Which type of message has been received can be checked by the RemActive bit in the CiMCTLj register. Figure 19.19 shows the Slots 14 and 15 Operation in Basic CAN Mode.

Figure 19.19 Slots 14 and 15 Operation in Basic CAN Mode

When using Basic CAN mode, note the following points.

- (1) Setting of Basic CAN mode has to be done in CAN reset/initialization mode.
- (2) Select the same ID for slots 14 and 15. Also, setting of registers CiLMAR and CiLMBR has to be the same.
- (3) Define slots 14 and 15 as reception slot only.
- (4) There is no protection available against message overwrite. A message can be overwritten by a new message.
- (5) Slots 0 to 13 can be used in the same way as in normal CAN operation mode.

19.12 Return from Bus Off Function

When the protocol controller enters bus off state, it is possible to make it forced return from bus off state by setting the RetBusOff bit in the CiCTLR register (i = 0, 1) to 1 (force return from bus off). At this time, the error state changes from bus off state to error active state. If the RetBusOff bit is set to 1, registers CiRECR and CiTECR are initialized and the State_BusOff bit in the CiSTR register is set to 0 (CAN module is not in error bus off state). However, registers of the CAN module such as CiCONR register and the content of each slot are not initialized.

19.13 Time Stamp Counter and Time Stamp Function

When the CiTSR register (i = 0, 1) is read, the value of the time stamp counter at the moment is read. The period of the time stamp counter reference clock is the same as that of 1 bit time that is configured by the CiCONR register. The time stamp counter functions as a free run counter.

The 1 bit time period can be divided by 1 (undivided), 2, 4 or 8 to produce the time stamp counter reference clock. Use the TSPreScale bit in the CiCTLR register to select the divide-by-n value.

The time stamp counter is equipped with a register that captures the counter value when the protocol controller regards it as a successful reception. The captured value is stored when a time stamp value is stored in a reception slot.

19.14 Listen-Only Mode

When the RXOnly bit in the CiCTLR register (i = 0, 1) is set to 1, the module enters Listen-only mode.

In Listen-only mode, no transmission, such as data frames, error frames, and ACK response, is performed to bus.

When Listen-only mode is selected, do not request the transmission.

19.15 Reception and Transmission

Table 19.3 lists the CAN Reception and Transmission Mode Configuration.

TrmReq	RecReq	Remote	RspLock	Communication Mode of Slot
0	0	-	-	Communication environment configuration mode:
				configure the communication mode of the slot.
0	1	0	0	Configured as a reception slot for a data frame.
1	0	1	0	Configured as a transmission slot for a remote frame.
				(At this time the RemActive = 1.)
				After completion of transmission, this functions as a reception
				slot for a data frame. (At this time the RemActive = 0.)
				However, when an ID that matches on the CAN bus is detected
				before remote frame transmission, this immediately functions
				as a reception slot for a data frame.
1	0	0	0	Configured as a transmission slot for a data frame.
0	1	1	1/0	Configured as a reception slot for a remote frame.
				(At this time the RemActive = 1.)
				After completion of reception, this functions as a transmission
				slot for a data frame. (At this time the RemActive = 0.)
				However, transmission does not start as long as RspLock bit
				remains 1; thus no automatic response.
				Response (transmission) starts when the RspLock bit is set to 0.

TrmReq, RecReq, Remote, RspLock, RemActive, RspLock: Bits in CiMCTLj register (i = 0, 1, j = 0 to 15)

When configuring a slot as a reception slot, note the following points.

- (1) Before configuring a slot as a reception slot, be sure to set the CiMCTLj register to 00h.
- (2) A received message is stored in a slot that matches the condition first according to the result of reception mode configuration and acceptance filtering operation. Upon deciding in which slot to store, the smaller the number of the slot is, the higher priority it has.
- (3) In normal CAN operation mode, when a CAN module transmits a message of which ID matches, the CAN module never receives the transmitted data. In loop back mode, however, the CAN module receives back the transmitted data. In this case, the module does not return ACK.

When configuring a slot as a transmission slot, note the following points.

- (1) Before configuring a slot as a transmission slot, be sure to set the CiMCTLj registers to 00h.
- (2) Set the TrmReq bit in the CiMCTLj register to 0 (not transmission slot) before rewriting a transmission slot.
- (3) A transmission slot should not be rewritten when the TrmActive bit in the CiMCTLj register is 1 (transmitting).

If it is rewritten, an undefined data will be transmitted.

19.15.1 Reception

Figure 19.20 shows the Timing of Receive Data Frame Sequence. Figure 19.20 shows the behavior of the module when receiving two consecutive CAN messages, that fit into the slot of the shown CiMCTLj register (i = 0, 1, j = 0 to 15) and leads to losing/overwriting of the first message.

Figure 19.20 Timing of Receive Data Frame Sequence

- (1) On monitoring a SOF on the CAN bus the RecState bit in the CiSTR register becomes 1 (CAN module is receiver) immediately, given the module has no transmission pending.
- (2) After successful reception of the message, the NewData bit in the CiMCTLj register of the receiving slot becomes 1 (stored new data in slot). The InvalData bit in the CiMCTLj register becomes 1 (message is being updated) at the same time and the InvalData bit becomes 0 (message is valid) again after the complete message was transferred to the slot.
- (3) When the interrupt enable bit in the CiICR register of the receiving slot = 1 (interrupt enabled), the CANi successful reception interrupt request is generated and the MBOX bit in the CiSTR register is changed. It shows the slot number where the message was stored and the RecSucc bit in the CiSTR register is active.
- (4) Read the message out of the slot after setting the New Data bit to 0 (the content of the slot is read or still under processing by the CPU) by a program.
- (5) When next CAN message is received before the NewData bit is set to 0 by a program or a receive request to a slot is canceled, the MsgLost bit in the CiMCTLj register is set to 1 (message has been overwritten). The new received message is transferred to the slot. Generating of an interrupt request and change of the CiSTR register are same as in 3).

19.15.2 Transmission

Figure 19.21 shows the Timing of Transmit Sequence.

Figure 19.21 Timing of Transmit Sequence

- (1) If the TrmReq bit in the CiMCTLj register (i = 0, 1, j = 0 to 15) is set to 1 (transmission slot) in the bus idle state, the TrmActive bit in the CiMCTLj register and the TrmState bit in the CiSTR register are set to 1 (transmitting/transmitter), and CAN module starts the transmission.
- (2) If the arbitration is lost after the CAN module starts the transmission, bits TrmActive and TrmState are set to 0.
- (3) If the transmission has been successful without lost in arbitration, the SentData bit in the CiMCTLj register is set to 1 (transmission is successfully completed) and TrmActive bit is set to 0 (waiting for bus idle or completion of arbitration). And when the interrupt enable bits in the CiICR register = 1 (interrupt enabled), CANi successful transmission interrupt request is generated and the MBOX (the slot number which transmitted the message) and TrmSucc bit in the CiSTR register are changed.
- (4) When starting the next transmission, set bits SentData and TrmReq to 0. And set the TrmReq bit to 1 after checking that bits SentData and TrmReq are set to 0.

19.16 CAN Interrupt

The CAN module provides the following CAN interrupts.

- CANi successful reception interrupt (i = 0, 1)
- CANi successful transmission interrupt
- CAN0/1 error Interrupt: Error passive state

Error bus off state

Bus error (this feature can be disabled separately)

• CAN0/1 wake-up interrupt

When the CPU detects the CANi successful reception/transmission interrupt request, the MBOX bit in the CiSTR register must be read to determine which slot has generated the interrupt request.

20. Programmable I/O Ports

The programmable input/output ports (hereafter referred to simply as I/O ports) consist of 87 lines P0 to P10 (except P8_5). Each port can be set for input or output every line by using a direction register, and can also be chosen to be or not be pulled high every 4 lines. P8_5 is an input-only port and does not have a pull-up resistor. Port P8_5 shares the pin with NMI, so that the NMI input level can be read from the P8_5 bit in the P8 register.

Figures 20.1 to 20.5 show the I/O Ports. Figure 20.6 shows the I/O Pins.

Each pin functions as an I/O port, a peripheral function input/output pin or a bus control pin.

For details on how to set peripheral functions, refer to each functional description in this manual. If any pin is used as a peripheral function input or D/A converter output pin, set the direction bit for that pin to 0 (input mode). Any pin used as an output pin for peripheral functions other than the D/A converter is directed for output no matter how the corresponding direction bit is set.

When using any pin as a bus control pin, refer to **7.2 Bus Control**.

20.1 PDi Register (i = 0 to 10)

Figure 20.7 shows the PDi Register.

This register selects whether the I/O port is to be used for input or output. The bits in this register correspond one for one to each port.

During memory expansion and microprocessor modes, the PDi registers for the pins functioning as bus control pins (A0 to A19, D0 to D15, $\overline{CS0}$ to $\overline{CS3}$, \overline{RD} , $\overline{WRL}/\overline{WR}$, $\overline{WRH}/\overline{BHE}$, ALE, \overline{RDY} , \overline{HOLD} , \overline{HLDA} , and BCLK) cannot be modified.

No direction register bit for P8_5 is available.

20.2 Pi Register (i = 0 to 10)

Figure 20.8 shows the Pi Register.

Data input/output to and from external devices are accomplished by reading and writing to the Pi register. The Pi register consists of a port latch to hold the input/output data and a circuit to read the pin status. For ports set for input mode, the input level of the pin can be read by reading the corresponding Pi register, and data can be written to the port latch by writing to the Pi register.

For ports set for output mode, the port latch can be read by reading the corresponding Pi register, and data can be written to the port latch by writing to the Pi register. The data written to the port latch is output from the pin. The bits in the Pi register correspond one for one to each port.

During memory expansion and microprocessor modes, the Pi registers for the pins functioning as bus control pins (A0 to A19, D0 to D15, CS0 to CS3, RD, WRL/WR, WRH/BHE, ALE, RDY, HOLD, HLDA, and BCLK) cannot be modified.

20.3 PURj Register (j = 0 to 2)

Figure 20.9 shows the PURj Register.

The PURj register bits can be used to select whether or not to pull the corresponding port high in 4-bit unit. The port selected to be pulled high has a pull-up resistor connected to it when the direction bit is set for input mode.

However, the pull-up control register has no effect on P0 to P3, P4_0 to P4_3, and P5 during memory expansion and microprocessor modes. Although the register contents can be modified, no pull-up resistors are connected.

20.4 PCR Register

Figure 20.10 shows the PCR Register.

When the P1 register is read after setting the PCR0 bit in the PCR register to 1, the corresponding port latch can be read no matter how the PD1 register is set.

Tables 20.1 lists the Unassigned Pin Handling in Single-chip Mode and 20.2 lists the Unassigned Pin Handling in Memory Expansion Mode and Microprocessor Mode. Figure 20.11 shows the Unassigned Pin Handling.

Figure 20.1 I/O Ports (1)

Figure 20.2 I/O Ports (2)

Figure 20.3 I/O Ports (3)

Figure 20.6 I/O Pins

Figure 20.7 Registers PD0 to PD10

Port Pi Register (i =		,	A -1-1		
b7 b6 b5 b4 b3 b2 b1	Symt P0 to P		Address 03E1h, 03E4h, 03E5h	After Reset Undefined	
	P4 to P		03E9h, 03ECh, 03EDh	Undefined	
╶┼╶╀╶┞╶┼╶┼╶┼	P9, P10			Undefined	
	Bit Symbol	Bit Name	Funct	ion	RW
	Pi_0	Port Pi_0 bit	The pin level on any I/C	-	RW
	 Pi_1	Port Pi_1 bit	for input mode can be	e read by reading	RW
	 Pi_2	Port Pi_2 bit	the corresponding bit The pin level on any		RW
	Pi_3	Port Pi_3 bit	set for output mode o	can be controlled	RW
	Pi_4	Port Pi_4 bit	by writing to the corr this register.	esponding bit in	RW
	Pi_5	Port Pi_5 bit	0 : "L" level		RW
	Pi_6	Port Pi_6 bit	1 : "H" level ⁽²⁾		RW
	Pi 7	Port Pi_7 bit			RW
pins (A0 to A19, D0 cannot be modified.	to D15, <u>CS0</u> to 0	ĊS3, RD, WRL/WR, V	Pi register for the pins fur VRH/BHE, ALE, RDY, HO data is high-impedance.		
 During memory expansion pins (A0 to A19, D0 cannot be modified. Since P7_1 and P9_ Port P8 Register 	to D15, CS0 to (1 are N channel 0	ĊS3, RD, WRL/WR, V	VRH/BHE, ALE, RDY, HO data is high-impedance.	DLD, HLĎA, and E	
 During memory expansion pins (A0 to A19, D0 cannot be modified. Since P7_1 and P9_ Port P8 Register 	to D15, CS0 to đ 1 are N channel ₀ Symt	ĊS3, RD, WRL/WR, V open-drain ports, the pol	VRH/BHE, ALE, RDY, HO data is high-impedance. Address	ILD, HLDA, and E After Reset	
 During memory expansion pins (A0 to A19, D0 cannot be modified. Since P7_1 and P9_ Port P8 Register 	to D15, CS0 to (1 are N channel 0	ĊS3, RD, WRL/WR, V open-drain ports, the pol	VRH/BHE, ALE, RDY, HO data is high-impedance.	DLD, HLĎA, and E	
 During memory expansion pins (A0 to A19, D0 cannot be modified. Since P7_1 and P9_ Port P8 Register 	to D15, CS0 to 0 1 are N channel 0 Symt P8	ĊS3, RD, WRL/WR, V open-drain ports, the pol	VRH/BHE, ALE, RDY, HO data is high-impedance. Address	DLD, HLDA, and E After Reset Undefined	
 During memory expansion pins (A0 to A19, D0 cannot be modified. Since P7_1 and P9_ Port P8 Register 	to D15, CS0 to đ 1 are N channel ₀ Symt	ĊS3, RD, WRL/WR, V open-drain ports, the pol	VRH/BHE, ALE, RDY, HO data is high-impedance. Address 03F0h Functi	After Reset Undefined D port which is set	3CLK)
 During memory expansion pins (A0 to A19, D0 cannot be modified. Since P7_1 and P9_ Port P8 Register 	to D15, CS0 to 0 1 are N channel 0 Symt P8 Bit symbol	CS3, RD, WRL/WR, V open-drain ports, the pol Bit name	VRH/BHE, ALE, RDY, HO data is high-impedance. Address 03F0h 	After Reset Undefined oport which is set e read by reading	BCLK)
 During memory expansion pins (A0 to A19, D0 cannot be modified. Since P7_1 and P9_ Port P8 Register 	to D15, CS0 to 0 1 are N channel Symb Bit symbol - P8_0	CS3, RD, WRL/WR, V open-drain ports, the pol Bit name Port P8 _0 bit	VRH/BHE, ALE, RDY, HO data is high-impedance. Address 03F0h The pin level on any I/C for input mode can be the corresponding bit The pin level on any	After Reset Undefined oport which is set e read by reading t in this register. I/O port which is	RW RW
 During memory expansion pins (A0 to A19, D0 cannot be modified. Since P7_1 and P9_ Port P8 Register 	to D15, CS0 to 0 1 are N channel Symt Bit symbol - P8_0 - P8_1	CS3, RD, WRL/WR, V open-drain ports, the pol Bit name Port P8 _0 bit Port P8 _1 bit	VRH/BHE, ALE, RDY, HO data is high-impedance. Address 03F0h The pin level on any I/C for input mode can be the corresponding bit The pin level on any set for output mode c	After Reset Undefined oport which is set e read by reading t in this register. I/O port which is can be controlled	RW RW RW
 During memory expansion pins (A0 to A19, D0 cannot be modified. Since P7_1 and P9_ Port P8 Register 	to D15, CS0 to 0 1 are N channel Symt Bit symbol - P8_0 - P8_1 - P8_2	DS3, RD, WRL/WR, V open-drain ports, the Dol Bit name Port P8 _0 bit Port P8 _1 bit Port P8 _2 bit	VRH/BHE, ALE, RDY, HO data is high-impedance. Address 03F0h The pin level on any I/C for input mode can be the corresponding bit The pin level on any set for output mode co by writing to the corr this register (except f	After Reset Undefined D port which is set e read by reading t in this register. I/O port which is can be controlled responding bit in	RW RW RW RW
 During memory expansion pins (A0 to A19, D0 cannot be modified. Since P7_1 and P9_ Port P8 Register 	to D15, CS0 to 0 1 are N channel 0 0 1 are N channel 0 0 0 0 0 0 0 0 0 0 0 0 0	Dool Bit name Port P8 _0 bit Port P8 _1 bit Port P8 _2 bit Port P8 _3 bit	VRH/BHE, ALE, RDY, HO data is high-impedance. Address 03F0h The pin level on any I/C for input mode can be the corresponding bit The pin level on any set for output mode cor by writing to the corr this register (except f 0 : "L" level	After Reset Undefined D port which is set e read by reading t in this register. I/O port which is can be controlled responding bit in	RW RW RW RW RW
 During memory expansion pins (A0 to A19, D0 cannot be modified. Since P7_1 and P9_ Port P8 Register 	to D15, CS0 to 0 1 are N channel 0 Symt P8 Bit symbol - P8_0 - P8_1 - P8_2 - P8_3 - P8_4	Dol Bit name Port P8 _0 bit Port P8 _1 bit Port P8 _2 bit Port P8 _3 bit Port P8 _4 bit	VRH/BHE, ALE, RDY, HO data is high-impedance. Address 03F0h The pin level on any I/C for input mode can be the corresponding bit The pin level on any set for output mode co by writing to the corr this register (except f	After Reset Undefined D port which is set e read by reading t in this register. I/O port which is can be controlled responding bit in	RW RW RW RW RW RW

Figure 20.8 Registers P0 to P10

3. The pin for which this bit is 1 (pulled high) and the direction bit is 0 (input mode) is pulled high.

Figure 20.9 Registers PUR0, PUR1, and PUR2

Figure 20.10 PCR Register

Table 20.1	Unassigned Pin	Handling in	Single-chip Mode	
	•····•••····		•	

Pin Name	Connection
Ports P0 to P7, P8_0 to P8_4,	After setting for input mode, connect every pin to VSS via a resistor (pull-down);
P8_6, P8_7, P9, P10	or after setting for output mode, leave these pins open. $^{(1)(2)(3)}$
XOUT ⁽⁴⁾	Open
NMI(P8_5)	Connect via resistor to VCC (pull-up)
AVCC	Connect to VCC
AVSS, VREF, BYTE	Connect to VSS

NOTES:

1. When setting the port for output mode and leave it open, be aware that the port remains in input mode until it is switched to output mode in a program after reset. For this reason, the voltage level on the pin becomes undefined, causing the power supply current to increase while the port remains in input mode.

Furthermore, by considering a possibility that the contents of the direction registers may change due to noise or program runaway caused by noise, it is recommended that the contents of the direction registers be periodically reset in software, for the increased reliability of the program.

- 2. Make sure the unused pins are processed with the shortest possible wiring from the MCU pins (2 cm or less).
- 3. When the ports P7_1 and P9_1 are set for output mode, make sure a low-level signal is output from the pins. The ports P7_1 and P9_1 are N-channel open-drain outputs.
- 4. With external clock input to XIN pin.

Table 20.2 Unassigned Pin Handling in Memory Expansion Mode and Microprocessor Mode

Pin Name	Connection
Ports P6, P7, P8_0 to P8_4,	After setting for input mode, connect every pin to VSS via a resistor (pull-down);
P8_6, P8_7, P9, P10	or after setting for output mode, leave these pins open. (1) (2) (3) (4)
P4_5/CS1 to P4_7/CS3	Connect to VCC via a resistor (pulled high) by setting the corresponding
	direction bit in the PD4 register for \overline{CS} i(i = 1 to 3) to 0 (input mode) and
	the $\overline{\text{CS}}$ i bit in the CSR register to 0 (chip select disabled).
BHE, ALE, HLDA, XOUT ⁽⁵⁾ ,	Open
BCLK (6)	
HOLD, RDY, NMI(P8_5)	Connect via resistor to VCC (pull-up)
AVCC	Connect to VCC
AVSS, VREF	Connect to VSS

NOTES:

- When setting the port for output mode and leave it open, be aware that the port remains in input mode until it is switched to output mode in a program after reset. For this reason, the voltage level on the pin becomes undefined, causing the power supply current to increase while the port remains in input mode. Furthermore, by considering a possibility that the contents of the direction registers may change due to noise
- or program runaway caused by noise, it is recommended that the contents of the direction registers be periodically reset in software, for the increased reliability of the program.
- 2. Make sure the unused pins are processed with the shortest possible wiring from the MCU pins (2 cm or less).
- 3. If the CNVSS pin has the VSS level applied to it, these pins are set for input ports until the processor mode is switched over in a program after reset. For this reason, the voltage levels on these pins become undefined, causing the power supply current to increase while they remain set for input ports.
- 4. When the ports P7_1 and P9_1 are set for output mode, make sure a low-level signal is output from the pins. The ports P7_1 and P9_1 are N-channel open-drain outputs.
- 5. With external clock input to XIN pin.
- 6. If the PM07 bit in the PM0 register is set to 1 (BCLK not output), connect this pin to VCC via a resistor (pulled high).

Figure 20.11 Unassigned Pins Handling

21. Flash Memory Version

Aside from the on-chip flash memory, the flash memory version MCU has the same functions as the masked ROM version.

In the flash memory version, the flash memory can perform in four rewrite mode: CPU rewrite mode, standard serial I/O mode, parallel I/O mode, and CAN I/O mode.

Table 21.1 lists the Flash Memory Version Specifications. See Table 1.1 Functions and Specifications, for the items not listed in Table 21.1. Table 21.2 shows the Flash Memory Rewrite Modes Overview.

Table 21.1	Flash	Memory	Version	Specifications
------------	-------	--------	---------	----------------

Item		Specifications
Flash memory rewrite mode		4 modes (CPU rewrite, standard serial I/O, parallel I/O, CAN I/O)
Erase block User ROM area		See Figure 21.1 Flash Memory Block Diagram
	Boot ROM area	1 block (4 Kbytes) ⁽¹⁾
Program method		In units of word, in units of byte (2)
Erase method		Collective erase, block erase
Program and erase control method		Program and erase controlled by software command
Protect method		Lock bit protects each block
Number of commands		8 commands
Programming and erasure endurance (3)		100 times
ROM code protecti	ion	Parallel I/O, standard serial I/O, and CAN I/O modes are supported.

NOTES:

1. The boot ROM area contains standard serial I/O mode and CAN I/O mode rewrite control program which is stored in it when shipped from the factory. This area can only be rewritten in parallel I/O mode.

2. Can be programmed in byte units in only parallel I/O mode.

3. Definition of programming and erasure endurance

The programming and erasure endurance is defined to be per-block erasure endurance. For example, assume a case where a 4K-byte block A is programmed in 2,048 operations by writing one word at a time and erased thereafter. In this case, the block is reckoned as having been programmed and erased once.

If a product is 100 times of programming and erasure endurance, each block in it can be erased up to 100 times.

Flash Memory Rewrite Mode	CPU Rewrite Mode	Standard Serial I/O Mode		CAN I/O Mode
Function	rewritten when the CPU executes software commands. EW0 mode:	rewritten using a dedicated serial programmer. Standard serial I/O mode 1: Clock synchronous serial I/O Standard serial I/O mode 2:	ROM areas are rewritten using a dedicated parallel programmer.	The user ROM area is rewritten busing a dedicated CAN programmer.
Areas which can be rewritten	User ROM area	User ROM area	User ROM area Boot ROM area	User ROM area
Operating mode	Single-chip mode Memory expansion mode (EW0 mode) Boot mode (EW0 mode)	Boot mode	Parallel I/O mode	Boot mode
ROM programmer	None	Serial programmer	Parallel programmer	CAN programmer

Table 21.2 Flash Memory Rewrite Modes Overview

NOTES:

1. The PM13 bit remains set to 1 while the FMR01 bit in the FMR0 register = 1 (CPU rewrite mode enabled). The PM13 bit is reverted to its original value by setting the FMR01 bit to 0 (CPU rewrite mode disabled). However, if the PM13 bit is changed during CPU rewrite mode, its changed value is not reflected until after the FMR01 bit is set to 0.

2. When in CPU rewrite mode, bits PM10 and PM13 in the PM1 register are set to 1. The rewrite control program can only be executed in the internal RAM or in an external area that is enabled for use when the PM13 bit = 1.

3. When using standard serial I/O mode 2, make sure a main clock input oscillation frequency is set to 5 MHz, 10 MHz, or 16 MHz.

21.1 Memory Map

The flash memory contains the user ROM area and the boot ROM area. The user ROM area has space to store the MCU operating program in single-chip mode or memory expansion mode and a separate 4-Kbyte space as the block A.

Figure 21.1 shows the Flash Memory Block Diagram.

The user ROM area is divided into several blocks, each of which can be protected (locked) against programming or erasure. The user ROM area can be rewritten in CPU rewrite, standard serial I/O mode, parallel I/O mode, and CAN I/O mode. Block A is enabled for use by setting the PM10 bit in the PM1 register to 1 (block A enabled. CS2 area at addresses 10000h to 26FFFh).

The boot ROM area is located at the same addresses as the user ROM area. It can only be rewritten in parallel I/O mode (refer to **21.1.1 Boot Mode**). A program in the boot ROM area is executed after a hardware reset occurs while an "H" signal is applied to pins CNVSS and P5_0 and an "L" signal is applied to the P5_5 pin (refer to **21.1.1 Boot Mode**). A program in the user ROM area is executed after a hardware reset occurs while an "L" signal is applied to the CNVSS pin. However, the boot ROM area cannot be read.

Figure 21.1 Flash Memory Block Diagram

21.1.1 Boot Mode

The MCU enters boot mode when a hardware reset occurs while an "H" signal is applied to pins CNVSS and P5_0 and an "L" signal is applied to the P5_5 pin. A program in the boot ROM area is executed. In boot mode, the FMR05 bit in the FMR0 register selects access to the boot ROM area or the user ROM area. The rewrite control program for standard serial I/O mode is stored in the boot ROM area before shipment. The boot ROM area can be rewritten in parallel I/O mode only. If given rewrite control program using erase-write mode (EW0 mode) is written in the boot ROM area, the flash memory can be rewritten according to the system implemented.

21.2 Functions to Prevent Flash Memory from Rewriting

The flash memory has the ROM code protect function for parallel I/O mode and the ID code check function for standard serial I/O mode and CAN I/O mode to prevent the flash memory from reading or rewriting.

21.2.1 ROM Code Protect Function

The ROM code protect function inhibits the flash memory from being read or rewritten during parallel I/O mode. Figure 21.2 shows the ROMCP Register. The ROMCP register is located in the user ROM area. The ROM code protect function is enabled when the ROMCR bits are set to other than 11b. In this case, set the bit 5 to bit 0 to 111111b.

When exiting ROM code protect, erase the block including the ROMCP register by CPU rewrite mode, standard serial I/O mode, or CAN I/O mode.

21.2.2 ID Code Check Function

Use the ID code check function in standard serial I/O mode and CAN I/O mode. The ID code sent from the serial programmer is compared with the ID code written in the flash memory for a match. If the ID codes do not match, commands sent from the serial programmer are not accepted. However, if the four bytes of the reset vector are FFFFFFFh, ID codes are not compared, allowing all commands to be accepted. The ID codes are 7-byte data stored consecutively, starting with the first byte, into addresses 0FFFDFh, 0FFFE3h, 0FFFE3h, 0FFFF3h, 0FFFF7h, and 0FFFFBh. The flash memory must have a program with the ID codes set in these addresses.

Figure 21.3 shows the Addresses for ID Code Stored.

b7 b6	6 b5	b4	b3	b2 1	b1	ьо 1	Symbol ROMC		lue when Shipped FFh ⁽¹⁾	
							Bit Symbol	Bit Name	Function	RW
	l	!-			!		(b5-b0)	Reserved bits	Set to 1	RW
							ROMCP1	ROM code protect level 1 set bit ^{(1) (2)} ^{(3) (4)}	b7 b6 0 0 : 0 1 : 1 0 : 1 1 : ROM code protection active 1 1 : ROM code protection inactive	RW RW

 When the ROM code protection is active by the ROMCP1 bit setting, the flash memory is protected against reading or rewriting in parallel I/O mode.

- 3. Set bits 5 to 0 to 111111b when the ROMCP1 bit is set to a value other than 11b. If bits 5 to 0 are set to values other than 111111b, the ROM code protection may not become active by setting the ROMCP1 bit to a value other than 11b.
- 4. To make the ROM code protection inactive, erase a block including the ROMCP address in CPU rewrite mode, standard serial I/O mode, or CAN I/O mode.
- 5. When a value of the ROMCP address is 00h or FFh, the ROM code protect function is disabled.

Figure 21.2 ROMCP Register

Figure 21.3 Address for ID Code Stored

21.3 CPU Rewrite Mode

In CPU rewrite mode, the user ROM area can be rewritten when the CPU executes software commands. The user ROM area can be rewritten with the MCU is mounted on a board without using a parallel, serial or CAN programmer.

In CPU rewrite mode, only the user ROM area shown in Figure 21.1 can be rewritten. The boot ROM area cannot be rewritten. Program and the block erase command are executed only in the user ROM area. Erase-write 0 (EW0) mode and erase-write 1 (EW1) mode are provided as CPU rewrite mode. Table 21.3 lists the differences between EW0 and EW1 Modes.

Item	EW0 Mode	EW1 Mode
Operating mode	Single-chip mode	Single-chip mode
	Memory expansion mode	
	Boot mode	
Space where rewrite	User ROM area	User ROM area
control program can be	Boot ROM area	
placed		
Space where rewrite	The rewrite control program must be	The rewrite control program can be
control program can be	transferred to any space other than the	executed in the user ROM area
executed	flash memory (e.g., RAM) before being executed ⁽²⁾	
Space which can be	User ROM area	User ROM area
rewritten		However, this excludes blocks with the
		rewrite control program
Software command	None	Program and block erase commands
restriction		cannot be executed in a block having
		the rewrite control program.
		• Erase all unlocked block command
		cannot be executed when the lock bit in
		a block having the rewrite control program
		is set to 1 (unlocked) or when the FMR02
		bit in the FMR0 register is set to 1 (lock
		bit disabled).
		 Read status register command cannot
		be used.
Modes after program or	Read status register mode	Read array mode
erasing		
CPU status during	Operating	Maintains hold state (I/O ports maintains
auto-programming and		the state before the command was
auto-erasure		executed) ⁽¹⁾
Flash memory status	•Read bits FMR00, FMR06, and FMR07	Read bits FMR00, FMR06, and FMR07
detection	in the FMR0 register by program	in the FMR0 register by program
	•Execute the read status register	
	command to read bits SR7, SR5, and	
	SR4 in the status register	

Table 21.3 EW0 Mode and EW1 Mode

NOTES:

1. Do not generate an interrupts (except NMI interrupt) and DMA transfer.

2. When in CPU rewrite mode, bits PM10 and PM13 in the PM1 register are set to 1. The rewrite control program can only be executed in the internal RAM or in an external area that is enabled for use when the PM13 bit = 1.

21.3.1 EW0 Mode

The MCU enters CPU rewrite mode by setting the FMR01 bit in the FMR0 register to 1 (CPU rewrite mode enabled) and is ready to accept commands. EW0 mode is selected by setting the FMR11 bit in the FMR1 register to 0. To set the FMR01 bit to 1, set to 1 after first writing 0.

The software commands control programming and erasing. The FMR0 register or the status register indicates whether a program or erase operation is completed as expected or not.

21.3.2 EW1 Mode

EW1 mode is selected by setting FMR11 bit to 1 (by writing 0 and then 1 in succession) after setting the FMR01 bit to 1 (by writing 0 and then 1 in succession). (Both bits must be set to 0 first before setting to 1.) The FMR0 register indicates whether or not a program or erase operation has been completed as expected. The status register cannot be read in EW1 mode.

When an erase/program operation is initiated the CPU halts all program execution until the operation is completed or erase-suspend is requested.

21.3.3 Registers FMR0 and FMR1

Figure 21.4 shows Registers FMR0 and FMR1.

b6 b5 b4 b3 b2 b1 b0		Symbol FMR0	Address 01B7h	After Reset 00000001b		
		Bit Symbol	Bit Name	Function	RW	
		FMR00	RY/BY status flag	0 : Busy (being written or erased) ⁽¹⁾ 1 : Ready	RO	
		FMR01	CPU rewrite mode 0 : CPU rewrite mode disabled select bit ⁽²⁾ 1 : CPU rewrite mode enabled			
		FMR02	Lock bit disable select bit ⁽³⁾	0: Lock bit enabled 1: Lock bit disabled	RW	
		FMSTP	Flash memory stop bit ^{(4) (5)}	0 Flash memory operation enabled 1: Flash memory operation stops (placed in low power dissipation mode, flash memory initialized)	RW	
		(b4)	Reserved bit	Set to 0		
		FMR05	User ROM area select bit ⁽⁴⁾ (Effective in only boot mode)	0 : Boot ROM area is accessed 1 : User ROM area is accessed		
FMR06		Program status flag (6)	0 : Terminated normally 1 : Terminated in error			
		FMR07	Erase status flag (6)	0 : Terminated normally 1 : Terminated in error		

NOTES:

1. This status includes writing or reading with the lock bit program or read lock bit status command.

2. To set this bit to 1, write 0 and then 1 in succession. Make sure no interrupts or no DMA transfers will occur before writing 1 after writing 0.

Write to this bit when the MMI pin is in the high state. Also, while in EW0 mode, write to this bit from a program in other than the flash memory.

Enter read array mode and set this bit to 0.

- 3. To set this bit to 1, write 0 and then 1 in succession when the FMR01 bit = 1. Make sure no interrupts or no DMA transfers will occur before writing 1 after writing 0.
- 4. Write to this bit from a program in other than the flash memory.
- 5. Effective when the FMR01 bit = 1 (CPU rewrite mode). If the FMR01 bit = 0, although the FMSTP bit can be set to 1 by writing 1 in a program, the flash memory is neither placed in low power dissipation state nor initialized.
- 6. This bit is set to 0 by executing the clear status command.

Flash Memory Control Register 1

b7 b6 b5 b4 b3 b2 b1 b0 0 0 0 0	Symbol FMR1	Address 01B5h	After Reset 0X00XX0Xb	
	Bit Symbol	Bit Name	Function	RW
	(b0)	Reserved bit	When read, the content is undefined.	RO
	FMR11	EW1 mode select bit (1)	0 : EW0 mode 1 : EW1 mode	RW
	(b3-b2)	Reserved bits	When read, the content is undefined.	RO
	(b5-b4)	Reserved bits	Set to 0	RW
	FMR16	Lock bit status flag	0 : Lock 1 : Unlock	RO
i	(b7)	Reserved bit	Set to 0	RW

NOTE:

1. To set this bit to 1, write 0 and then 1 in succession when the FMR01 bit in the FMR0 register = 1. Make sure no interrupts or no DMA transfers will occur before writing 1 after writing 0.

Write to this bit when the $\overline{\rm NMI}$ pin is in the high state.

Both the FMR01 and FMR11 bits are set to 0 by setting the FMR01 bit to 0.

Figure 21.4 Registers FMR0 and FMR1

21.3.3.1 FMR00 Bit

This bit indicates the operating status of the flash memory. It is set to 0 while the program, block erase, erase all unlocked block, lock bit program, or read lock bit status command is being executed; otherwise, it is set to 1.

21.3.3.2 FMR01 Bit

The MCU can accept commands when the FMR01 bit is set to 1 (CPU rewrite mode). Set the FMR05 bit to 1 (user ROM area access) as well if in boot mode.

21.3.3.3 FMR02 Bit

The lock bit is disabled by setting the FMR02 bit to 1 (lock bit disabled). (Refer to **21.3.6 Data Protect Function**.) The lock bit is enabled by setting the FMR02 bit to 0 (lock bit enabled).

The FMR02 bit does not change the lock bit status but disables the lock bit function. If the block erase or erase all unlocked block command is executed when the FMR02 bit is set to 1, the lock bit status changes 0 (locked) to 1 (unlocked) after command execution is completed.

21.3.3.4 FMSTP Bit

The FMSTP bit resets the flash memory control circuits and minimizes power consumption in the flash memory. Access to the flash memory is disabled when the FMSTP bit is set to 1 (flash memory operation stops). Set the FMSTP bit by program in a space other than the flash memory.

Set the FMSTP bit to 1 if one of the followings occurs:

- A flash memory access error occurs while erasing or programming in EW0 mode (FMR00 bit does not switch back to 1 (ready))
- Low power dissipation mode or on-chip oscillator low power dissipation mode is entered

Use the following the procedure to change the FMSTP bit setting.

- (1) Set the FMSTP bit to 1
- (2) Set tps (the wait time to stabilize flash memory circuit)
- (3) Set the FMSTP bit to 0
- (4) Set tps (the wait time to stabilize flash memory circuit)

Figure 21.7 shows the Processing Before and After Low Power Dissipation Mode or On-chip Oscillator Low Power Dissipation Mode. Follow the procedure on this flow chart.

When entering stop or wait mode, the flash memory is automatically turned off. When exiting stop or wait mode, the flash memory is turned back on. The FMR0 register does not need to be set.

21.3.3.5 FMR05 Bit

This bit selects the boot ROM or user ROM area in boot mode. Set to 0 to access (read) the boot ROM area or to 1 (user ROM access) to access (read, write or erase) the user ROM area.

21.3.3.6 FMR06 Bit

This is a read-only bit indicating the status of an auto-program operation. The FMR06 bit is set to 1 when a program error occurs; otherwise, it is set to 0. Refer to **21.3.8 Full Status Check**.

21.3.3.7 FMR07 Bit

This is a read-only bit indicating the status of an auto-erase operation. The FMR07 bit is set to 1 when an erase error occurs; otherwise, it is set to 0. For details, refer to **21.3.8 Full Status Check**.

21.3.3.8 FMR11 Bit

EW0 mode is entered by setting the FMR11 bit to 0 (EW0 mode). EW1 mode is entered by setting the FMR11 bit to 1 (EW1 mode).

21.3.3.9 FMR16 Bit

This is a read-only bit indicating the execution result of the read lock bit status command. When the block, where the read lock bit status command is executed, is locked, the FMR16 bit is set to 0. When the block, where the read lock bit status command is executed, is unlocked, the FMR16 bit is set to 1.

Figure 21.5 shows the Setting and Resetting of EW0 Mode. Figure 21.6 show the Setting and Resetting of EW1 Mode.

Figure 21.5 Setting and Resetting of EW0 Mode

Figure 21.7 Processing Before and After Low Power Dissipation Mode or On-chip Oscillator Low Power Dissipation Mode

21.3.4 Notes on CPU Rewrite Mode

21.3.4.1 Operating Speed

Before entering CPU rewrite mode (EW0 or EW1 mode), set the CM11 bit in the CM1 register to 0 (main clock), select 10 MHz or less for CPU clock using the CM06 bit in the CM0 register and bits CM17 to CM16 in the CM1 register. Also, set the PM17 bit in the PM1 register to 1 (with wait state).

21.3.4.2 Prohibited Instructions

The following instructions cannot be used in EW0 mode because the CPU tries to read data in flash memory: the UND instruction, INTO instruction, JMPS instruction, JSRS instruction, and BRK instruction

21.3.4.3 Interrupts (EW0 Mode)

- To use interrupts having vectors in a relocatable vector table, the vectors must be relocated to the RAM area.
- The NMI and watchdog timer interrupts are available since registers FMR0 and FMR1 are forcibly reset when either interrupt request is generated. Allocate the jump addresses for each interrupt service routines to the fixed vector table. Flash memory rewrite operation is suspended when the NMI or watchdog timer interrupt request is generated. Execute the rewrite program again after exiting the interrupt routine.
- The address match interrupt is not available since the CPU tries to read data in the flash memory.

21.3.4.4 Interrupts (EW1 Mode)

- Do not acknowledge any interrupts with vectors in the relocatable vector table or address match interrupt during auto-programming or auto-erasure.
- Do not use the watchdog timer interrupt.
- The NMI interrupt is available since registers FMR0 and FMR1 are forcibly reset when the interrupt request is generated. Allocate the jump address for the interrupt service routine to the fixed vector table. Flash memory rewrite operation is suspended when the NMI interrupt request is generated. Execute the rewrite program again after exiting the interrupt service routine.

21.3.4.5 How to Access

To set the FMR01, FMR02 or FMR11 bit to 1, write 1 after first setting the bit to 0. Do not generate an interrupt or a DMA transfer between the instruction to set the bit to 0 and the instruction to set the bit to 1. Set the bit while an "H" signal is applied to the $\overline{\text{NMI}}$ pin.

21.3.4.6 Rewriting in User ROM Area (EW0 Mode)

If the supply voltage drops while rewriting the block where the rewrite control program is stored, the flash memory cannot be rewritten because the rewrite control program is not correctly rewritten. If this error occurs, rewrite the user ROM area while in standard serial I/O mode, parallel I/O mode, or CAN I/O mode.

21.3.4.7 Rewriting in User ROM Area (EW1 Mode)

Avoid rewriting any block in which the rewrite control program is stored.

21.3.4.8 DMA Transfer

In EW1 mode, do not perform a DMA transfer while the FMR00 bit in the FMR0 register is set to 0 (auto-programming or auto-erasure).

21.3.4.9 Writing Command and Data

Write commands and data to even addresses in the user ROM area.

21.3.4.10 Wait Mode

When entering wait mode, set the FMR01 bit in the FMR0 register to 0 (CPU rewrite mode disabled) before executing the WAIT instruction.

21.3.4.11 Stop Mode

When entering stop mode, execute the instruction which sets the CM10 bit to 1 (stop mode) after setting the FMR01 bit to 0 (CPU rewrite mode disabled) and disabling the DMA transfer.

21.3.4.12 Low Power Dissipation Mode and On-chip Oscillator Low Power Dissipation Mode

If the CM05 bit is set to 1 (main clock stopped), do not execute the following commands:

- Program
- Block erase
- Erase all unlocked blocks
- Lock bit program
- Read lock bit status

21.3.5 Software Commands

Software commands are described below. The command code and data must be read and written in 16-bit unit, to and from even addresses in the user ROM area. When writing command code, the high-order 8 bits (D15 to D8) are ignored.

Table 21.4 lists the Software Commands.

Table 21.4 Software Commands

	First Bus Cycle			Second Bus Cycle		
Software Command	Mode	Address	Data (D15 to D0)	Mode	Address	Data (D15 to D0)
Read array	Write	×	xxFFh	-	-	-
Read status register	Write	×	xx70h	Read	×	SRD
Clear status register	Write	×	xx50h	-	-	-
Program	Write	WA	xx40h	Write	WA	WD
Block erase	Write	×	xx20h	Write	BA	xxD0h
Erase all unlocked block (1)	Write	×	xxA7h	Write	×	xxD0h
Lock bit program	Write	BA	xx77h	Write	BA	xxD0h
Read lock bit status	Write	×	xx71h	Write	BA	xxD0h

SRD:data in the SRD register (D7 to D0)

WA: Address to be written (The address specified in the first bus cycle is the same even address as the address specified in the second bus cycle.)

WD: 16-bit write data

BA: Highest-order block address (must be an even address)

X: Given even address in the user ROM area

xx: High-order 8 bits of command code (ignored)

NOTE:

1. Blocks 0 to 8 can be erased by the erase all unlocked block command. Block A cannot be erased. The block erase command must be used to erase the block A.

21.3.5.1 Read Array Command (FFh)

The read array command reads the flash memory.

By writing command code xxFFh in the first bus cycle, read array mode is entered. Content of a specified address can be read in 16-bit unit after the next bus cycle.

The MCU remains in read array mode until another command is written. Therefore, contents from multiple addresses can be read consecutively.

21.3.5.2 Read Status Register Command (70h)

The read status register command reads the status register (refer to **21.3.7 Status Register (SRD Register)** for detail).

By writing command code xx70h in the first bus cycle, the status register can be read in the second bus cycle. Read an even address in the user ROM area.

Do not execute this command in EW1 mode.

21.3.5.3 Clear Status Register Command (50h)

The clear status register command clears the status register.

By writing xx50h in the first bus cycle, bits FMR07 to FMR06 in the FMR0 register are set to 00b and bits SR5 to SR4 in the status register are set to 00b.
21.3.5.4 Program Command (40h)

The program command writes 2-byte data to the flash memory.

By writing xx40h in the first bus cycle and data to the write address in the second bus cycle, an auto-program operation (data program and verify) will start. The address value specified in the first bus cycle must be the same even address as the write address specified in the second bus cycle.

The FMR00 bit in the FMR0 register indicates whether an auto-program operation has been completed. The FMR00 bit is set to 0 (busy) during auto-programming and to 1 (ready) when an auto-program operation is completed.

After the completion of an auto-program operation, the FMR06 bit in the FMR0 register indicates whether or not the auto-program operation has been completed as expected. (Refer to **21.3.8 Full Status Check.**)

An address that is already written cannot be altered or rewritten.

Figure 21.8 shows a flow chart of the Program Command.

The lock bit protects each block from being programmed inadvertently. (Refer to **21.3.6 Data Protect Function.**)

In EW1 mode, do not execute this command on the block where the rewrite control program is allocated. In EW0 mode, the MCU enters read status register mode as soon as an auto-program operation starts. The status register can be read. The SR7 bit in the status register is set to 0 at the same time an auto-program operation starts. It is set to 1 when auto-program operation is completed. The MCU remains in read status register mode until the read array command is written. After completion of an auto-program operation, the status register indicates whether or not the auto-program operation has been completed as expected.

Figure 21.8 Program Command

21.3.5.5 Block Erase Command

The block erase command erases each block.

By writing xx20h in the first bus cycle and xxD0h to the highest-order even address of a block in the second bus cycle, an auto-erase operation (erase and verify) will start in the specified block.

The FMR00 bit in the FMR0 register indicates whether an auto-erase operation has been completed.

The FMR00 bit is set to 0 (busy) during auto-erasure and to 1 (ready) when the auto-erase operation is completed.

After the completion of an auto-erase operation, the FMR07 bit in the FMR0 register indicates whether or not the auto-erase operation has been completed as expected. (Refer to **21.3.8 Full Status Check**.) Figure 21.9 shows a flow chart of the Block Erase Command.

The lock bit protects each block from being programmed inadvertently. (Refer to **21.3.6 Data Protect Function**.)

In EW1 mode, do not execute this command on the block where the rewrite control program is allocated. In EW0 mode, the MCU enters read status register mode as soon as an auto-erase operation starts. The status register can be read. The SR7 bit in the status register is set to 0 at the same time an auto-erase operation starts. It is set to 1 when an auto-erase operation is completed. The MCU remains in read status register mode until the read array command or read lock bit status command is written. Also execute the clear status register command and block erase command at least 3 times until an erase error is not generated when an erase error is generated.

Figure 21.9 Block Erase Command

21.3.5.6 Erase All Unlocked Block

The erase all unlocked block command erases all blocks except the block A.

By writing xxA7h in the first bus cycle and xxD0h in the second bus cycle, an auto-erase (erase and verify) operation will run continuously in all blocks except the block A.

The FMR00 bit in the FMR0 register indicates whether an auto-erase operation has been completed.

After the completion of an auto-erase operation, the FMR07 bit in the FMR0 register indicates whether or not the auto-erase operation has been completed as expected.

The lock bit can protect each block from being programmed inadvertently. (Refer to **21.3.6 Data Protect Function**.)

In EW1 mode, do not execute this command when the lock bit for any block storing the rewrite control program is set to 1 (unlocked) or when the FMR02 bit in the FMR0 register is set to 1 (lock bit disabled). In EW0 mode, the MCU enters read status register mode as soon as an auto-erase operation starts. The status register can be read. The SR7 bit in the status register is set to 0 (busy) at the same time an auto-erase operation starts. It is set to 1 (ready) when an auto-erase operation is completed. The MCU remains in read status register mode until the read array command or read lock bit status command is written.

Only blocks 0 to 8 can be erased by the erase all unlocked block command. The block A cannot be erased. Use the block erase command to erase the block A.

21.3.5.7 Lock Bit Program Command

The lock bit program command sets the lock bit for a specified block to 0 (locked).

By writing xx77h in the first bus cycle and xxD0h to the highest-order even address of a block in the second bus cycle, the lock bit for the specified block is set to 0. The address value specified in the first bus cycle must be the same highest-order even address of a block specified in the second bus cycle.

Figure 21.10 shows a flow chart of the Lock Bit Program Command. Execute read lock bit status command to read lock bit state (lock bit data).

The FMR00 bit in the FMR0 register indicates whether a lock bit program operation is completed.

Refer to 21.3.6 Data Protect Function for details on lock bit functions and how to set it to 1 (unlocked).

Figure 21.10 Lock Bit Program Command

RENESAS

21.3.5.8 Read Lock Bit Status Command (71h)

The read lock bit status command reads the lock bit state of a specified block.

By writing xx71h in the first bus cycle and xxD0h to the highest-order even address of a block in the second bus cycle, the FMR16 bit in the FMR1 register stores information on whether or not the lock bit of a specified block is locked. Read the FMR16 bit after the FMR00 bit in the FMR0 register is set to 1 (ready).

Figure 21.11 shows a flow chart of the Read Lock Bit Status Command.

Figure 21.11 Read Lock Bit Status Command

21.3.6 Data Protect Function

Each block in the flash memory has a nonvolatile lock bit. The lock bit is enabled by setting the FMR02 bit in the FMR0 register to 0 (lock bit enabled). The lock bit allows each block to be individually protected (locked) against program and erase. This helps prevent data from being inadvertently written to or erased from the flash memory.

- When the lock bit status is set to 0, the block is locked (block is protected against program and erase).
- When the lock bit status is set to 1, the block is not locked (block can be programmed or erased).

The lock bit status is set to 0 (locked) by executing the lock bit program command and to 1 (unlocked) by erasing the block. The lock bit status cannot be set to 1 by any commands. The lock bit status can be read by the read lock bit status command.

The lock bit function is disabled by setting the FMR02 bit to 1 (lock bit disabled). All blocks are unlocked. However, individual lock bit status remains unchanged. The lock bit function is enabled by setting the FMR02 bit to 0. Lock bit status is retained.

If the block erase or erase all unlocked block command is executed while the FMR02 bit is set to 1, the target block or all blocks are erased regardless of lock bit status. The lock bit status of each block are set to 1 after an erase operation is completed.

Refer to 21.3.5 Software Commands for details on each command.

21.3.7 Status Register (SRD Register)

The status register indicates the operating status of the flash memory and whether or not an erase or program operation is completed as expected. Bits FMR00, FMR06, and FMR07 in the FMR0 register indicate status register states.

Table 21.5 shows the Status Register.

In EW0 mode, the status register can be read when the followings occur.

- Given even address in the user ROM area is read after writing the read status register command.
- Given even address in the user ROM area is read from when the program, block erase, erase all unlocked block, or lock bit program command is executed until when the read array command is executed.

21.3.7.1 Sequencer Status (Bits SR7 and FMR00)

The sequencer status indicates the operating status of the flash memory. It is set to 0 while the program, block erase, erase all unlocked block, lock bit program, or read lock bit status command is being executed; otherwise, it is set to 1.

21.3.7.2 Erase Status (Bits SR5 and FMR07)

Refer to 21.3.8 Full Status Check.

21.3.7.3 Program Status (Bits SR4 and FMR06)

Refer to 21.3.8 Full Status Check.

Table 21.5 Status Register

Bits in Status	Bits in FMR0	Statua Nama	Contents			
Register	Register	Status Name	0	1	Reset	
SR0 (D0)	-	Reserved	-	-	-	
SR1 (D1)	-	Reserved	-	-	-	
SR2 (D2)	-	Reserved	-	-	-	
SR3 (D3)	-	Reserved	-	-	-	
SR4 (D4)	FMR06	Program status	Terminated normally	Terminated in error	0	
SR5 (D5)	FMR07	Erase status	Terminated normally	Terminated in error	0	
SR6 (D6)	-	Reserved	-	-	-	
SR7 (D7)	FMR00	Sequencer status	Busy	Ready	1	

D0 to D7: These data bus are read when the read status register command is executed. NOTE:

^{1.} Bits FMR06 (SR4) and FMR07 (SR5) are set to 0 by executing the clear status register command. When the FMR06 bit (SR4) or FMR07 bit (SR5) is set to 1, the program, block erase, erase all unlocked block and lock bit program commands are not accepted.

21.3.8 Full Status Check

If an error occurs when a program or erase operation is completed, the FMR06, FMR07 bits in the FMR0 register are set to 1, indicating a specific error. Therefore, execution results can be confirmed by checking these bits (full status check).

Table 21.6 lists the Errors and FMR0 Register Status. Figure 21.12 shows a flow chart of the Full Status Check and Handling Procedure for Each Error.

FRM00 Register (Status Register) Status		Error	Error Occurrence Conditions
FMR07 Bit (SR5)	FMR06 Bit (SR4)		
1	1	Command	 Command is written incorrectly
		Sequence	• A value other than xxD0h or xxFFh is written in the second bus
		error	cycle of the lock bit program, block erase or erase all unlocked
			block command ⁽¹⁾
1	0	Erase error	• The block erase command is executed on a locked block (2)
			•The block erase or erase all unlocked block command is
			executed on an unlock block and auto-erase operation is not
			completed as expected
0	1	Program error	• The program command is executed on locked blocks ⁽²⁾
			• The program command is executed on unlocked blocks and
			auto-program operation is not completed as expected
			• The lock bit program command is executed but program
			operation is not completed as expected
(SR5) 1 1	(SR4) 1	Command Sequence error Erase error	 A value other than xxD0h or xxFFh is written in the second cycle of the lock bit program, block erase or erase all unloce block command ⁽¹⁾ The block erase command is executed on a locked block. The block erase or erase all unlocked block commane executed on an unlock block and auto-erase operation is completed as expected. The program command is executed on locked blocks ⁽²⁾ The program command is executed on unlocked blocks a auto-program operation is not completed as expected. The lock bit program command is executed but program.

Table 21.6	Errors and	FMR0	Register	Status
------------	------------	------	----------	--------

NOTES:

1. The flash memory enters read array mode by writing command code xxFFh in the second bus cycle of these commands. The command code written in the first bus cycle becomes invalid.

2. When the FMR02 bit in the FMR0 register is set to 1 (lock bit disabled), no error occurs even under the conditions above.

Figure 21.12 Full Status Check and Handling Procedure for Each Error

21.4 Standard Serial I/O Mode

In standard serial I/O mode, the serial programmer supporting the M16C/6N Group (M16C/6N4) can be used to rewrite the flash memory user ROM area in the MCU mounted on a board. For more information about the serial programmer, contact your serial programmer manufacturer. Refer to the user's manual included with your serial programmer for instructions.

Table 21.7 lists the Pin Functions in Standard Serial I/O Mode. Figures 21.13 and 21.14 show the Pin Connections in Standard Serial I/O Mode.

21.4.1 ID Code Check Function

The ID code check function determines whether the ID codes sent from the serial programmer matches those written in the flash memory. (Refer to **21.2 Functions to Prevent Flash Memory from Rewriting**.)

Table 21.7 Pin Functions in Standard Serial I/O Mode

Pin	Name	I/O	Description
VCC1, VCC2, VSS	Power supply		Apply the Flash Program, Erase Voltage to VCC1 pin and VCC2 to
	input		VCC2 pin. The VCC apply condition is that VCC2 = VCC1.
			Apply 0 V to VSS pin.
CNVSS	CNVSS	I	Connect to VCC1 pin.
RESET	Reset input	I	Reset input pin. While RESET pin is "L" level, input 20 cycles or
			longer clock to XIN pin.
XIN	Clock input	I	Connect a ceramic resonator or crystal oscillator between XIN and
XOUT	Clock output	0	XOUT pins. To input an externally generated clock, input it to XIN
			pin and open XOUT pin.
BYTE	BYTE	I	Connect this pin to VCC1 or VSS.
AVCC, AVSS	Analog power		Connect AVCC to VCC1 and AVSS to VSS, respectively.
	supply input		
VREF	Reference	I	Enter the reference voltage for A/D and D/A converters from this
	voltage input		pin.
P0_0 to P0_7	Input port P0	I	Input "H" or "L" level signal or open.
P1_0 to P1_7	Input port P1	I	Input "H" or "L" level signal or open.
P2_0 to P2_7	Input port P2	I	Input "H" or "L" level signal or open.
P3_0 to P3_7	Input port P3	I	Input "H" or "L" level signal or open.
P4_0 to P4_7	Input port P4	I	Input "H" or "L" level signal or open.
P5_0	CE input	I	Input "H" level signal.
P5_1 to P5_4,	Input port P5	I	Input "H" or "L" level signal or open.
P5_6, P5_7			
P5_5	EPM input	I	Input "L" level signal.
P6_0 to P6_3	Input port P6	I	Input "H" or "L" level signal or open.
P6_4/RTS1	BUSY output	0	Standard serial I/O mode 1: BUSY signal output pin
			Standard serial I/O mode 2: Monitors the boot program operation
			check signal output pin.
P6_5/CLK1	SCLK input	I	Standard serial I/O mode 1: Serial clock input pin.
			Standard serial I/O mode 2: Input "L".
P6_6/RXD1	RXD input	I	Serial data input pin
P6_7/TXD1	TXD output	0	Serial data output pin (1)
P7_0 to P7_7	Input port P7	I	Input "H" or "L" level signal or open.
P8_0 to P8_3,	Input port P8	1	Input "H" or "L" level signal or open.
P8_6, P8_7			
P8_4	P8_4 input	I	Input "L" level signal. (2)
P8_5/NMI	NMI input	I	Connect this pin to VCC1.
P9_0 to P9_4, P9_7	Input port P9	1	Input "H" or "L" level signal or open.
P9_5/CRX0	CRX input	I	Input "H" or "L" level signal or connect to a CAN transceiver.
P9_6/CTX0	CTX output	0	Input "H" level signal, open or connect to a CAN transceiver.
P10_0 to P10_7	Input port P10	1	Input "H" or "L" level signal or open.

NOTES:

1. When using standard serial I/O mode, It is necessary to input "H" to the TXD1(P6_7) pin while the RESET pin is "L". Therefore, the internal pull-up is enabled for the TXD1(P6_7) pin while the RESET pin is "L".

2. When using standard serial I/O mode, pins P0_0 to P0_7, P1_0 to P1_7 may become undefined while the P8_4 pin is "H" and the RESET pin is "L". If this causes a problem, apply "L" to the P8_4 pin.

Figure 21.13 Pin Connections in Standard Serial I/O Mode (1)

Figure 21.14 Pin Connections in Standard Serial I/O Mode (2)

21.4.2 Example of Circuit Application in Standard Serial I/O Mode

Figures 21.15 and 21.16 show the Circuit Application in Standard Serial I/O Mode 1 and Mode 2. Refer to the user's manual of your serial programmer to handle pins controlled by a serial programmer. Note that when using standard serial I/O mode 2, make sure a main clock input oscillation frequency is set to 5 MHz, 10 MHz, or 16 MHz.

Figure 21.15 Circuit Application in Standard Serial I/O Mode 1

Figure 21.16 Circuit Application in Standard Serial I/O Mode 2

RENESAS

21.5 Parallel I/O Mode

In parallel I/O mode, the user ROM area and the boot ROM area can be rewritten by a parallel programmer supporting the M16C/6N Group (M16C/6N4). Contact your parallel programmer manufacturer for more information on the parallel programmer. Refer to the user's manual included with your parallel programmer for instructions.

21.5.1 User ROM and Boot ROM Areas

An erase block operation in the boot ROM area is applied to only one 4-Kbyte block. The rewrite control program in standard serial I/O and CAN I/O modes are written in the boot ROM area before shipment. Do not rewrite the boot ROM area if using the serial programmer.

In parallel I/O mode, the boot ROM area is located in addresses 0FF000h to 0FFFFFh. Rewrite this address range only if rewriting the boot ROM area. (Do not access addresses other than addresses 0FF000h to 0FFFFFh.)

21.5.2 ROM Code Protect Function

The ROM code protect function prevents the flash memory from being read and rewritten in parallel I/O mode. (Refer to **21.2 Functions to Prevent Flash Memory from Rewriting**.)

21.6 CAN I/O Mode

In CAN I/O mode, the CAN programmer supporting the M16C/6N Group (M16C/6N4) can be used to rewrite the flash memory user ROM area in the MCU mounted on a board. For more information about the CAN programmer, contact your CAN programmer manufacturer. Refer to the user's manual included with your CAN programmer for instructions.

Table 21.8 lists pin functions in CAN I/O mode. Figures 21.17 and 21.18 show pin connections in CAN I/O mode.

21.6.1 ID Code Check Function

The ID code check function determines whether the ID codes sent from the CAN programmer matches those written in the flash memory. (Refer to **21.2 Functions to Prevent Flash Memory from Rewriting**.)

Pin	Name	I/O	Description
VCC1, VCC2, VSS	Power supply		Apply the Flash Program, Erase Voltage to VCC1 pin and VCC2
	input		to VCC2 pin. The VCC apply condition is that VCC2 = VCC1.
			Apply 0 V to VSS pin.
CNVSS	CNVSS	I	Connect to VCC1 pin.
RESET	Reset input	I	Reset input pin. While RESET pin is "L" level, input 20 cycles or
			longer clock to XIN pin.
XIN	Clock input	I	Connect a ceramic resonator or crystal oscillator between XIN and
XOUT	Clock output	0	XOUT pins. To input an externally generated clock, input it to XIN
			pin and open XOUT pin.
BYTE	BYTE	I	Connect this pin to VCC1 or VSS.
AVCC, AVSS	Analog power		Connect AVCC to VCC1 and AVSS to VSS, respectively.
	supply input		
VREF	Reference	I	Enter the reference voltage for A/D and D/A converters from this
	voltage input		pin.
P0_0 to P0_7	Input port P0	I	Input "H" or "L" level signal or open.
P1_0 to P1_7	Input port P1	I	Input "H" or "L" level signal or open.
P2_0 to P2_7	Input port P2	I	Input "H" or "L" level signal or open.
P3_0 to P3_7	Input port P3	I	Input "H" or "L" level signal or open.
P4_0 to P4_7	Input port P4	I	Input "H" or "L" level signal or open.
P5_0	CE input	I	Input "H" level signal.
P5_1 to P5_4,	Input port P5	I	Input "H" or "L" level signal or open.
P5_6, P5_7			
P5_5	EPM input	I	Input "L" level signal.
P6_0 to P6_4, P6_6	Input port P6	I	Input "H" or "L" level signal or open.
P6_5/CLK1	SCLK input	I	Input "L" level signal.
P6_7/TXD1	TXD output	0	Input "H" level signal.
P7_0 to P7_7	Input port P7	I	Input "H" or "L" level signal or open.
P8_0 to P8_3,	Input port P8	I	Input "H" or "L" level signal or open.
P8_6, P8_7			
P8_4	P8_4 Input	I	Input "L" level signal. (1)
P8_5/NMI	NMI input	I	Connect this pin to VCC1.
P9_0 to P9_4, P9_7	Input port P9	I	Input "H" or "L" level signal or open.
P9_5/CRX0	CRX input	I	Connect to a CAN transceiver.
P9_6/CTX0	CTX output	0	Connect to a CAN transceiver.
P10_0 to P10_7	Input port P10	1	Input "H" or "L" level signal or open

Table 21.8 Pin Functions in CAN I/O Mode

NOTE:

1. When using CAN I/O mode, pins P0_0 to P0_7, P1_0 to P1_7 may become undefined while the P8_4 pin is "H" and the RESET pin is "L". If this causes a problem, apply "L" to the P8_4 pin.

RENESAS

Figure 21.17 Pin Connections in CAN I/O Mode (1)

Figure 21.18 Pin Connections in CAN I/O Mode (2)

21.6.2 Example of Circuit Application in CAN I/O Mode

Figure 21.19 shows the Circuit Application in CAN I/O Mode. Refer to the user's manual of your CAN programmer to handle pins controlled by a CAN programmer.

Figure 21.19 Circuit Application in CAN I/O Mode

21.7 Electrical Characteristics

21.7.1 Electrical Characteristics (T/V-ver.)

Table 21.9 lists the Flash Memory Electrical Characteristics. Table 21.10 lists the Flash Memory Version Program/Erase Voltage and Read Operation Voltage Characteristics.

Table 21.9	Flash Memory	Version	Electrical	Characteristics	(1)
------------	--------------	---------	------------	-----------------	-----

Symbol	Parameter			Standard			
Symbol	Falaillete	1	Min.	Тур.	Max.	Unit	
-	Programming and erasure er	ndurance ⁽²⁾	100			cycle	
-	Word program time (VCC = 5.0 V)			25	200	μs	
-	Lock bit program time			25	200	μs	
-	Block erase time	4-Kbyte block		0.3	4	S	
	(VCC = 5.0 V)	8-Kbyte block		0.3	4	S	
		32-Kbyte block		0.5	4	S	
		64-Kbyte block		0.8	4	S	
-	Erase all unlocked blocks time				4 × n (3)	S	
tps	Flash memory circuit stabiliz	ation wait time			15	μs	

NOTES:

- 1. Referenced to VCC = 4.5 to 5.5 V, Topr = 0 to 60° C unless otherwise specified.
- 2. Programming and erasure endurance refers to the number of times a block erase can be performed. If the programming and erasure endurance is n (n = 100), each block can be erased n times. For example, if a 4-Kbyte block A is erased after writing 1 word data 2,048 times, each to a different address, this counts as one programming and erasure endurance. Data cannot be written to the same address more than once without erasing the block (rewrite prohibited).
- 3. n denotes the number of block erases.

Table 21.10 Flash Memory Version Program/Erase Voltage and Read Operation Voltage Characteristics (at Topr = 0 to 60 °C)

Flash Program, Erase Voltage	Flash Read Operation Voltage
$VCC = 5.0 \pm 0.5 V$	VCC = 4.2 to 5.5 V

21.7.2 Electrical Characteristics (Normal-ver.)

Table 21.11 lists the Flash Memory Electrical Characteristics. Table 21.12 lists the Flash Memory Version Program/Erase Voltage and Read Operation Voltage Characteristics.

Symbol	Parameter			Standard			
Symbol	Faraillete	Min.	Тур.	Max.	Unit		
-	Programming and erasure er	ndurance ⁽²⁾	100			cycle	
-	Word program time (VCC = 5.0 V)			25	200	μs	
-	Lock bit program time			25	200	μs	
-	Block erase time	4-Kbyte block		0.3	4	S	
	(VCC = 5.0 V)	8-Kbyte block		0.3	4	S	
		32-Kbyte block		0.5	4	S	
		64-Kbyte block		0.8	4	S	
-	Erase all unlocked blocks time				4 × n (3)	S	
tps	Flash memory circuit stabiliz	ation wait time			15	μs	

Table 21.11 Flash Me	mory Version Electrical	Characteristics ⁽¹⁾
----------------------	-------------------------	--------------------------------

NOTES:

- 1. Referenced to VCC = 4.5 to 5.5 V, 3.0 to 3.6 V, Topr = 0 to 60° C unless otherwise specified.
- 2. Programming and erasure endurance refers to the number of times a block erase can be performed. If the programming and erasure endurance is n (n = 100), each block can be erased n times. For example, if a 4-Kbyte block A is erased after writing 1 word data 2,048 times, each to a different address, this counts as one programming and erasure endurance. Data cannot be written to the same address more than once without erasing the block (rewrite prohibited).
- 3. n denotes the number of block erases.

Table 21.12 Flash Memory Version Program/Erase Voltage and Read Operation Voltage Characteristics (at Topr = 0 to 60 °C)

Flash Program, Erase Voltage	Flash Read Operation Voltage
VCC = 3.3 ± 0.3 V or 5.0 ± 0.5 V	VCC = 3.0 to 5.5 V

22. Electrical Characteristics

22.1 Electrical Characteristics (T/V-ver.)

Table 22.1 Absolute Maximum Ratings

Symbol			Parameter	Condition	Rated Value	Unit
Vcc	Supply vo	ltage (VC	C1 = VCC2)	VCC = AVCC	-0.3 to 6.5	V
AVcc	Analog supply voltage			VCC = AVCC	-0.3 to 6.5	V
Vi	Input	RESET,	CNVSS, BYTE,		-0.3 to VCC+0.3	V
	voltage	P0_0 to	P0_7, P1_0 to P1_7, P2_0 to P2_7,			
		P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7,				
		P6_0 to F	P6_7, P7_0, P7_2 to P7_7, P8_0 to P8_7,			
		P9_0, P	9_2 to P9_7, P10_0 to P10_7,			
		VREF, >	(IN			
		P7_1, P9_1			-0.3 to 6.5	V
Vo	Output	Output P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7,			-0.3 to VCC+0.3	V
	voltage	P3_0 to	P3_7, P4_0 to P4_7, P5_0 to P5_7,			
		P6_0 to	P6_7, P7_0, P7_2 to P7_7,			
		P8_0 to I	P8_4, P8_6, P8_7, P9_0, P9_2 to P9_7,			
		P10_0 t	o P10_7, XOUT			
		P7_1, P	9_1		-0.3 to 6.5	V
Pd	Power dis	sipation		Topr = 25°C	700	mW
Topr	Operating	ambient	During MCU operation		T version: -40 to 85	°C
	temperature				V version: -40 to 125 (option)	
			During flash memory program and		0 to 60	
			erase operation			
Tstg	Storage te	emperatu	re		-65 to 150	°C

option: All options are on request basis.

Cumbal		Parameter	Standard			
Symbol		Falameter		Тур.	Max.	Unit
Vcc	Supply volta	ge (VCC1 = VCC2)	4.2	5.0	5.5	V
AVcc	Analog supp	ly voltage		Vcc		V
Vss	Supply volta	ge		0		V
AVss	Analog supp	ly voltage		0		V
VIH	HIGH input	P3_1 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7,	0.8 Vcc		Vcc	V
	voltage	P7_0, P7_2 to P7_7, P8_0 to P8_7, P9_0, P9_2 to P9_7,				
		P10_0 to P10_7, XIN, RESET, CNVSS, BYTE				
		P7_1, P9_1	0.8 Vcc		6.5	V
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0	0.8 Vcc		Vcc	V
		(During single-chip mode)				
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0	0.5 Vcc		Vcc	V
		(Data input during memory expansion and microprocessor modes)				
ViL	LOW input	P3_1 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7,	0		0.2 Vcc	V
	voltage	P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7,				
		XIN, RESET, CNVSS, BYTE				
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0	0		0.2 Vcc	V
		(During single-chip mode)				
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0	0		0.16 Vcc	V
		(Data input during memory expansion and microprocessor modes)				
IOH(peak)	HIGH peak	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7,			-10.0	mA
	output current	P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0,				
		P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0,				
		P9_2 to P9_7, P10_0 to P10_7				
IOH(avg)	HIGH average	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7,			-5.0	mA
	output current	P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0,				
		P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0,				
		P9_2 to P9_7, P10_0 to P10_7				
IOL(peak)	LOW peak	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7,			10.0	mA
	output current	P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7,				
		P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7				
IOL(avg)	LOW average	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7,			5.0	mA
	output current	P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7,				
		P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7				

Table 22.2 Recommended Operating Conditions (1)	Table 22.2	Recommended	Operating	Conditions	(1)	(1)
---	------------	-------------	-----------	------------	-----	-----

NOTES:

1. Referenced to VCC = 4.2 to 5.5 V at Topr = -40 to 85° C unless otherwise specified.

2. Average output current values during 100 ms period.

3. The total $I_{OL(peak)}$ for ports P0, P1, P2, P8_6, P8_7, P9, and P10 must be 80 mA max.

The total $I_{\text{OL}(\text{peak})}$ for ports P3, P4, P5, P6, P7, and P8_0 to P8_4 must be 80 mA max.

The total $I_{\text{OH}(\text{peak})}$ for ports P0, P1, and P2 must be -40 mA max.

The total $I_{\text{OH}(\text{peak})}$ for ports P3, P4, and P5 must be –40 mA max.

The total $I_{OH(peak)}$ for ports P6, P7, and P8_0 to P8_4 must be -40 mA max.

The total IOH(peak) for ports P8_6, P8_7, P9, and P10 must be -40 mA max.

Table 22.3	Recommended	Operating	Conditions	(2) ⁽¹⁾
		- p	••••••	(-)

Cumbal	Parameter			Standard			– Unit	
Symbol		Par	ameter		Min.	Тур.	Max.	
f(XIN)	Main clock input oscillation	No wait	Mask ROM version	VCC = 4.2 to 5.5 V	0		16	MHz
	frequency (2) (3) (4)		Flash memory version					
f(XCIN)	Sub clock oscillation frequency					32.768	50	kHz
f(Ring)	On-chip oscillation frequency				1		MHz	
f(PLL)	PLL clock oscillation fre	quency			16		20	MHz
f(BCLK)	CPU operation clock			VCC = 4.2 to 5.5 V	0		20	MHz
tsu(PLL)	PLL frequency synthesi	zer stab	ilization wait time				20	ms
f(ripple)	Power supply ripple allo	Power supply ripple allowable frequency (VCC)					10	kHz
VP-P(ripple)	Power supply ripple allowable amplitude voltage VCC = 5 V					0.5	V	
$V_{\text{CC}(\Delta V/\Delta T)}$	Power supply ripple risi	ng/fallin	g gradient	VCC = 5 V			0.3	V/ms

NOTES:

- 1. Referenced to VCC = 4.2 to 5.5 V at Topr = -40 to 85° C unless otherwise specified.
- 2. Relationship between main clock oscillation frequency and supply voltage is shown right.
- 3. Execute program/erase of flash memory by VCC = 5.0 ± 0.5 V.
- 4. When using over 16 MHz, use PLL clock. PLL clock oscillation frequency which can be used is 16 MHz or 20 MHz.

Table 22.4 Electrical Characteristics (1) (1)

Symbol		Pa	rameter	Measuring Condition		tandar		Unit
Vон	HIGH output		0_7, P1_0 to P1_7, P2_0 to P2_7,		Min. Vcc-2.0	Тур.	Max. Vcc	V
VOH	voltage	_	3_7, P4_0 to P4_7, P5_0 to P5_7,	IOH = -5 IIIA	VCC-2.0		VCC	v
	,							
			P6_7, P7_0, P7_2 to P7_7,					
			P8_4, P8_6, P8_7, P9_0,					
			P9_7, P10_0 to P10_7					V
Vон	HIGH output voltage		0_7, P1_0 to P1_7, P2_0 to P2_7,	Іон = –200 μА	Vcc-0.3		Vcc	V
	voltage	_	3_7, P4_0 to P4_7, P5_0 to P5_7,					
			P6_7, P7_0, P7_2 to P7_7,					
			P8_4, P8_6, P8_7, P9_0,					
			P9_7, P10_0 to P10_7					
Vон	HIGH output	XOUT	HIGHPOWER	Iон = -1 mA	3.0		Vcc	V
	voltage		LOWPOWER	Іон = -0.5 mA	3.0		Vcc	
	HIGH output	XCOUT	HIGHPOWER	With no load applied		2.5		V
	voltage		LOWPOWER	With no load applied		1.6		
Vol	LOW output	_	0_7, P1_0 to P1_7, P2_0 to P2_7,	lo∟ = 5 mA			2.0	V
	voltage	P3_0 to P	3_7, P4_0 to P4_7, P5_0 to P5_7,					
	P6_0 to P	6_7, P7_0 to P7_7, P8_0 to P8_4,						
		P8_6, P8	_7, P9_0 to P9_7, P10_0 to P10_7					
Vol	LOW output	P0_0 to F	0_7, P1_0 to P1_7, P2_0 to P2_7,	Ιοι = 200 μΑ			0.45	V
	voltage	P3_0 to P	3_7, P4_0 to P4_7, P5_0 to P5_7,					
		P6_0 to P	6_7, P7_0 to P7_7, P8_0 to P8_4,					
		P8_6, P8	_7, P9_0 to P9_7, P10_0 to P10_7					
Vol	LOW output	XOUT	HIGHPOWER	lo∟ = 1 mA			2.0	V
	voltage		LOWPOWER	lo∟ = 0.5 mA			2.0	
	LOW output	XCOUT	HIGHPOWER	With no load applied		0		V
	voltage		LOWPOWER	With no load applied		0		-
V ⊤ +-V⊤-	Hysteresis	HOLD, RE	Y, TAOIN to TA4IN, TB0IN to TB5IN,		0.2		1.0	V
			IT5, NMI, ADTRG, CTS0 to CTS2,					
			CL2, SDA0 to SDA2, CLK0 to CLK3,					
			to TA4OUT, $\overline{\text{KI0}}$ to $\overline{\text{KI3}}$,					
			RXD2, SIN3					
V⊤+-V⊤-	Hysteresis	RESET			0.2		2.5	V
Ін	HIGH input		0_7, P1_0 to P1_7, P2_0 to P2_7,	Vi = 5 V	0.2		5.0	μA
	current		3_7, P4_0 to P4_7, P5_0 to P5_7,				0.0	μ.,
			6_7, P7_0 to P7_7, P8_0 to P8_7,					
			9_7, P10_0 to P10_7,					
			SET, CNVSS, BYTE					
lı∟	LOW input		0_7, P1_0 to P1_7, P2_0 to P2_7,				-5.0	μA
IIL	current			$\mathbf{V}_{1} = \mathbf{U} \cdot \mathbf{V}$			-5.0	μΑ
	current		3_7, P4_0 to P4_7, P5_0 to P5_7,					
			6_7, P7_0 to P7_7, P8_0 to P8_7,					
			9_7, P10_0 to P10_7,					
_	Pull-up		SET, CNVSS, BYTE			50	170	kO
Rpullup			0_7, P1_0 to P1_7, P2_0 to P2_7,	$V_{I} = 0 V$	30	50	170	kΩ
	resistance	_	3_7, P4_0 to P4_7, P5_0 to P5_7,					
			6_7, P7_0, P7_2 to P7_7, P8_0 to					
			_6, P8_7, P9_0, P9_2 to P9_7,					
		P10_0 to						
Rfxin	Feedback resis		XIN			1.5		MΩ
Rfxcin	Feedback resis		XCIN			15		MΩ
VRAM	RAM retention	voltage		At stop mode	2.0			V

NOTES:

1. Referenced to VCC = 4.2 to 5.5 V, VSS = 0 V at Topr = -40 to 85°C, f(BCLK) = 20 MHz unless otherwise specified.

Symbol	Pa	rameter	Moasur	ing Condition		tandar		Unit
-			-		Min.	Тур.	Max.	
lcc	Power supply	In single-chip mode,	Mask ROM	f(BCLK) = 20 MHz,		18	32	mA
	current	the output pins are		PLL operation,				
	(VCC = 4.2 to 5.5 V)	open and other pins		No division				
		are VSS.		On-chip oscillation,		1		mA
				No division				
			Flash memory	f(BCLK) = 20 MHz,		20	34	mA
				PLL operation,				
				No division				
				On-chip oscillation,		1.8		mA
				No division				
			Flash memory	f(BCLK) = 10 MHz,		15		mA
			program	VCC = 5 V				
			Flash memory	f(BCLK) = 10 MHz,		25		mA
			erase	VCC = 5 V				
			Mask ROM	f(BCLK) = 32kHz,		25		μA
				Low power dissipation				
				mode, ROM (2)				
			Flash memory	f(BCLK) = 32 kHz,		25		μA
				Low power dissipation				
				mode, RAM (2)				
				f(BCLK) = 32 kHz,		420		μA
				Low power dissipation				
				mode,				
				Flash memory (2)				
			Mask ROM	On-chip oscillation,		50		μA
			Flash memory	Wait mode				
				f(BCLK) = 32 kHz,		8.5		μA
				Wait mode ⁽³⁾ ,				
				Oscillation capacity High				
				f(BCLK) = 32 kHz,		3.0		μA
				Wait mode (3),				
				Oscillation capacity Low				
				Stop mode,		0.8	3.0	μA
				Topr = 25°C		-	-	

Table 22.5 Electrical Characteristics (2)

NOTES:

1. Referenced to VCC = 4.2 to 5.5 V, VSS = 0 V at Topr = -40 to 85° C, f(BCLK) = 20 MHz unless otherwise specified.

2. This indicates the memory in which the program to be executed exists.

3. With one timer operated using fC32.

Symbol	Parameter			Managering Condition		Standard		
Symbol	Falan	neter		Measuring Condition	Min.	Тур.	Max.	Unit
_	Resolution		VREF =	VREF = VCC			10	Bit
INL	Integral	10 bits	VREF	ANEX0, ANEX1 input, AN0 to AN7 input,			±3	LSB
	nonlinearity		= VCC	AN0_0 to AN0_7 input, AN2_0 to AN2_7 input				
	error		= 5 V	External operation amp connection mode			±7	LSB
		8 bits	VREF =	REF = AVCC = VCC = 5 V			±2	LSB
_	Absolute	10 bits	VREF	ANEX0, ANEX1 input, AN0 to AN7 input,			±3	LSB
	accuracy		= VCC	AN0_0 to AN0_7 input, AN2_0 to AN2_7 input				
			= 5 V	External operation amp connection mode			±7	LSB
		8 bits	VREF =	= AVCC = VCC = 5 V			±2	LSB
DNL	Differential nor	linearity error					±1	LSB
_	Offset error						±3	LSB
-	Gain error						±3	LSB
RLADDER	Resistor ladde	r	VREF =	= VCC	10		40	kΩ
tconv	10-bit conversion	ion time,	VREF =	= VCC = 5 V, φAD = 10 MHz	3.3			μs
	sample & hold	available						
	8-bit conversion	on time,	VREF =	= VCC = 5 V, φAD = 10 MHz	2.8			μs
	sample & hold	available						
t samp	Sampling time				0.3			μs
VREF	Reference volt	age			2.0		Vcc	V
VIA	Analog input v	oltage			0		VREF	V

Table 22.6	A/D Co	nversion	Characteristics ⁽¹⁾
		1140101011	onunuotonotioo

NOTES:

1. Referenced to VCC = AVCC = VREF = 4.2 to 5.5 V, VSS = AVSS = 0 V, -40 to 85°C unless otherwise specified.

2. ϕ AD frequency must be 10 MHz or less.

3. When sample & hold is disabled, ϕ AD frequency must be 250kHz or more in addition to a limit of NOTE 2. When sample & hold is enabled, ϕ AD frequency must be 1MHz or more in addition to a limit of NOTE 2.

Table 22.7 D/A conversion Characteristics ⁽¹⁾

Symbol	Parameter	Measuring condition	S	Unit		
Symbol	Falalletei	Measuring condition	Min.	Тур.	Max.	
-	Resolution				8	Bits
-	Absolute accuracy				1.0	%
tsu	Setup time				3	μs
Ro	Output resistance		4	10	20	kΩ
IVREF	Reference power supply input current	(NOTE 2)			1.5	mA

NOTES:

1. Referenced to VCC = AVCC = VREF = 4.2 to 5.5 V, VSS = AVSS = 0 V, -40 to 85°C unless otherwise specified.

2. This applies when using one D/A converter, with the DAi register (i = 0, 1) for the unused D/A converter set to 00h. The resistor ladder of the A/D converter is not included. Also, the IVREF will flow even if VREF is disconnected by the ADCON1 register.

Table 22.8 Power Supply Circuit Timing Characteristics

Symbol	Parameter Measuring		S	d	Unit	
		Condition	Min.	Тур.	Max.	Onit
td(P-R)	Time for internal power supply stabilization during powering-on	VCC = 4.2 to 5.5 V			2	ms
td(R-S)	STOP release time				150	μs
td(W-S)	Low power dissipation mode wait mode release time				150	μs

Figure 22.2 Power Supply Circuit Timing Diagram

Timing Requirements VCC = 5 V (Referenced to VCC = 5 V, VSS = 0 V, at Topr = -40 to 85°C unless otherwise specified)

Table 22.9 External Clock Input (XIN Input)

Symbol	Parameter	Stan	Unit	
Symbol	Falailletei	Min.	Max.	Unit
tc	External clock input cycle time	62.5		ns
t _{w(H)}	External clock input HIGH pulse width	25		ns
tw(L)	External clock input LOW pulse width	25		ns
tr	External clock rise time		15	ns
tr	External clock fall time		15	ns

Table 22.10 Memory Expansion Mode and Microprocessor Mode

Symbol	Parameter	Stan	Idard	Unit
Symbol	Falameter	Min.	Max.	Unit
tac1(RD-DB)	Data input access time (for setting with no wait)		(NOTE 1)	ns
tac2(RD-DB)	Data input access time (for setting with wait)		(NOTE 2)	ns
tac3(RD-DB)	Data input access time (when accessing multiplexed bus area)		(NOTE 3)	ns
tsu(DB-RD)	Data input setup time	40		ns
tsu(RDY-BCLK)	RDY input setup time	30		ns
tsu(HOLD-BCLK)	HOLD input setup time	40		ns
t h(RD-DB)	Data input hold time	0		ns
th(BCLK-RDY)	RDY input hold time	0		ns
th(BCLK-HOLD)	HOLD input hold time	0		ns

NOTES:

1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 45 [ns]$$

2. Calculated according to the BCLK frequency as follows:

 $\frac{(n-0.5) \times 10^9}{f(BCLK)} - 45 \text{ [ns]}$ n is "2" for 1-wait setting, "3" for 2-wait setting and "4" for 3-wait setting.

3. Calculated according to the BCLK frequency as follows:

$$\frac{(n-0.5) \times 10^9}{f(BCLK)} - 45 \text{ [ns]} \qquad n \text{ is "2" for 2-wait setting, "3" for 3-wait setting.}$$

Timing Requirements VCC = 5 V (Referenced to VCC = 5 V, VSS = 0 V, at Topr = -40 to 85°C unless otherwise specified)

Table 22.11 Timer A Input (Counter Input in Event Counter Mode)

Symbol	Parameter	Stan	dard Max.	Unit
	Farameter	Min.		Unit
t _{c(TA)}	TAIIN input cycle time	100		ns
tw(TAH)	TAIIN input HIGH pulse width	40		ns
tw(TAL)	TAiIN input LOW pulse width	40		ns

Table 22.12 Timer A Input (Gating Input in Timer Mode)

Symbol	Parameter	Stan	Max.	Unit
Symbol	Falailletei	Min.		Unit
tc(TA)	TAIIN input cycle time	400		ns
tw(TAH)	TAIIN input HIGH pulse width	200		ns
tw(TAL)	TAiIN input LOW pulse width	200		ns

Table 22.13 Timer A Input (External Trigger Input in One-shot Timer Mode)

Symbol	Parameter	Stan		Unit
	Farameter	Min.	Max.	
t _{c(TA)}	TAIIN input cycle time	200		ns
tw(TAH)	TAIIN input HIGH pulse width	100		ns
tw(TAL)	TAIIN input LOW pulse width	100		ns

Table 22.14 Timer A Input (External Trigger Input in Pulse Width Modulation Mode)

Symbol	Parameter	Stan	dard	Unit
Symbol	Falameter	Min.	Max.	Unit
t _{w(TAH)}	TAIIN input HIGH pulse width	100		ns
tw(TAL)	TAIIN input LOW pulse width	100		ns

Table 22.15 Timer A Input (Counter Increment/decrement Input in Event Counter Mode)

Symbol	Parameter	Stan	Standard	
Symbol	Farameter	Min.	Max.	Unit
tc(UP)	TAiOUT input cycle time	2000		ns
tw(UPH)	TAIOUT input HIGH pulse width	1000		ns
tw(UPL)	TAiOUT input LOW pulse width	1000		ns
tsu(UP-TIN)	TAIOUT input setup time	400		ns
th(TIN-UP)	TAiOUT input hold time	400		ns

Table 22.16 Timer A Input (Two-phase Pulse Input in Event Counter Mode)

Symbol	Parameter	Stan	Max.	Unit
Symbol	Falalleter	Min.		Unit
tc(TA)	TAIIN input cycle time	800		ns
$t_{\text{su}(\text{TAIN-TAOUT})}$	TAiOUT input setup time	200		ns
tsu(TAOUT-TAIN)	TAIIN input setup time	200		ns

Timing Requirements VCC = 5 V (Referenced to VCC = 5 V, VSS = 0 V, at Topr = -40 to 85°C unless otherwise specified)

Table 22.17 Timer B Input (Counter Input in Event Counter Mode)

Symbol	Parameter	Stan	dard	Unit
Symbol	Faldineter	Min.	Max.	Unit
tc(TB)	TBiIN input cycle time (counted on one edge)	100		ns
t _{w(TBH)}	TBIIN input HIGH pulse width (counted on one edge)	40		ns
tw(TBL)	TBiIN input LOW pulse width (counted on one edge)	40		ns
tc(TB)	TBiIN input cycle time (counted on both edges)	200		ns
tw(TBH)	TBiIN input HIGH pulse width (counted on both edges)	80		ns
tw(TBL)	TBiIN input LOW pulse width (counted on both edges)	80		ns

Table 22.18 Timer B Input (Pulse Period Measurement Mode)

Symbol	Parameter	Stan	dard	Lloit
	Farameter	Min.	Max.	- Unit ns
t _{c(TB)}	TBiIN input cycle time	400		ns
tw(TBH)	TBiIN input HIGH pulse width	200		ns
tw(TBL)	TBiIN input LOW pulse width	200		ns

Table 22.19 Timer B Input (Pulse Width Measurement Mode)

Symbol Parameter	Parameter	Standard		Unit
Symbol	Farameter	Min.	Max.	Unit
t _{c(TB)}	TBiIN input cycle time	400		ns
tw(TBH)	TBiIN input HIGH pulse width	200		ns
tw(TBL)	TBiIN input LOW pulse width	200		ns

Table 22.20 A/D Trigger Input

Symbol	Darameter	Stan	dard	Linit
Symbol	Parameter	Min.	Max.	Unit
tc(AD)	ADTRG input cycle time (trigger able minimum)	1000		ns
tw(ADL)	ADTRG input LOW pulse width	125		ns

Table 22.21 Serial Interface

Symbol	Parameter	Stan	dard	Unit
Symbol	Farameter	Min.	Max.	Unit
tc(CK)	CLKi input cycle time	200		ns
tw(CKH)	CLKi input HIGH pulse width	100		ns
tw(CKL)	CLKi input LOW pulse width	100		ns
td(C-Q)	TXDi output delay time		80	ns
th(C-Q)	TXDi hold time	0		ns
tsu(D-C)	RXDi input setup time	70		ns
th(C-D)	RXDi input hold time	90		ns

Table 22.22 External Interrupt INTi Input

Symbol	Parameter	Stan	dard	Unit
	Farameter	Min.	Max.	
tw(INH)	INTi input HIGH pulse width	250		ns
t _{w(INL)}	INTi input LOW pulse width	250		ns

Switching Characteristics

VCC = 5 V

(Referenced to VCC = 5 V, VSS = 0 V, at Topr = –40 to 85 $^\circ\text{C}$ unless otherwise specified)

Symbol	Parameter	Measuring	Standard		Unit
		Condition	Min.	Max.	
td(BCLK-AD)	Address output delay time	Figure 22.3		25	ns
th(BCLK-AD)	Address output hold time (in relation to BCLK)		4		ns
th(RD-AD)	Address output hold time (in relation to RD)		0		ns
th(WR-AD)	Address output hold time (in relation to WR)		(NOTE 1)		ns
td(BCLK-CS)	Chip select output delay time			25	ns
th(BCLK-CS)	Chip select output hold time (in relation to BCLK)		4		ns
td(BCLK-ALE)	ALE signal output delay time			15	ns
th(BCLK-ALE)	ALE signal output hold time		-4		ns
td(BCLK-RD)	RD signal output delay time			25	ns
th(BCLK-RD)	RD signal output hold time		0		ns
td(BCLK-WR)	WR signal output delay time			25	ns
th(BCLK-WR)	WR signal output hold time		0		ns
td(BCLK-DB)	Data output delay time (in relation to BCLK)			40	ns
th(BCLK-DB)	Data output hold time (in relation to BCLK) (3)		4		ns
td(DB-WR)	Data output delay time (in relation to WR)		(NOTE 2)		ns
th(WR-DB)	Data output hold time (in relation to WR) (3)		(NOTE 1)		ns
td(BCLK-HLDA)	HLDA output delay time			40	ns

Table 22.23 Memory Expansion Mode and Microprocessor Mode (for setting with no wait)

NOTES:

1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 10 [ns]$$

2. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 40 \text{ [ns]} \qquad f(BCLK) \text{ is 12.5 MHz or less.}$$

3. This standard value shows the timing when the output is off, and does not show hold time of data bus.

Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value.

Hold time of data bus is expressed in $t = - CR \times ln (1 - V_{OL} / V_{CC})$

by a circuit of the right figure.

For example, when $V_{OL} = 0.2 V_{CC}$, C = 30 pF,

R =1 k Ω , hold time of output "L" level is

t = $-30 \text{ pF} \times 1 \text{ k}\Omega \times \text{ln} (1 - 0.2 \text{ Vcc} / \text{Vcc}) = 6.7 \text{ ns.}$

Figure 22.3 Port P0 to P10 Measurement Circuit

Switching Characteristics

VCC = 5 V

(Referenced to VCC = 5 V, VSS = 0 V, at Topr = -40 to 85 °C unless otherwise specified)

Symbol	Parameter	Measuring	Standard		Unit
		Condition	Min.	Max.	
td(BCLK-AD)	Address output delay time	Figure 22.3		25	ns
th(BCLK-AD)	Address output hold time (in relation to BCLK)		4		ns
th(RD-AD)	Address output hold time (in relation to RD)		0		ns
th(WR-AD)	Address output hold time (in relation to WR)		(NOTE 1)		ns
td(BCLK-CS)	Chip select output delay time			25	ns
th(BCLK-CS)	Chip select output hold time (in relation to BCLK)		4		ns
td(BCLK-ALE)	ALE signal output delay time			15	ns
th(BCLK-ALE)	ALE signal output hold time		-4		ns
td(BCLK-RD)	RD signal output delay time			25	ns
th(BCLK-RD)	RD signal output hold time		0		ns
$t_{d(BCLK-WR)}$	WR signal output delay time			25	ns
th(BCLK-WR)	WR signal output hold time		0		ns
td(BCLK-DB)	Data output delay time (in relation to BCLK)			40	ns
th(BCLK-DB)	Data output hold time (in relation to BCLK) (3)		4		ns
td(DB-WR)	Data output delay time (in relation to WR)		(NOTE 2)		ns
th(WR-DB)	Data output hold time (in relation to WR) (3)		(NOTE 1)		ns
td(BCLK-HLDA)	HLDA output delay time			40	ns

Table 22.24 M	lemory Expansion Mode and	d Microprocessor Mode	(for 1- to 3-wait setti	ng and external area access)
	ioniory Expansion mode and	a milor oprococor modo		ng ana oktornar aroa aoooooj

NOTES:

1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 10 [ns]$$

2. Calculated according to the BCLK frequency as follows:

 $\frac{(n-0.5)\times 10^9}{f(BCLK)} - 40 \text{ [ns]}$

n is "1" for 1-wait setting, "2" for 2-wait setting and "3" for 3-wait setting. When n = 1, f(BCLK) is 12.5 MHz or less.

3. This standard value shows the timing when the output is off, and does not show hold time of data bus.

Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value.

Hold time of data bus is expressed in

 $t = -CR \times ln (1 - V_{OL} / V_{CC})$

by a circuit of the right figure.

For example, when $V_{OL} = 0.2 V_{CC}$, C = 30 pF,

R =1 k Ω , hold time of output "L" level is

t = $-30 \text{ pF} \times 1 \text{ k}\Omega \times \text{ln} (1 - 0.2 \text{ Vcc} / \text{Vcc}) = 6.7 \text{ ns.}$

Switching Characteristics

VCC = 5 V

(Referenced to VCC = 5 V, VSS = 0 V, at Topr = –40 to 85 $^\circ\text{C}$ unless otherwise specified)

	bus sele	,			
Symbol	Parameter	Measuring Condition	Standard		Unit
			Min.	Max.	
td(BCLK-AD)	Address output delay time	Figure 22.3		25	ns
$t_{h(BCLK-AD)}$	Address output hold time (in relation to BCLK)		4		ns
th(RD-AD)	Address output hold time (in relation to RD)		(NOTE 1)		ns
th(WR-AD)	Address output hold time (in relation to WR)		(NOTE 1)		ns
$t_{\text{d}(\text{BCLK-CS})}$	Chip select output delay time			25	ns
$t_{h(BCLK-CS)}$	Chip select output hold time (in relation to BCLK)		4		ns
$t_{h(\text{RD-CS})}$	Chip select output hold time (in relation to RD)		(NOTE 1)		ns
$t_{h(WR-CS)}$	Chip select output hold time (in relation to WR)	-	(NOTE 1)		ns
$t_{d(BCLK-RD)}$	RD signal output delay time			25	ns
$\mathbf{t}_{h(BCLK-RD)}$	RD signal output hold time		0		ns
$t_{d(BCLK-WR)}$	WR signal output delay time			25	ns
$t_{h(BCLK-WR)}$	WR signal output hold time		0		ns
$t_{d(BCLK ext{-}DB)}$	Data output delay time (in relation to BCLK)			40	ns
th(BCLK-DB)	Data output hold time (in relation to BCLK)	-	4		ns
$t_{d(DB-WR)}$	Data output delay time (in relation to WR)		(NOTE 2)		ns
t h(WR-DB)	Data output hold time (in relation to WR)		(NOTE 1)		ns
$t_{d(BCLK-HLDA)}$	HLDA output delay time			40	ns
$t_{d(BCLK-ALE)}$	ALE signal output delay time (in relation to BCLK)	m		15	ns
$t_{h(BCLK-ALE)}$	ALE signal output hold time (in relation to BCLK)		-4		ns
td(AD-ALE)	ALE signal output delay time (in relation to Address)	-	(NOTE 3)		ns
th(ALE-AD)	ALE signal output hold time (in relation to Address)		(NOTE 4)		ns
td(AD-RD)	RD signal output delay from the end of Address		0		ns
td(AD-WR)	WR signal output delay from the end of Address		0		ns
tdZ(RD-AD)	Address output floating start time	1		8	ns

Table 22.25 Memory Expansion Mode and Microprocessor Mode (for 2- to 3-wait setting, external area access and multiplexed bus selection)

NOTES:

1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 10 [ns]$$

2. Calculated according to the BCLK frequency as follows:

$$\frac{(n-0.5) \times 10^9}{f(BCLK)} - 40 \text{ [ns]} \quad n \text{ is "2" for 2-wait setting, "3" for 3-wait setting.}$$

3. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 25 \text{ [ns]}$$

4. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{\text{f(BCLK)}} - 15 \text{ [ns]}$$

Figure 22.4 Timing Diagram (1)

Figure 22.5 Timing Diagram (2)

RENESAS

Figure 22.6 Timing Diagram (3)

RENESAS

Figure 22.7 Timing Diagram (4)

Figure 22.8 Timing Diagram (5)

Figure 22.9 Timing Diagram (6)

Figure 22.10 Timing Diagram (7)

Figure 22.11 Timing Diagram (8)

22.2 Electrical Characteristics (Normal-ver.)

Symbol			Parameter	Condition	Rated Value	Unit
Vcc	Supply vo	oltage (VC	C1 = VCC2)	VCC = AVCC	-0.3 to 6.5	V
AVcc	Analog si	upply volta	age	VCC = AVCC	-0.3 to 6.5	V
Vi	Input	RESET,	CNVSS, BYTE,		-0.3 to VCC+0.3	V
	voltage	P0_0 to	P0_7, P1_0 to P1_7, P2_0 to P2_7,			
		P3_0 to	P3_7, P4_0 to P4_7, P5_0 to P5_7,			
		P6_0 to F	P6_7, P7_0, P7_2 to P7_7, P8_0 to P8_7,			
		P9_0, P	9_2 to P9_7, P10_0 to P10_7,			
		VREF, >	(IN			
		P7_1, P	9_1		-0.3 to 6.5	V
Vo	Output	P0_0 to	P0_7, P1_0 to P1_7, P2_0 to P2_7,		-0.3 to VCC+0.3	V
	voltage	P3_0 to	P3_7, P4_0 to P4_7, P5_0 to P5_7,			
		P6_0 to	P6_7, P7_0, P7_2 to P7_7,			
		P8_0 to I	P8_4, P8_6, P8_7, P9_0, P9_2 to P9_7,			
		P10_0 t	o P10_7, XOUT			
		P7_1, P	9_1		-0.3 to 6.5	V
Pd	Power dis	ssipation		Topr = 25°C	700	mW
Topr	Operating	g ambient	During MCU operation		-40 to 85	°C
	temperate	ure	During flash memory program and		0 to 60	
			erase operation			
Tstg	Storage t	emperatu	re		-65 to 150	°C

Table 22.26 Absolute Maximum Ratings

Symbol	Parameter			Standard			
Symbol		Parameter	Min.	Тур.	Max.	Unit	
Vcc	Supply volta	ge (VCC1 = VCC2)	3.0	5.0	5.5	V	
AVcc	Analog supp	ly voltage		Vcc		V	
Vss	Supply volta	ge		0		V	
AVss	Analog supp	ly voltage		0		V	
VIH	HIGH input	P3_1 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7,	0.8 Vcc		Vcc	V	
	voltage	P7_0, P7_2 to P7_7, P8_0 to P8_7, P9_0, P9_2 to P9_7,					
		P10_0 to P10_7, XIN, RESET, CNVSS, BYTE					
		P7_1, P9_1	0.8 Vcc		6.5	V	
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0	0.8 Vcc		Vcc	V	
		(During single-chip mode)					
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0	0.5 Vcc		Vcc	V	
		(Data input during memory expansion and microprocessor modes)					
VIL	LOW input	P3_1 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7,	0		0.2 Vcc	V	
	voltage	P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7,					
		XIN, RESET, CNVSS, BYTE					
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0	0		0.2 Vcc	V	
		(During single-chip mode)					
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0	0		0.16 Vcc	V	
		(Data input during memory expansion and microprocessor modes)					
OH(peak)	HIGH peak	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7,			-10.0	mA	
	output current	P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0,					
		P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0,					
		P9_2 to P9_7, P10_0 to P10_7					
OH(avg)	HIGH average	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7,			-5.0	mA	
	output current	P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0,					
		P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0,					
		P9_2 to P9_7, P10_0 to P10_7					
OL(peak)	LOW peak	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7,			10.0	mA	
	output current	P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7,					
		P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7					
IOL(avg)	LOW average	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7,			5.0	mA	
	output current	P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7,					
		P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7					

Table 22.27 Recommended Operating Conditions (1) ⁽¹⁾

NOTES:

1. Referenced to VCC = 3.0 to 5.5 V at Topr = -40 to 85° C unless otherwise specified.

2. Average output current values during 100 ms period.

3. The total IoL(peak) for ports P0, P1, P2, P8_6, P8_7, P9, and P10 must be 80 mA max.

The total $\mathsf{IoL}_{(\mathsf{peak})}$ for ports P3, P4, P5, P6, P7, and P8_0 to P8_4 must be 80 mA max.

The total $I_{\text{OH}(\text{peak})}$ for ports P0, P1, and P2 must be -40 mA max.

The total $I_{\text{OH}(\text{peak})}$ for ports P3, P4, and P5 must be -40 mA max.

The total $I_{OH(peak)}$ for ports P6, P7, and P8_0 to P8_4 must be -40 mA max.

The total $I_{OH(peak)}$ for ports P8_6, P8_7, P9, and P10 must be -40 mA max.

Table 22.28 Recommended Operating Conditions (2) (1)

Oursels al	Deveryeter	Parameter			Standard		
Symbol	Parameter			Min.	Тур.	Max.	- Unit
f(XIN)	Main clock input oscillation No wait Mask ROM v	ersion VCC = 3.0	0 to 5.5 V	0		16	MHz
	frequency ^{(2) (3) (4)} Flash memory	version					
f(XCIN)	Sub clock oscillation frequency						kHz
f(Ring)	On-chip oscillation frequency				1		MHz
f(PLL)	PLL clock oscillation frequency					24	MHz
f(BCLK)	CPU operation clock	VCC = 3.0	0 to 5.5 V	0		24	MHz
tsu(PLL)	PLL frequency synthesizer stabilization wait	time				20	ms
f (ripple)	Power supply ripple allowable frequency (V	CC)				10	kHz
VP-P(ripple)	Power supply ripple allowable amplitude vol	tage VCC = 5	5 V			0.5	V
		VCC = 3	3.3 V			0.3	
$V_{\text{CC}(\Delta V/\Delta T)}$	Power supply ripple rising/falling gradient		5 V			0.3	V/ms
		VCC = 3	3.3 V			0.3	

NOTES:

- 1. Referenced to VCC = 3.0 to 5.5 V at Topr = -40 to 85° C unless otherwise specified.
- 2. Relationship between main clock oscillation frequency and supply voltage is shown right.
- 3. Execute program/erase of flash memory by VCC = 3.3 \pm 0.3 V or VCC = 5.0 \pm 0.5 V.
- 4. When using over 16 MHz, use PLL clock. PLL clock oscillation frequency which can be used is 16 MHz, 20 MHz or 24 MHz.

Symbol	Parameter		Measuring Condition		Standard			Unit
Symbol	Falai	neter		Measuring Condition	Min. Typ. Max		Max.	
_	Resolution		VREF :	VREF = VCC			10	Bit
INL	Integral	10 bits	VREF	ANEX0, ANEX1 input, AN0 to AN7 input,			±3	LSB
	nonlinearity		= VCC	AN0_0 to AN0_7 input, AN2_0 to AN2_7 input				
	error		= 5 V	External operation amp connection mode			±7	LSB
			VREF	ANEX0, ANEX1 input, AN0 to AN7 input,			±5	LSB
			= VCC	AN0_0 to AN0_7 input, AN2_0 to AN2_7 input				
			= 3.3 V	External operation amp connection mode			±7	LSB
		8 bits	VREF =	= AVCC = VCC = 5.0 V, 3.3 V			±2	LSB
-	Absolute	10 bits	VREF	ANEX0, ANEX1 input, AN0 to AN7 input,			±3	LSB
	accuracy		= VCC	AN0_0 to AN0_7 input, AN2_0 to AN2_7 input				
			= 5 V	External operation amp connection mode			±7	LSB
			VREF	ANEX0, ANEX1 input, AN0 to AN7 input,			±5	LSB
			= VCC	AN0_0 to AN0_7 input, AN2_0 to AN2_7 input				
			= 3.3 V	External operation amp connection mode			±7	LSB
		8 bits	VREF =	= AVCC = VCC = 5.0 V, 3.3 V			±2	LSB
DNL	Differential nor	linearity error					±1	LSB
_	Offset error						±3	LSB
-	Gain error						±3	LSB
RLADDER	Resistor ladde	r	VREF =	= VCC	10		40	kΩ
t CONV	10-bit conversi	ion time,	VREF =	= VCC = 5 V,	3.3			μs
	sample & hold	available						
	8-bit conversion	on time,	VREF =	= VCC = 5 V,	2.8			μs
	sample & hold	available						
t samp	Sampling time				0.3			μs
Vref	Reference volt	age			2.0		Vcc	V
VIA	Analog input v	oltage			0		VREF	V

Table 22.29	A/D	Conversion	Characteristics	(1)
Table 22.29	A/D	Conversion	Characteristics	• •

NOTES:

1. Referenced to VCC = AVCC = VREF = 3.3 to 5.5 V, VSS = AVSS = 0 V, -40 to 85° C unless otherwise specified.

2. ϕ AD frequency must be 10 MHz or less.

When sample & hold is disabled, φAD frequency must be 250 kHz or more in addition to a limit of NOTE 2.
 When sample & hold is enabled, φAD frequency must be 1 MHz or more in addition to a limit of NOTE 2.

Table 22.30 D/A conversion Characteristics (1)

Symbol	Parameter	Measuring Condition	S	Unit		
Symbol	i aldilletei	Measuring Condition	Min.	Тур.	Max.	Onit
-	Resolution				8	Bits
-	Absolute accuracy				1.0	%
tsu	Setup time				3	μs
Ro	Output resistance		4	10	20	kΩ
IVREF	Reference power supply input current	(NOTE 2)			1.5	mA

NOTES:

1. Referenced to VCC = AVCC = VREF = 3.3 to 5.5 V, VSS = AVSS = 0 V, -40 to 85°C unless otherwise specified.

2. This applies when using one D/A converter, with the DAi register (i = 0, 1) for the unused D/A converter set to 00h. The resistor ladder of the A/D converter is not included. Also, the current IVREF always flows even though VREF may have been set to be unconnected by the ADCON1 register.

Table 22.31 Power Supply Circuit Timing Characteristics

Symbol	Parameter	Measuring	S	d	Unit	
Symbol		Condition	Min.	Тур.	Max.	Unit
td(P-R)	Time for internal power supply stabilization during powering-on	VCC = 3.0 to 5.5 V			2	ms
td(R-S)	STOP release time				150	μs
td(W-S)	Low power dissipation mode wait mode release time				150	μs

Figure 22.13 Power Supply Circuit Timing Diagram

Table 22.32 Electrical Characteristics (1)

VCC = 5 V

Symbol		Pa	rameter	Measuring Condition	Min.	tandar Typ.	d Max.	Unit
Vон	HIGH output	P0 0 to P	0_7, P1_0 to P1_7, P2_0 to P2_7,	_	Vcc-2.0	тур.	Vcc	V
VON	voltage		3_7, P4_0 to P4_7, P5_0 to P5_7,		V00-2.0		VCC	ľ
	J		P6_7, P7_0, P7_2 to P7_7,					
			P8_4, P8_6, P8_7, P9_0,					
		_						
Vон	HIGH output		P9_7, P10_0 to P10_7		V 0.0		Vcc	V
V ОН	voltage		0_7, P1_0 to P1_7, P2_0 to P2_7,		Vcc-0.3		VCC	V
	Voltago		3_7, P4_0 to P4_7, P5_0 to P5_7,					
			P6_7, P7_0, P7_2 to P7_7,					
			P8_4, P8_6, P8_7, P9_0,					
			P9_7, P10_0 to P10_7	Iон = -1 mA	0.0		N/	V
Vон	HIGH output voltage	XOUT	HIGHPOWER		3.0		Vcc	V
		VOOLIT	LOWPOWER	$I_{OH} = -0.5 \text{ mA}$	3.0	0.5	Vcc	V
	HIGH output	XCOUT	HIGHPOWER	With no load applied		2.5		V
	voltage		LOWPOWER	With no load applied		1.6		
Vol	LOW output voltage		0_7, P1_0 to P1_7, P2_0 to P2_7,				2.0	V
	voltage		3_7, P4_0 to P4_7, P5_0 to P5_7,					
			6_7, P7_0 to P7_7, P8_0 to P8_4,					
			_7, P9_0 to P9_7, P10_0 to P10_7					
Vol	LOW output		0_7, P1_0 to P1_7, P2_0 to P2_7,	Ιοι = 200 μΑ			0.45	V
	voltage		3_7, P4_0 to P4_7, P5_0 to P5_7,					
			6_7, P7_0 to P7_7, P8_0 to P8_4,					
			_7, P9_0 to P9_7, P10_0 to P10_7					
-	LOW output	XOUT	HIGHPOWER	lo∟ = 1 mA			2.0	V
	voltage		LOWPOWER	lo∟ = 0.5 mA			2.0	
	LOW output	XCOUT	HIGHPOWER	With no load applied		0		V
	voltage		LOWPOWER	With no load applied		0		
V⊤+-V⊤-	Hysteresis		Y, TAOIN to TA4IN, TBOIN to TB5IN,		0.2		1.0	V
			T5, NMI, ADTRG, CTS0 to CTS2,					
			CL2, SDA0 to SDA2, CLK0 to CLK3,					
			to TA4OUT, KIO to KI3,					
., .,	Lluctoropio		RXD2, SIN3		0.0		0.5	
V⊤+-V⊤-	Hysteresis	RESET			0.2		2.5	V
Ін	HIGH input		0_7, P1_0 to P1_7, P2_0 to P2_7,				5.0	μA
	current		3_7, P4_0 to P4_7, P5_0 to P5_7,					
			6_7, P7_0 to P7_7, P8_0 to P8_7,					
			9_7, P10_0 to P10_7,					
			SET, CNVSS, BYTE				5.0	
lil	LOW input		0_7, P1_0 to P1_7, P2_0 to P2_7,				-5.0	μA
	current		3_7, P4_0 to P4_7, P5_0 to P5_7,					
			6_7, P7_0 to P7_7, P8_0 to P8_7,					
			9_7, P10_0 to P10_7,					
	Pull-up		SET, CNVSS, BYTE		20	E 0	170	ko
Rpullup			0_7, P1_0 to P1_7, P2_0 to P2_7,		30	50	170	kΩ
	resistance		3_7, P4_0 to P4_7, P5_0 to P5_7,					
			6_7, P7_0, P7_2 to P7_7, P8_0 to					
			_6, P8_7, P9_0, P9_2 to P9_7,					
_		P10_0 to						N /~
	Feedback resis		XIN			1.5		MΩ
RfxCIN	Feedback resis		XCIN			15		MΩ
Vram	RAM retention	voltage		At stop mode	2.0			V

NOTES:

1. Referenced to VCC = 4.2 to 5.5 V, VSS = 0 V at Topr = -40 to 85°C, f(BCLK) = 24 MHz unless otherwise specified.

Symbol	Pa	ramator	Moosur	ing Condition	S	standar	d	Unit
-		rameter		ing Condition	Min.	Тур.	Max.	Unit
lcc	Power supply	In single-chip mode,	Mask ROM	f(BCLK) = 24 MHz,		20	36	mA
	current	the output pins are		PLL operation,				
	(VCC = 3.0 to 5.5 V)	open and other pins		No division				
		are VSS.		On-chip oscillation,		1		mA
				No division				
			Flash memory	f(BCLK) = 24 MHz,		22	38	mA
				PLL operation,				
				No division				
				On-chip oscillation,		1.8		mA
				No division				
			Flash memory	f(BCLK) = 10 MHz,		15		mA
			program	VCC = 5 V				
			Flash memory	f(BCLK) = 10 MHz,		25		mA
			erase	VCC = 5 V				
			Mask ROM	f(BCLK) = 32 kHz,		25		μA
				Low power dissipation				
				mode, ROM (2)				
			Flash memory	f(BCLK) = 32 kHz,		25		μA
				Low power dissipation				
				mode, RAM (2)				
				f(BCLK) = 32 kHz,		420		μA
				Low power dissipation				
				mode,				
				Flash memory (2)				
			Mask ROM	On-chip oscillation,		50		μA
			Flash memory	Wait mode				
				f(BCLK) = 32 kHz,		8.5		μA
				Wait mode ⁽³⁾ ,				
				Oscillation capacity High				
				f(BCLK) = 32 kHz,		3.0		μA
				Wait mode (3),				
				Oscillation capacity Low				
				Stop mode,		0.8	3.0	μA
				Topr = 25°C				•

Table 22.33 Electrical Characteristics (2)

NOTES:

1. Referenced to VCC = 3.0 to 5.5 V, VSS = 0 V at Topr = -40 to 85°C, f(BCLK) = 24 MHz unless otherwise specified.

2. This indicates the memory in which the program to be executed exists.

3. With one timer operated using fC32.

Timing Requirements VCC = 5 V(Referenced to VCC = 5 V, VSS = 0 V, at Topr = -40 to 85°C unless otherwise specified)

Table 22.34 External Clock Input (XIN Input)

Symbol	Parameter		Standard		
			Max.	Unit	
tc	External clock input cycle time	62.5		ns	
t _{w(H)}	External clock input HIGH pulse width	25		ns	
tw(L)	External clock input LOW pulse width	25		ns	
tr	External clock rise time		15	ns	
tr	External clock fall time		15	ns	

Table 22.35 Memory Expansion Mode and Microprocessor Mode

Symbol	Parameter	Stan	Idard	Unit
Symbol	Falameter	Min.	Max.	Unit
tac1(RD-DB)	Data input access time (for setting with no wait)		(NOTE 1)	ns
tac2(RD-DB)	Data input access time (for setting with wait)		(NOTE 2)	ns
tac3(RD-DB)	Data input access time (when accessing multiplexed bus area)		(NOTE 3)	ns
tsu(DB-RD)	Data input setup time	40		ns
tsu(RDY-BCLK)	RDY input setup time	30		ns
tsu(HOLD-BCLK)	HOLD input setup time	40		ns
t h(RD-DB)	Data input hold time	0		ns
th(BCLK-RDY)	RDY input hold time	0		ns
th(BCLK-HOLD)	HOLD input hold time	0		ns

NOTES:

1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 45 \text{ [ns]}$$

2. Calculated according to the BCLK frequency as follows:

 $\frac{(n-0.5) \times 10^9}{f(BCLK)} - 45 [ns]$ n is "2" for 1-wait setting, "3" for 2-wait setting and "4" for 3-wait setting.

3. Calculated according to the BCLK frequency as follows:

$$\frac{(n-0.5) \times 10^9}{f(BCLK)} - 45 \text{ [ns]} \qquad n \text{ is "2" for 2-wait setting, "3" for 3-wait setting.}$$

Timing Requirements VCC = 5 V (Referenced to VCC = 5 V, VSS = 0 V, at Topr = -40 to 85°C unless otherwise specified)

Table 22.36 Timer A Input (Counter Input in Event Counter Mode)

Symbol	Parameter		Standard		
			Max.	Unit	
t _{c(TA)}	TAIIN input cycle time	100		ns	
tw(TAH)	TAIIN input HIGH pulse width	40		ns	
tw(TAL)	TAIIN input LOW pulse width	40		ns	

Table 22.37 Timer A Input (Gating Input in Timer Mode)

Symbol	Parameter	Standard		Unit
	Falailletei	Min.	Max.	
tc(TA)	TAIIN input cycle time	400		ns
tw(TAH)	TAIIN input HIGH pulse width	200		ns
tw(TAL)	TAiIN input LOW pulse width	200		ns

Table 22.38 Timer A Input (External Trigger Input in One-shot Timer Mode)

Symbol	Parameter	Standard Min. Max.	Unit	
	Farameter		Max.	Unit
t _{c(TA)}	TAIIN input cycle time	200		ns
tw(TAH)	TAIIN input HIGH pulse width	100		ns
tw(TAL)	TAIIN input LOW pulse width	100		ns

Table 22.39 Timer A Input (External Trigger Input in Pulse Width Modulation Mode)

Symbol	Parameter	Standard		Unit
	Falameter	Min.	Max.	Unit
t _{w(TAH)}	TAIIN input HIGH pulse width	100		ns
tw(TAL)	TAIIN input LOW pulse width	100		ns

Table 22.40 Timer A Input (Counter Increment/decrement Input in Event Counter Mode)

Symbol	Parameter	Standard		Unit
Symbol	Falameter	Min.	Max.	Unit
t _{c(UP)}	TAiOUT input cycle time	2000		ns
tw(UPH)	TAiOUT input HIGH pulse width	1000		ns
tw(UPL)	TAiOUT input LOW pulse width	1000		ns
tsu(UP-TIN)	TAiOUT input setup time	400		ns
th(TIN-UP)	TAiOUT input hold time	400		ns

Table 22.41 Timer A Input (Two-phase Pulse Input in Event Counter Mode)

Symbol	Parameter	Standard	Unit	
	Falalleter	Min.	Max.	
tc(TA)	TAIIN input cycle rime	800		ns
tsu(TAIN-TAOUT)	TAiOUT input setup time	200		ns
$t_{\text{su}(\text{TAOUT-TAIN})}$	TAIIN input setup time	200		ns

Timing Requirements VCC = 5 V (Referenced to VCC = 5 V, VSS = 0 V, at Topr = -40 to 85°C unless otherwise specified)

Table 22.42 Timer B Input (Counter Input in Event Counter Mode)

Symbol	Parameter	Standard	dard	Unit
Symbol	Farameter	Min.	Max.	Unit
tc(TB)	TBiIN input cycle time (counted on one edge)	100		ns
t _{w(TBH)}	TBiIN input HIGH pulse width (counted on one edge)	40		ns
tw(TBL)	TBiIN input LOW pulse width (counted on one edge)	40		ns
tc(TB)	TBiIN input cycle time (counted on both edges)	200		ns
t _{w(TBH)}	TBiIN input HIGH pulse width (counted on both edges)	80		ns
tw(TBL)	TBiIN input LOW pulse width (counted on both edges)	80		ns

Table 22.43 Timer B Input (Pulse Period Measurement Mode)

Symbol	Parameter	Stan	Standard	
	Faldineter	Min.	Max.	Unit
t _{c(TB)}	TBIIN input cycle time	400		ns
tw(TBH)	TBiIN input HIGH pulse width	200		ns
tw(TBL)	TBiIN input LOW pulse width	200		ns

Table 22.44 Timer B Input (Pulse Width Measurement Mode)

Symbol Par	Parameter	Stan	andard	Unit
	Farameter	Min.	Max.	Unit
t _{c(TB)}	TBiIN input cycle time	400		ns
t _{w(TBH)}	TBiIN input HIGH pulse width	200		ns
tw(TBL)	TBiIN input LOW pulse width	200		ns

Table 22.45 A/D Trigger Input

Symbol	Darameter	Stan	Standard	
	Parameter	Min.	Max.	Unit
tc(AD)	ADTRG input cycle time (trigger able minimum)	1000		ns
tw(ADL)	ADTRG input LOW pulse width	125		ns

Table 22.46 Serial Interface

Symbol	Parameter	Standard		Unit
Symbol	Farameter	Min.	Max.	Unit
tc(CK)	CLKi input cycle time	200		ns
t _{w(CKH)}	CLKi input HIGH pulse width	100		ns
tw(CKL)	CLKi input LOW pulse width	100		ns
td(C-Q)	TXDi output delay time		80	ns
th(C-Q)	TXDi hold time	0		ns
tsu(D-C)	RXDi input setup time	70		ns
th(C-D)	RXDi input hold time	90		ns

Table 22.47 External Interrupt INTi Input

Symbol	Parameter	Stan	dard	Unit
	Farameter	Min. Max.	Unit	
tw(INH)	INTi input HIGH pulse width	250		ns
t _{w(INL)}	INTi input LOW pulse width	250		ns

VCC = 5 V

(Referenced to VCC = 5 V, VSS = 0 V, at Topr = -40 to 85 $^{\circ}$ C unless otherwise specified)

Symbol	Parameter	Measuring	Stan	dard	Unit
Symbol	Falameter	Condition	Min.	Max.	
td(BCLK-AD)	Address output delay time	Figure 22.14		25	ns
th(BCLK-AD)	Address output hold time (in relation to BCLK)		4		ns
th(RD-AD)	Address output hold time (in relation to RD)		0		ns
th(WR-AD)	Address output hold time (in relation to WR)		(NOTE 1)		ns
td(BCLK-CS)	Chip select output delay time			25	ns
th(BCLK-CS)	Chip select output hold time (in relation to BCLK)		4		ns
td(BCLK-ALE)	ALE signal output delay time			15	ns
$t_{h(BCLK-ALE)}$	ALE signal output hold time		-4		ns
td(BCLK-RD)	RD signal output delay time			25	ns
th(BCLK-RD)	RD signal output hold time		0		ns
$t_{d(BCLK-WR)}$	WR signal output delay time			25	ns
th(BCLK-WR)	WR signal output hold time		0		ns
td(BCLK-DB)	Data output delay time (in relation to BCLK)			40	ns
th(BCLK-DB)	Data output hold time (in relation to BCLK) (3)		4		ns
td(DB-WR)	Data output delay time (in relation to WR)		(NOTE 2)		ns
th(WR-DB)	Data output hold time (in relation to WR) (3)		(NOTE 1)		ns
td(BCLK-HLDA)	HLDA output delay time			40	ns

Table 22.48 Memory Expansion Mode and Microprocessor Mode (for setting with no wait)

NOTES:

1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 10 [ns]$$

2. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 40 \text{ [ns]} \qquad f(BCLK) \text{ is 12.5 MHz or less.}$$

3. This standard value shows the timing when the output is off, and does not show hold time of data bus.

Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value.

Hold time of data bus is expressed in $t = - CR \times ln (1 - V_{OL} / V_{CC})$

by a circuit of the right figure.

For example, when $V_{OL} = 0.2 V_{CC}$, C = 30 pF,

R =1 k Ω , hold time of output "L" level is

t = $-30 \text{ pF} \times 1 \text{ k}\Omega \times \text{ln} (1 - 0.2 \text{ Vcc} / \text{Vcc}) = 6.7 \text{ ns.}$

Figure 22.14 Port P0 to P10 Measurement Circuit

VCC = 5 V

(Referenced to VCC = 5 V, VSS = 0 V, at Topr = -40 to 85 °C unless otherwise specified)

Symbol	Parameter	Measuring	Standard		Unit
Symbol	Falanielei	Condition	Min.	Max.	
$t_{d(BCLK-AD)}$	Address output delay time	Figure 22.14		25	ns
th(BCLK-AD)	Address output hold time (in relation to BCLK)		4		ns
th(RD-AD)	Address output hold time (in relation to RD)		0		ns
th(WR-AD)	Address output hold time (in relation to WR)		(NOTE 1)		ns
td(BCLK-CS)	Chip select output delay time			25	ns
th(BCLK-CS)	Chip select output hold time (in relation to BCLK)		4		ns
$t_{d(BCLK-ALE)}$	ALE signal output delay time			15	ns
$t_{h(BCLK-ALE)}$	ALE signal output hold time		-4		ns
$t_{d(BCLK-RD)}$	RD signal output delay time			25	ns
th(BCLK-RD)	RD signal output hold time		0		ns
$t_{d(BCLK-WR)}$	WR signal output delay time			25	ns
th(BCLK-WR)	WR signal output hold time		0		ns
td(BCLK-DB)	Data output delay time (in relation to BCLK)			40	ns
th(BCLK-DB)	Data output hold time (in relation to BCLK) ⁽³⁾		4		ns
td(DB-WR)	Data output delay time (in relation to WR)		(NOTE 2)		ns
th(WR-DB)	Data output hold time (in relation to WR) ⁽³⁾		(NOTE 1)		ns
td(BCLK-HLDA)	HLDA output delay time			40	ns

Table 22.49 Memory Expansion Mode and Microprocessor Mode (for 1- to 3-wait setting and external area access)

NOTES:

1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 10 [ns]$$

2. Calculated according to the BCLK frequency as follows:

 $\frac{(n-0.5) \times 10^9}{f(BCLK)} - 40 \text{ [ns]}$

n is "1" for 1-wait setting, "2" for 2-wait setting and "3" for 3-wait setting. When n = 1, f(BCLK) is 12.5 MHz or less.

3. This standard value shows the timing when the output is off, and does not show hold time of data bus.

Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value.

Hold time of data bus is expressed in

 $t = -CR \times ln (1 - V_{OL} / V_{CC})$

by a circuit of the right figure.

For example, when $V_{OL} = 0.2 V_{CC}$, C = 30 pF,

R =1 k Ω , hold time of output "L" level is

t = $-30 \text{ pF} \times 1 \text{ k}\Omega \times \text{ln} (1 - 0.2 \text{ Vcc} / \text{Vcc}) = 6.7 \text{ ns.}$

VCC = 5 V

(Referenced to VCC = 5 V, VSS = 0 V, at Topr = –40 to 85 $^{\circ}$ C unless otherwise specified)

	(for 2- to 3-wait setting, external area access and multiplexed bus selection)						
Symbol	Parameter	Measuring			Unit		
		Condition	Min.	Max.	<u> </u>		
td(BCLK-AD)	Address output delay time	Figure 22.14		25	ns		
th(BCLK-AD)	Address output hold time (in relation to BCLK)		4		ns		
th(RD-AD)	Address output hold time (in relation to RD)		(NOTE 1)		ns		
th(WR-AD)	Address output hold time (in relation to WR)		(NOTE 1)		ns		
$t_{\text{d}(\text{BCLK-CS})}$	Chip select output delay time			25	ns		
$t_{h(BCLK-CS)}$	Chip select output hold time (in relation to BCLK)		4		ns		
th(RD-CS)	Chip select output hold time (in relation to RD)		(NOTE 1)		ns		
th(WR-CS)	Chip select output hold time (in relation to WR)		(NOTE 1)		ns		
$t_{d(BCLK-RD)}$	RD signal output delay time			25	ns		
$\mathbf{t}_{h(BCLK-RD)}$	RD signal output hold time		0		ns		
td(BCLK-WR)	WR signal output delay time	-		25	ns		
$t_{h(BCLK-WR)}$	WR signal output hold time	-	0		ns		
td(BCLK-DB)	Data output delay time (in relation to BCLK)	-		40	ns		
th(BCLK-DB)	Data output hold time (in relation to BCLK)	-	4		ns		
td(DB-WR)	Data output delay time (in relation to WR)	-	(NOTE 2)		ns		
th(WR-DB)	Data output hold time (in relation to WR)		(NOTE 1)		ns		
td(BCLK-HLDA)	HLDA output delay time			40	ns		
td(BCLK-ALE)	ALE signal output delay time (in relation to BCLK)			15	ns		
th(BCLK-ALE)	ALE signal output hold time (in relation to BCLK)	-	-4		ns		
td(AD-ALE)	ALE signal output delay time (in relation to Address)	-	(NOTE 3)		ns		
th(ALE-AD)	ALE signal output hold time (in relation to Address)	1	(NOTE 4)		ns		
td(AD-RD)	RD signal output delay from the end of Address	1	0		ns		
td(AD-WR)	WR signal output delay from the end of Address		0		ns		
tdZ(RD-AD)	Address output floating start time	1		8	ns		
		1					

Table 22.50 Memory Expansion Mode and Microprocessor Mode (for 2- to 3-wait setting, external area access and multiplexed bus selection)

NOTES:

1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 10 [ns]$$

2. Calculated according to the BCLK frequency as follows:

$$\frac{(n-0.5) \times 10^9}{f(BCLK)} - 40 \text{ [ns]} \quad n \text{ is "2" for 2-wait setting, "3" for 3-wait setting.}$$

3. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 25 \text{ [ns]}$$

4. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{\text{f(BCLK)}} - 15 \text{ [ns]}$$

Figure 22.15 Timing Diagram (1)

Figure 22.16 Timing Diagram (2)

Figure 22.17 Timing Diagram (3)

Figure 22.18 Timing Diagram (4)

Figure 22.19 Timing Diagram (5)

Figure 22.20 Timing Diagram (6)

Figure 22.21 Timing Diagram (7)

Figure 22.22 Timing Diagram (8)

Table 22.51 Electrical Characteristics (1)

VCC = 3.3 V

				1			<u> </u>	<u>0.0 v</u>
Symbol		Ра	rameter	Measuring Condition	S Min.	tandar Typ.	d Max.	Unit
Vон	HIGH output	P0_0 to P	0_7, P1_0 to P1_7, P2_0 to P2_7,	Iон = −1 mA	Vcc-0.5	2 F	Vcc	V
	voltage	P3_0 to P	3_7, P4_0 to P4_7, P5_0 to P5_7,					
		P6_0 to I	P6_7, P7_0, P7_2 to P7_7,					
		P8_0 to I	P8_4, P8_6, P8_7, P9_0,					
		P9_2 to I	P9_7, P10_0 to P10_7					
Vон	HIGH output	XOUT	HIGHPOWER	Іон = -0.1 mA	Vcc-0.5		Vcc	V
	voltage		LOWPOWER	Іон = –50 µА	Vcc-0.5		Vcc	1
	HIGH output	XCOUT	HIGHPOWER	With no load applied		2.5		V
	voltage		LOWPOWER	With no load applied		1.6		1
Vol	LOW output	P0_0 to P	0_7, P1_0 to P1_7, P2_0 to P2_7,	lo∟ = 1 mA			0.5	V
	voltage	P3_0 to P	3_7, P4_0 to P4_7, P5_0 to P5_7,					
		P6_0 to P	6_7, P7_0 to P7_7, P8_0 to P8_4,					
		P8_6, P8_	_7, P9_0 to P9_7, P10_0 to P10_7					
Vol	LOW output	XOUT	HIGHPOWER	lo∟ = 0.1 mA			0.5	V
	voltage		LOWPOWER	lo∟ = 50 μA			0.5	
	LOW output	XCOUT	HIGHPOWER	With no load applied		0		V
	voltage		LOWPOWER	With no load applied		0		
V⊤+-V⊤-	Hysteresis	HOLD, RD	\overline{VY} , TA0IN to TA4IN, TB0IN to TB5IN,		0.2		0.8	V
		INTO to IN	T5, NMI, ADTRG, CTS0 to CTS2,					
		SCL0 to S	CL2, SDA0 to SDA2, CLK0 to CLK3,					
		TA0OUT	to TA4OUT, KI0 to KI3,					
		RXD0 to	RXD2, SIN3					
V⊤+-V⊤-	Hysteresis	RESET			0.2		1.8	V
Ін	HIGH input	P0_0 to P	0_7, P1_0 to P1_7, P2_0 to P2_7,	VI = 3.3 V			4.0	μA
	current	P3_0 to P	3_7, P4_0 to P4_7, P5_0 to P5_7,					
		P6_0 to P	6_7, P7_0 to P7_7, P8_0 to P8_7,					
		P9_0 to P	9_7, P10_0 to P10_7,					
		XIN, RES	SET, CNVSS, BYTE					
lı∟	LOW input	P0_0 to P	0_7, P1_0 to P1_7, P2_0 to P2_7,	$V_1 = 0 V$			-4.0	μA
	current	P3_0 to P	3_7, P4_0 to P4_7, P5_0 to P5_7,					
		P6_0 to P	6_7, P7_0 to P7_7, P8_0 to P8_7,					
		P9_0 to P	9_7, P10_0 to P10_7,					
		XIN, RES	SET, CNVSS, BYTE					
Rpullup	Pull-up	P0_0 to P	0_7, P1_0 to P1_7, P2_0 to P2_7,	$V_1 = 0 V$	50	100	500	kΩ
	resistance	P3_0 to P	3_7, P4_0 to P4_7, P5_0 to P5_7,					
		P6_0 to P	6_7, P7_0, P7_2 to P7_7, P8_0 to					
		P8_4, P8	_6, P8_7, P9_0, P9_2 to P9_7,					
		P10_0 to	P10_7					
Rfxin	Feedback resis	tance	XIN			3.0		MΩ
Rfxcin	Feedback resis	tance	XCIN			25		MΩ
Vram	RAM retention	voltage		At stop mode	2.0			V

NOTES:

1. Referenced to VCC = 3.0 to 3.6 V, VSS = 0 V at Topr = -40 to 85°C, f(BCLK) = 24 MHz unless otherwise specified.

Timing Requirements VCC = 3.3 V (Referenced to VCC = 3.3 V, VSS = 0 V, at Topr = -40 to 85°C unless otherwise specified)

Table 22.52 External Clock Input (XIN Input)

Symbol	Parameter	Stan	Unit	
	Falailletei	Min.	Max.	Unit
tc	External clock input cycle time	62.5		ns
t _{w(H)}	External clock input HIGH pulse width	25		ns
t _{w(L)}	External clock input LOW pulse width	25		ns
tr	External clock rise time		15	ns
tr	External clock fall time		15	ns

Table 22.53 Memory Expansion Mode and Microprocessor Mode

Symbol	Parameter	Stan	Unit	
Symbol	Falameter	Min.	Max.	Unit
tac1(RD-DB)	Data input access time (for setting with no wait)		(NOTE 1)	ns
tac2(RD-DB)	Data input access time (for setting with wait)		(NOTE 2)	ns
tac3(RD-DB)	Data input access time (when accessing multiplexed bus area)		(NOTE 3)	ns
tsu(DB-RD)	Data input setup time	50		ns
tsu(RDY-BCLK)	RDY input setup time	40		ns
tsu(HOLD-BCLK)	HOLD input setup time	50		ns
t h(RD-DB)	Data input hold time	0		ns
th(BCLK-RDY)	RDY input hold time	0		ns
th(BCLK-HOLD)	HOLD input hold time	0		ns

NOTES:

1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 60 \text{ [ns]}$$

2. Calculated according to the BCLK frequency as follows:

 $\frac{(n-0.5) \times 10^9}{f(BCLK)} - 60 \text{ [ns]}$ n is "2" for 1-wait setting, "3" for 2-wait setting and "4" for 3-wait setting.

3. Calculated according to the BCLK frequency as follows:

$$\frac{(n-0.5) \times 10^9}{f(BCLK)} - 60 \text{ [ns]} \qquad n \text{ is "2" for 2-wait setting, "3" for 3-wait setting.}$$

Timing Requirements VCC = 3.3 V (Referenced to VCC = 3.3 V, VSS = 0 V, at Topr = -40 to 85°C unless otherwise specified)

Table 22.54 Timer A Input (Counter Input in Event Counter Mode)

Symbol	Parameter	Stan	Unit	
		Min.	Max.	Unit
t _{c(TA)}	TAIIN input cycle time	150		ns
tw(TAH)	TAIIN input HIGH pulse width	60		ns
tw(TAL)	TAIIN input LOW pulse width	60		ns

Table 22.55 Timer A Input (Gating Input in Timer Mode)

Symbol	Parameter	Stan	Unit	
		Min.	Max.	Unit
t _{c(TA)}	TAIIN input cycle time	600		ns
tw(TAH)	TAIIN input HIGH pulse width	300		ns
tw(TAL)	TAiIN input LOW pulse width	300		ns

Table 22.56 Timer A Input (External Trigger Input in One-shot Timer Mode)

Symbol	Parameter	Stan	Unit	
		Min.	Max.	Unit
t _{c(TA)}	TAIIN input cycle time	300		ns
tw(TAH)	TAIIN input HIGH pulse width	150		ns
tw(TAL)	TAIIN input LOW pulse width	150		ns

Table 22.57 Timer A Input (External Trigger Input in Pulse Width Modulation Mode)

Symbol	Parameter	Stan	Lloit	
		Min.	Max.	Unit
tw(TAH)	TAIIN input HIGH pulse width	150		ns
tw(TAL)	TAIIN input LOW pulse width	150		ns

Table 22.58 Timer A Input (Counter Increment/decrement Input in Event Counter Mode)

Symbol	Parameter	Stan	Unit	
Symbol		Min.	Max.	Unit
t _{c(UP)}	TAiOUT input cycle time	3000		ns
tw(UPH)	TAIOUT input HIGH pulse width	1500		ns
tw(UPL)	TAiOUT input LOW pulse width	1500		ns
tsu(UP-TIN)	TAIOUT input setup time	600		ns
th(TIN-UP)	TAiOUT input hold time	600		ns

Table 22.59 Timer A Input (Two-phase Pulse Input in Event Counter Mode)

Symbol	Parameter	Stan	Unit	
		Min.	Max.	Unit
tc(TA)	TAIIN input cycle time	2		μs
tsu(TAIN-TAOUT)	TAiOUT input setup time	500		ns
tsu(TAOUT-TAIN)	TAIIN input setup time	500		ns

Timing Requirements VCC = 3.3 V (Referenced to VCC = 3.3 V, VSS = 0 V, at Topr = -40 to 85°C unless otherwise specified)

Table 22.60 Timer B Input (Counter Input in Event Counter Mode)

Symbol	Parameter	Stan	Unit	
Symbol	Faldineter	Min.	Max.	Unit
tc(TB)	TBiIN input cycle time (counted on one edge)	150		ns
t _{w(TBH)}	TBiIN input HIGH pulse width (counted on one edge)	60		ns
tw(TBL)	TBiIN input LOW pulse width (counted on one edge)	60		ns
t _{c(TB)}	TBiIN input cycle time (counted on both edges)	300		ns
t _{w(TBH)}	TBiIN input HIGH pulse width (counted on both edges)	120		ns
tw(TBL)	TBiIN input LOW pulse width (counted on both edges)	120		ns

Table 22.61 Timer B Input (Pulse Period Measurement Mode)

Symbol Parameter	Devemater	Standard		Unit
	Min.	Max.		
t _{c(TB)}	TBiIN input cycle time	600		ns
tw(TBH)	TBiIN input HIGH pulse width	300		ns
tw(TBL)	TBiIN input LOW pulse width	300		ns

Table 22.62 Timer B Input (Pulse Width Measurement Mode)

Symbol	Parameter	Standard		Unit
Symbol	Symbol	Min.	Max.	Unit
tc(TB)	TBiIN input cycle time	600		ns
tw(TBH)	TBiIN input HIGH pulse width	300		ns
tw(TBL)	TBiIN input LOW pulse width	300		ns

Table 22.63 A/D Trigger Input

Symbol Parameter	Deventer	Standard		Linit
	Parameter	Min.	Max.	Unit
tc(AD)	ADTRG input cycle time (trigger able minimum)	1500		ns
tw(ADL)	ADTRG input LOW pulse width	200		ns

Table 22.64 Serial Interface

Symbol	Parameter		Standard	
			Max.	Unit
tc(CK)	CLKi input cycle time	300		ns
t _{w(CKH)}	CLKi input HIGH pulse width	150		ns
tw(CKL)	CLKi input LOW pulse width	150		ns
td(C-Q)	TXDi output delay time		160	ns
th(C-Q)	TXDi hold time	0		ns
tsu(D-C)	RXDi input setup time	100		ns
th(C-D)	RXDi input hold time	90		ns

Table 22.65 External Interrupt INTi Input

Symbol Parameter	Devemeter		Standard	
	Min.	Max.	Unit	
tw(INH)	INTi input HIGH pulse width	380		ns
t _{w(INL)}	INTi input LOW pulse width			ns

VCC = 3.3 V

Symbol	Parameter	Measuring	Stand	dard	Unit
Symbol	i didificici	Condition	Min.	Max.	
td(BCLK-AD)	Address output delay time	Figure 22.23		30	ns
th(BCLK-AD)	Address output hold time (in relation to BCLK)		4		ns
th(RD-AD)	Address output hold time (in relation to RD)		0		ns
th(WR-AD)	Address output hold time (in relation to WR)		(NOTE 1)		ns
td(BCLK-CS)	Chip select output delay time			30	ns
th(BCLK-CS)	Chip select output hold time (in relation to BCLK)		4		ns
td(BCLK-ALE)	ALE signal output delay time			25	ns
th(BCLK-ALE)	ALE signal output hold time		-4		ns
td(BCLK-RD)	RD signal output delay time			30	ns
th(BCLK-RD)	RD signal output hold time		0		ns
td(BCLK-WR)	WR signal output delay time			30	ns
th(BCLK-WR)	WR signal output hold time		0		ns
td(BCLK-DB)	Data output delay time (in relation to BCLK)			40	ns
th(BCLK-DB)	Data output hold time (in relation to BCLK) ⁽³⁾		4		ns
td(DB-WR)	Data output delay time (in relation to WR)		(NOTE 2)		ns
th(WR-DB)	Data output hold time (in relation to WR) ⁽³⁾		(NOTE 1)		ns
td(BCLK-HLDA)	HLDA output delay time			40	ns

Table 22.66 Memory	y Expansion Mode and Micro	oprocessor Mode (for	r setting with no wait)
TUDIC LLIOU MICHIOL			i setting with no wait

NOTES:

1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 10 [ns]$$

2. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 40 \text{ [ns]} \qquad f(BCLK) \text{ is 12.5 MHz or less.}$$

3. This standard value shows the timing when the output is off, and does not show hold time of data bus.

Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value.

Hold time of data bus is expressed in $t = - CR \times ln (1 - V_{OL} / V_{CC})$

by a circuit of the right figure.

For example, when $V_{OL} = 0.2 V_{CC}$, C = 30 pF,

R =1 k Ω , hold time of output "L" level is

t = $-30 \text{ pF} \times 1 \text{ k}\Omega \times \text{ln} (1 - 0.2 \text{ Vcc} / \text{Vcc}) = 6.7 \text{ ns.}$

Figure 22.23 Port P0 to P10 Measurement Circuit

VCC = 3.3 V

(Referenced to VCC = 3.3 V, VSS = 0 V, at Topr = -40 to 85 °C unless otherwise specified)

Symbol	Parameter	Measuring	Standard		Unit
Symbol	Falalletei	Condition	Min.	Max.	Unit
td(BCLK-AD)	Address output delay time	Figure 22.23		30	ns
th(BCLK-AD)	Address output hold time (in relation to BCLK)		4		ns
th(RD-AD)	Address output hold time (in relation to RD)		0		ns
th(WR-AD)	Address output hold time (in relation to WR)		(NOTE 1)		ns
td(BCLK-CS)	Chip select output delay time			30	ns
th(BCLK-CS)	Chip select output hold time (in relation to BCLK)		4		ns
$t_{d(BCLK-ALE)}$	ALE signal output delay time			25	ns
$t_{h(BCLK-ALE)}$	ALE signal output hold time		-4		ns
$t_{d(BCLK-RD)}$	RD signal output delay time			30	ns
th(BCLK-RD)	RD signal output hold time		0		ns
$t_{d(BCLK-WR)}$	WR signal output delay time			30	ns
th(BCLK-WR)	WR signal output hold time		0		ns
$t_{d(BCLK-DB)}$	Data output delay time (in relation to BCLK)			40	ns
th(BCLK-DB)	Data output hold time (in relation to BCLK) (3)	7	4		ns
td(DB-WR)	Data output delay time (in relation to WR)		(NOTE 2)		ns
th(WR-DB)	Data output hold time (in relation to WR) (3)		(NOTE 1)		ns
td(BCLK-HLDA)	HLDA output delay time			40	ns

NOTES:

1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 10 [ns]$$

2. Calculated according to the BCLK frequency as follows:

 $\frac{(n-0.5)\times 10^9}{f(BCLK)} - 40 \text{ [ns]}$

n is "1" for 1-wait setting, "2" for 2-wait setting and "3" for 3-wait setting. When n = 1, f(BCLK) is 12.5 MHz or less.

3. This standard value shows the timing when the output is off, and does not show hold time of data bus.

Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value.

Hold time of data bus is expressed in

 $t = -CR \times ln (1 - V_{OL} / V_{CC})$

by a circuit of the right figure.

For example, when $V_{OL} = 0.2 V_{CC}$, C = 30 pF,

R =1 k Ω , hold time of output "L" level is

t = $-30 \text{ pF} \times 1 \text{ k}\Omega \times \text{ln} (1 - 0.2 \text{ Vcc} / \text{Vcc}) = 6.7 \text{ ns.}$

VCC = 3.3 V

(Referenced to VCC = 3.3 V, VSS = 0 V, at Topr = -40 to 85 °C unless otherwise specified)

		Measuring	Stand	dard ,	T
Symbol	Parameter	Condition	Min. Max.	Max.	- Unit
td(BCLK-AD)	Address output delay time	Figure 22.23		50	ns
th(BCLK-AD)	Address output hold time (in relation to BCLK)	-	4		ns
th(RD-AD)	Address output hold time (in relation to RD)	-	(NOTE 1)		ns
th(WR-AD)	Address output hold time (in relation to WR)		(NOTE 1)		ns
td(BCLK-CS)	Chip select output delay time			50	ns
th(BCLK-CS)	Chip select output hold time (in relation to BCLK)		4		ns
th(RD-CS)	Chip select output hold time (in relation to RD)		(NOTE 1)		ns
th(WR-CS)	Chip select output hold time (in relation to WR)	-	(NOTE 1)		ns
td(BCLK-RD)	RD signal output delay time			40	ns
th(BCLK-RD)	RD signal output hold time		0		ns
td(BCLK-WR)	WR signal output delay time			40	ns
th(BCLK-WR)	WR signal output hold time		0		ns
td(BCLK-DB)	Data output delay time (in relation to BCLK)	-		50	ns
th(BCLK-DB)	Data output hold time (in relation to BCLK)	-	4		ns
td(DB-WR)	Data output delay time (in relation to WR)		(NOTE 2)		ns
th(WR-DB)	Data output hold time (in relation to WR)		(NOTE 1)		ns
td(BCLK-HLDA)	HLDA output delay time			40	ns
td(BCLK-ALE)	ALE signal output delay time (in relation to BCLK)	m		25	ns
th(BCLK-ALE)	ALE signal output hold time (in relation to BCLK)		-4		ns
td(AD-ALE)	ALE signal output delay time (in relation to Address)	-	(NOTE 3)		ns
th(ALE-AD)	ALE signal output hold time (in relation to Address)		(NOTE 4)		ns
td(AD-RD)	RD signal output delay from the end of Address		0		ns
td(AD-WR)	WR signal output delay from the end of Address		0		ns
tdZ(RD-AD)	Address output floating start time]		8	ns

Table 22.68 Memory Expansion Mode and Microprocessor Mode (for 2- to 3-wait setting, external area access and multiplexed bus selection)

NOTES:

1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 10 [ns]$$

2. Calculated according to the BCLK frequency as follows:

$$\frac{(n-0.5)\times10^9}{f(BCLK)} - 50 \text{ [ns]} \quad n \text{ is "2" for 2-wait setting, "3" for 3-wait setting.}$$

3. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 40 \text{ [ns]}$$

4. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 15 [ns]$$

Figure 22.24 Timing Diagram (1)

Figure 22.25 Timing Diagram (2)

Figure 22.26 Timing Diagram (3)

Figure 22.27 Timing Diagram (4)

Figure 22.28 Timing Diagram (5)

Figure 22.29 Timing Diagram (6)

Figure 22.30 Timing Diagram (7)

Figure 22.31 Timing Diagram (8)

23. Usage Notes

23.1 SFRs

There are the SFRs with write-only bits which can only be written to. Set these registers with undefined values. When establishing the next value by altering the present value, write the present value to the RAM as well as to the register. Transfer the next value to the register after making changes in the RAM. Table 23.1 lists Registers with Write-only Bits.

Register Name	Symbol	Address
Watchdog Timer Start Register	WDTS	000Eh
Timer A1-1 Register	TA11	01C3h, 01C2h
Timer A2-1 Register	TA21	01C5h, 01C4h
Timer A4-1 Register	TA41	01C7h, 01C6h
Dead Time Timer	DTT	01CCh
Timer B2 Interrupt Generation Frequency Set Counter	ICTB2	01CDh
SI/O3 Bit Rate Register	S3BRG	01E3h
UART2 Bit Rate Register	U2BRG	01F9h
UART2 Transmit Buffer Register	U2TB	01FBh, 01FAh
Up-Down Flag	UDF	0384h
Timer A0 Register	TA0	0387h, 0386h
Timer A1 Register	TA1	0389h, 0388h
Timer A2 Register	TA2	038Bh, 038Ah
Timer A3 Register	TA3	038Dh, 038Ch
Timer A4 Register	TA4	038Fh, 038Eh
UART0 Bit Rate Register	U0BRG	03A1h
UART0 Transmit Buffer Register	U0TB	03A3h, 03A2h
UART1 Bit Rate Register	U1BRG	03A9h
UART1 Transmit Buffer Register	U1TB	03ABh, 03AAh

Table 23.1 Registers with Write-only Bits

23.2 External Bus

When resetting CNVSS pin with "H" input, contents of internal ROM cannot be read out.

23.3 PLL Frequency Synthesizer

Stabilize supply voltage so that the standard of the power supply ripple is met. (Refer to **22. Electrical Characteristics**.)

23.4 Power Control

- When exiting stop mode by hardware reset, set RESET pin to "L" until a main clock oscillation is stabilized.
- Set the MR0 bit in the TAiMR register (i = 0 to 4) to 0 (pulse is not output) to use the timer A to exit stop mode.
- When entering wait mode, insert a JMP.B instruction before a WAIT instruction. Do not execute any
 instructions which can generate a write to RAM between the JMP.B and WAIT instructions. Disable the
 DMA transfers, if a DMA transfer may occur between the JMP.B and WAIT instructions. After the WAIT
 instruction, insert at least 4 NOP instructions. When entering wait mode, the instruction queue roadstead
 the instructions following WAIT, and depending on timing, some of these may execute before the
 MCU enters wait mode.

Program example when entering wait mode

Program Example:		JMP.B	L1	; Insert JMP.B instruction before WAIT instruction
	L1:			
		FSET	Ι	. ,
		WAIT		; Enter wait mode
		NOP		; More than 4 NOP instructions
		NOP		
		NOP		
		NOP		

• When entering stop mode, describe as follows.

(1) To use the BSET instruction for entering stop mode:Write the BSET instruction (BSET bit, base:16) as described below.When entering stop mode, DMA transfer must be disabled.

	BSET	0,CM1	; Stop mode setting [bit, base:16]
	JMP.B	L1	;
L1:			
	NOP		; Countermeasure to avoid the program from
	NOP		; stopping by reading instruction ahead
	NOP		; (insert 4 or more NOPs)
	NOP		•

(2) To use the MOV instruction for entering stop mode:Write the MOV instruction (MOV.B #IMM8, abs16) as described below.When entering stop mode, DMA transfer must be disabled.

Change the *src* value (marked as "#21"), depending on your usage condition.

	MOV.B	#21H,CM1	; Stop mode setting [#IMM8, abs16]
	JMP.B	L1	;
L1:			
	NOP		; Countermeasure to avoid the program from
	NOP		; stopping by reading instruction ahead
	NOP		; (insert 4 or more NOPs)
	NOP		;

When entering medium-speed mode after transferring to stop mode from low-speed mode and low power dissipation mode, write the MOV instruction (MOV.W #IMM16, abs16) as described below.
 When entering stop mode and exiting from stop mode, DMA transfer must be disabled.
 Change the *src* value (marked as "#2118") depending on your usage condition.

	MOV.W	#2118H,CM0	; Stop mode setting [#IMM16, abs16]
	JMP.S	L1	;
.1:			
	NOP		; Countermeasure to avoid the program from
	NOP		; stopping by reading instruction ahead
	NOP		; (insert 4 or more NOPs)
	NOP		;

• Wait until the main clock oscillation stabilizes, before switching the clock source for CPU clock to the main clock.

Similarly, wait until the sub clock oscillation stabilizes, before switching the clock source for CPU clock to the sub clock.

• Suggestions to reduce power consumption.

L

Ports

The processor retains the state of each I/O port even when it goes to wait mode or to stop mode. A current flows in active I/O ports. A pass current flows in input ports that high-impedance state. When entering wait mode or stop mode, set non-used ports to input and stabilize the potential.

A/D converter

When A/D conversion is not performed, set the VCUT bit in the ADCON1 register to 0 (VREF not connection). When A/D conversion is performed, start the A/D conversion at least 1 μ s or longer after setting the VCUT bit to 1 (VREF connection).

D/A converter

When not performing D/A conversion, set the DAiE bit (i = 0, 1) in the DACON register to 0 (input disabled) and DAi register to 00h.

Stopping peripheral functions

Use the CM02 bit in the CM0 register to stop the unnecessary peripheral functions during wait mode. However, because the peripheral function clock (fC32) generated from the sub-clock does not stop, this measure is not conducive to reducing the power consumption of the chip. If low speed mode or low power dissipation mode is to be changed to wait mode, set the CM02 bit to 0 (do not peripheral function clock stopped when in wait mode), before changing wait mode.

Switching the oscillation-driving capacity

Set the driving capacity to "LOW" when oscillation is stable.

23.5 Protection

Set the PRC2 bit in the PRCR register to 1 (write enabled) and then write to given address, and the PRC2 bit will be set to 0 (write protected). The registers protected by the PRC2 bit should be changed in the next instruction after setting the PRC2 bit to 1. Make sure no interrupts or no DMA transfers will occur between the instruction in which the PRC2 bit is set to 1 and the next instruction.

23.6 Interrupts

23.6.1 Reading Address 00000h

Do not read the address 00000h in a program. When a maskable interrupt request is accepted, the CPU reads interrupt information (interrupt number and interrupt request priority level) from the address 00000h during the interrupt sequence. At this time, the IR bit for the accepted interrupt is set to 0.

If the address 00000h is read in a program, the IR bit for the interrupt which has the highest priority among the enabled interrupts is set to 0. This causes a problem that the interrupt is canceled, or an unexpected interrupt request is generated.

23.6.2 Setting SP

Set any value in the SP (USP, ISP) before accepting an interrupt. The SP (USP, ISP) is set to 0000h after reset. Therefore, if an interrupt is accepted before setting any value in the SP (USP, ISP), the program may go out of control.

Especially when using $\overline{\text{NMI}}$ interrupt, set a value in the ISP at the beginning of the program. For the first and only the first instruction after reset, all interrupts including $\overline{\text{NMI}}$ interrupt are disabled.

23.6.3 NMI Interrupt

- The NMI interrupt cannot be disabled. If this interrupt is unused, connect the NMI pin to VCC via a resistor (pull-up).
- The input level of the NMI pin can be read by accessing the P8_5 bit in the P8 register. Note that the P8_5 bit can only be read when determining the pin level in NMI interrupt routine.
- Stop mode cannot be entered into while input on the $\overline{\text{NMI}}$ pin is low. This is because while input on the $\overline{\text{NMI}}$ pin is low the CM10 bit in the CM1 register is fixed to 0.
- Do not go to wait mode while input on the NMI pin is low. This is because when input on the NMI pin goes low, the CPU stops but CPU clock remains active; therefore, the current consumption in the chip does not drop. In this case, normal condition is restored by an interrupt generated thereafter.
- The low and high level durations of the input signal to the NMI pin must each be 2 CPU clock cycles + 300 ns or more.

23.6.4 Changing Interrupt Source

If the interrupt source is changed, the IR bit in the interrupt control register for the changed interrupt may inadvertently be set to 1 (interrupt requested). If you changed the interrupt source for an interrupt that needs to be used, be sure to set the IR bit for that interrupt to 0 (interrupt not requested).

Changing the interrupt source referred to here means any act of changing the source, polarity or timing of the interrupt assigned to each software interrupt number. Therefore, if a mode change of any peripheral function involves changing the source, polarity or timing of an interrupt, be sure to set the IR bit for that interrupt to 0 (interrupt not requested) after making such changes. Refer to the description of each peripheral function for details about the interrupts from peripheral functions.

Figure 23.1 shows the Procedure for Changing Interrupt Source.

Figure 23.1 Procedure for Changing Interrupt Source

23.6.5 INT Interrupt

- Either an "L" level of at least tW(INH) or an "H" level of at least tW(INL) width is necessary for the signal input to pins INT0 to INT5 regardless of the CPU operation clock.
- If the POL bit in registers INTOIC to INT5IC or bits IFSR10 to IFSR17 in the IFSR1 register are changed, the IR bit may inadvertently set to 1 (interrupt requested). Be sure to set the IR bit to 0 (interrupt not requested) after changing any of those register bits.

23.6.6 Rewrite Interrupt Control Register

- (a) The interrupt control register for any interrupt should be modified in places where no requests for that interrupt may be generated. Otherwise, disable the interrupt before rewriting the interrupt control register.
- (b) To rewrite the interrupt control register for any interrupt after disabling that interrupt, care must be taken when selecting the instructions.

Changing any bit other than IR bit

If while executing an instruction, an interrupt request controlled by the register being modified is generated, the IR bit of the register may not be set to 1 (interrupt requested), with the result that the interrupt request is ignored. If such a situation presents a problem, use the instructions shown below to modify the register.

Usable instructions: AND, OR, BCLR, BSET

Changing IR bit

Depending on the instruction used, the IR bit may not always be set to 0 (interrupt not requested). Therefore, be sure to use the MOV instruction to set the IR bit to 0.

(c) When using the I flag to disable an interrupt, refer to the sample program fragments shown below as you set the I flag. (Refer to (b) for details about rewrite the interrupt control registers in the sample program fragments.)

Examples 1 through 3 show how to prevent the I flag from being set to 1 (interrupt enabled) before the interrupt control register is rewritten, owing to the effects of the internal bus and the instruction queue buffer.

Example 1: Using the NOP instruction to keep the program waiting until the interrupt control register is modified INT_SWITCH1:

FCLR	I	; Disable interrupts.
AND.B	#00h, 0055h	; Set the TA0IC register to 00h.
NOP		•
NOP		
FSET	I	; Enable interrupts.

The number of the NOP instruction is as follows.

- The PM20 bit in the PM2 register = 1 (1 wait) : 2
- The PM20 bit = 0 (2 waits) : 3
- When using HOLD function : 4

Example 2: Using the dummy read to the FSET instruction delay INT_SWITCH2:

FCLR	I	; Disable interrupts.
AND.B	#00h, 0055h	; Set the TA0IC register to 00h.
MOV.W	MEM, R0	; <u>Dummy read.</u>
FSET	I	; Enable interrupts.

Example 3: Using the POPC instruction to changing the I flag INT_SWITCH3:

PUSHC	FLG	
FCLR	I	; Disable interrupts.
AND.B	#00h, 0055h	; Set the TA0IC register to 00h.
POPC	FLG	; Enable interrupts.

23.6.7 Watchdog Timer Interrupt

Initialize the watchdog timer after the watchdog timer interrupt request is generated.

23.7 DMAC

23.7.1 Write to DMAE Bit in DMiCON Register (i = 0, 1)

When both of the conditions below are met, follow the steps below.

Conditions

- The DMAE bit is set to 1 again while it remains set (DMAi is in an active state).
- A DMA request may occur simultaneously when the DMAE bit is being written.

Step 1: Write 1 to the DMAE bit and DMAS bit in the DMiCON register simultaneously ⁽¹⁾. Step 2: Make sure that the DMAi is in an initial state ⁽²⁾ in a program. If the DMAi is not in an initial state, the above steps should be repeated.

NOTES:

1. The DMAS bit remains unchanged even if 1 is written. However, if 0 is written to this bit, it is set to 0 (DMA not requested). In order to prevent the DMAS bit from being modified to 0, 1 should be written to the DMAS bit when 1 is written to the DMAE bit. In this way the state of the DMAS bit immediately before being written can be maintained.

Similarly, when writing to the DMAE bit with a read-modify-write instruction, 1 should be written to the DMAS bit in order to maintain a DMA request which is generated while the instruction is being executing.

2. Read the TCRi register to verify whether the DMAi is in an initial state. If the read value is equal to a value which was written to the TCRi register before DMA transfer start, the DMAi is in an initial state. (If a DMA request occurs after writing to the DMAE bit, the value written to the TCRi register is 1.) If the read value is a value in the middle of transfer, the DMAi is not in an initial state.

23.8 Timers

23.8.1 Timer A

23.8.1.1 Timer A (Timer Mode)

The timer remains idle after reset. Set the mode, count source, counter value, etc. using the TAiMR (i = 0 to 4) register and the TAi register before setting the TAiS bit in the TABSR register to 1 (count starts). Always make sure the TAiMR register is modified while the TAiS bit remains 0 (count stops) regardless whether after reset or not.

While counting is in progress, the counter value can be read out at any time by reading the TAi register. However, if the counter is read at the same time it is reloaded, the value FFFFh is read. Also, if the counter is read before it starts counting after a value is set in the TAi register while not counting, the set value is read.

If a low-level signal is applied to the $\overline{\text{NMI}}$ pin when the IVPCR1 bit in the TB2SC register = 1 (three-phase output forcible cutoff by input on $\overline{\text{NMI}}$ pin enabled), pins TA1OUT, TA2OUT, and TA4OUT go to a high-impedance state.

23.8.1.2 Timer A (Event Counter Mode)

The timer remains idle after reset. Set the mode, count source, counter value, etc. using the TAiMR (i = 0 to 4) register, the TAi register, the UDF register, bits TAZIE, TA0TGL, and TA0TGH in the ONSF register, and the TRGSR register before setting the TAiS bit in the TABSR register to 1 (count starts). Always make sure the TAiMR register, the UDF register, bits TAZIE, TA0TGL, and TA0TGH, and the TRGSR register are modified while the TAiS bit remains 0 (count stops) regardless whether after reset or not.

While counting is in progress, the counter value can be read out at any time by reading the TAi register. However, FFFFh can be read in underflow, while reloading, and 0000h in overflow. When setting the TAi register to a value during a counter stop, the setting value can be read before a counter starts counting. Also, if the counter is read before it starts counting after a value is set in the TAi register while not counting, the set value is read.

If a low-level signal is applied to the $\overline{\text{NMI}}$ pin when the IVPCR1 bit in the TB2SC register = 1 (three-phase output forcible cutoff by input on $\overline{\text{NMI}}$ pin enabled), pins TA1OUT, TA2OUT, and TA4OUT go to a high-impedance state.

23.8.1.3 Timer A (One-shot Timer Mode)

The timer remains idle after reset. Set the mode, count source, counter value, etc. using the TAiMR (i = 0 to 4) register, the TAi register, bits TA0TGL and TA0TGH in the ONSF register, and the TRGSR register before setting the TAiS bit in the TABSR register to 1 (count starts).

Always make sure the TAiMR register, bits TA0TGL and TA0TGH, and the TRGSR register are modified while the TAiS bit remains 0 (count stops) regardless whether after reset or not.

When setting the TAiS bit to 0 (count stops), the followings occur:

- A counter stops counting and a content of reload register is reloaded.
- TAiOUT pin outputs "L".
- After one cycle of the CPU clock, the IR bit in the TAiIC register is set to 1 (interrupt request).

Output in one-shot timer mode synchronizes with a count source internally generated. When an external trigger has been selected, one-cycle delay of a count source as maximum occurs between a trigger input to TAIIN pin and output in one-shot timer mode.

The IR bit is set to 1 when timer operating mode is set with any of the following procedures:

- Select one-shot timer mode after reset.
- Change an operating mode from timer mode to one-shot timer mode.
- Change an operating mode from event counter mode to one-shot timer mode.

To use the timer Ai interrupt (the IR bit), set the IR bit to 0 after the changes listed above have been made.

When a trigger occurs, while counting, a counter reloads the reload register to continue counting after generating a re-trigger and counting down once. To generate a trigger while counting, generate a second trigger between occurring the previous trigger and operating longer than one cycle of a timer count source.

If a low-level signal is applied to the $\overline{\text{NMI}}$ pin when the IVPCR1 bit in the TB2SC register = 1 (three-phase output forcible cutoff by input on $\overline{\text{NMI}}$ pin enabled), pins TA1OUT, TA2OUT, and TA4OUT go to a high-impedance state.

23.8.1.4 Timer A (Pulse Width Modulation (PWM) Mode)

The timer remains idle after reset. Set the mode, count source, counter value, etc. using the TAiMR (i = 0 to 4) register, the TAi register, bits TA0TGL and TA0TGH in the ONSF register, and the TRGSR register before setting the TAiS bit in the TABSR register to 1 (count starts).

Always make sure the TAiMR register, bits TA0TGL and TA0TGH, and the TRGSR register are modified while the TAiS bit remains 0 (count stops) regardless whether after reset or not.

The IR bit is set to 1 when setting a timer operating mode with any of the following procedures:

- Select the PWM mode after reset.
- Change an operating mode from timer mode to PWM mode.
- Change an operating mode from event counter mode to PWM mode.

To use the timer Ai interrupt (the IR bit), set the IR bit to 0 by program after the above listed changes have been made.

When setting TAiS bit to 0 (count stops) during PWM pulse output, the following action occurs:

Stop counting.

• When TAiOUT pin is output "H", output level is set to "L" and the IR bit is set to 1.

• When TAiOUT pin is output "L", both output level and the IR bit remain unchanged.

If a low-level signal is applied to the $\overline{\text{NMI}}$ pin when the IVPCR1 bit in the TB2SC register = 1 (three-phase output forcible cutoff by input on $\overline{\text{NMI}}$ pin enabled), pins TA1OUT, TA2OUT, and TA4OUT go to a high-impedance state.

23.8.2 Timer B

23.8.2.1 Timer B (Timer Mode)

The timer remains idle after reset. Set the mode, count source, counter value, etc. using the TBiMR (i = 0 to 5) register and TBi register before setting the TBiS bit ⁽¹⁾ in the TABSR or the TBSR register to 1 (count starts).

Always make sure the TBiMR register is modified while the TBiS bit remains 0 (count stops) regardless whether after reset or not.

NOTE:

1. Bits TB0S to TB2S are the bits 5 to 7 in the TABSR register, bits TB3S to TB5S are the bits 5 to 7 in the TBSR register.

A value of a counter, while counting, can be read in the TBi register at any time. FFFFh is read while reloading. Setting value is read between setting values in the TBi register at count stop and starting a counter.

23.8.2.2 Timer B (Event Counter Mode)

The timer remains idle after reset. Set the mode, count source, counter value, etc. using the TBiMR (i = 0 to 5) register and TBi register before setting the TBiS bit in the TABSR or the TBSR register to 1 (count starts).

Always make sure the TBiMR register is modified while the TBiS bit remains 0 (count stops) regardless whether after reset or not.

The counter value can be read out on-the-fly at any time by reading the TBi register. However, if this register is read at the same time the counter is reloaded, the read value is always FFFFh. If the TBi register is read after setting a value in it while not counting but before the counter starts counting, the read value is the one that has been set in the register.

23.8.2.3 Timer B (Pulse Period/pulse Width Measurement Mode)

The timer remains idle after reset. Set the mode, count source, etc. using the TBiMR (i = 0 to 5) register before setting the TBiS bit in the TABSR or TBSR register to 1 (count starts).

Always make sure the TBiMR register is modified while the TBiS bit remains 0 (count stops) regardless whether after reset or not. To set the MR3 bit to 0 by writing to the TBiMR register while the TBiS bit = 1 (count starts), be sure to write the same value as previously written to bits TM0D0, TM0D1, MR0, MR1, TCK0, and TCK1 and, a 0 to the MR2 bit.

The IR bit in the TBiIC register goes to 1 (interrupt request), when an effective edge of a measurement pulse is input or timer Bi is overflowed. The interrupt source can be determined by use of the MR3 bit in the TBiMR register within the interrupt routine.

If the interrupt source cannot be identified by the MR3 bit such as when the measurement pulse input and a timer overflow occur at the same time, use another timer to count the number of times timer B has overflowed.

To set the MR3 bit to 0 (no overflow), set the TBiMR register with setting the TBiS bit to 1 and counting the next count source after setting the MR3 bit to 1 (overflow).

Use the IR bit in the TBiIC register to detect only overflows. Use the MR3 bit only to determine the interrupt source.

When a count is started and the first effective edge is input, an undefined value is transferred to the reload register. At this time, timer Bi interrupt request is not generated.

A value of the counter is undefined at the beginning of a count. The MR3 bit may be set to 1 and timer Bi interrupt request may be generated between a count start and an effective edge input.

For pulse width measurement, pulse widths are successively measured. Use program to check whether the measurement result is an "H" level width or an "L" level width.

23.9 Serial Interface

23.9.1 Clock Synchronous Serial I/O Mode

23.9.1.1 Transmission/reception

With an external clock selected, and choosing the RTS function, the output level of the RTSi pin goes to "L" when the data-receivable status becomes ready, which informs the transmission side that the reception has become ready. The output level of the RTSi pin goes to "H" when reception starts. So if the RTSi pin is connected to the CTSi pin on the transmission side, the circuit can transmission and reception data with consistent timing. With the internal clock, the RTS function has no effect.

If a low-level signal is applied to the $\overline{\text{NMI}}$ pin when the IVPCR1 bit in the TB2SC register = 1 (three-phase output forcible cutoff by input on $\overline{\text{NMI}}$ pin enabled), pins $\overline{\text{RTS2}}$ and CLK2 go to a high-impedance state.

23.9.1.2 Transmission

When an external clock is selected, the conditions must be met while if the CKPOL bit in the UiC0 register = 0 (transmit data output at the falling edge and the receive data taken in at the rising edge of the transfer clock), the external clock is in the high state; if the CKPOL bit = 1 (transmit data output at the rising edge and the receive data taken in at the falling edge of the transfer clock), the external clock is in the high state; if the transfer clock), the external clock is in the high state; if the transfer clock), the external clock is in the falling edge of the transfer clock), the external clock is in the falling edge of the transfer clock), the external clock is in the low state.

- The TE bit in the UiC1 register = 1 (transmission enabled)
- The TI bit in the UiC1 register = 0 (data present in UiTB register)
- If $\overline{\text{CTS}}$ function is selected, input on the $\overline{\text{CTS}}$ i pin = L

23.9.1.3 Reception

In operating the clock synchronous serial I/O, operating a transmitter generates a shift clock. Fix settings for transmission even when using the device only for reception. Dummy data is output to the outside from the TXDi (i = 0 to 2) pin when receiving data.

When an internal clock is selected, set the TE bit in the UiC1 register (i = 0 to 2) to 1 (transmission enabled) and write dummy data to the UiTB register, and the shift clock will thereby be generated. When an external clock is selected, set the TE bit to 1 and write dummy data to the UiTB register, and the shift clock will be generated when the external clock is fed to the CLKi input pin.

When successively receiving data, if all bits of the next receive data are prepared in the UARTi receive register while the RI bit in the UiC1 register = 1 (data present in the UiRB register), an overrun error occurs and the OER bit in the UiRB register is set to 1 (overrun error occurred). In this case, because the content of the UiRB register is undefined, a corrective measure must be taken by programs on the transmit and receive sides so that the valid data before the overrun error occurred will be retransmitted. Note that when an overrun error occurred, the IR bit in the SiRIC register does not change state.

To receive data in succession, set dummy data in the lower-order byte of the UiTB register every time reception is made.

When an external clock is selected, the conditions must be met while if the CKPOL bit = 0, the external clock is in the high state; if the CKPOL bit = 1, the external clock is in the low state.

- The RE bit in the UiC1 register = 1 (reception enabled)
- The TE bit in the UiC1 register = 1 (transmission enabled)
- The TI bit in the UiC1 register = 0 (data present in the UiTB register)

23.9.2 Special Modes

23.9.2.1 Special Mode 1 (I²C Mode)

When generating start, stop and restart conditions, set the STSPSEL bit in the UiSMR4 register to 0 (start and stop conditions not output) and wait for more than half cycle of the transfer clock before setting each condition generate bit (bits STAREQ, RSTAREQ, and STPREQ) from 0 (clear) to 1 (start).

23.9.2.2 Special Mode 2

If a low-level signal is applied to the $\overline{\text{NMI}}$ pin when the IVPCR1 bit in the TB2SC register = 1 (three-phase output forcible cutoff by input on $\overline{\text{NMI}}$ pin enabled), pins $\overline{\text{RTS2}}$ and CLK2 go to a high-impedance state.

23.9.2.3 Special Mode 4 (SIM Mode)

A transmit interrupt request is generated by setting the U2IRS bit in the U2C1 register to 1 (transmission completed) and U2ERE bit in the U2C1 register to 1 (error signal output) after reset. Therefore, when using SIM mode, be sure to set the IR bit to 0 (no interrupt request) after setting these bits.

23.9.3 SI/O3

The SOUT3 default value which is set to the SOUT3 pin by the SM37 in the S3C register bit approximately 10 ns may be output when changing the SM33 bit in the S3C register from 0 (I/O port) to 1 (SOUT3 output and CLK3 function) while the SM32 bit in the S3C register to 0 (SOUT3 output) and the SM36 bit is set to 1 (internal clock). And then the SOUT3 pin is held high-impedance.

If the level which is output from the SOUT3 pin is a problem when changing the SM33 bit from 0 to 1, set the default value of the SOUT3 pin by the SM37 bit.

23.10 A/D Converter

Set the ADCON0 (except bit 6), registers ADCON1 and ADCON2 when A/D conversion is stopped (before a trigger occurs). After stopping A/D conversion, the VCUT bit in the ADCON1 register is changed from 1 (VREF connected) to 0 (VREF not connected),

When the VCUT bit is changed from 0 to 1, start A/D conversion after passing 1 μ s or longer.

To prevent noise-induced device malfunction or latch-up, as well as to reduce conversion errors, insert capacitors between the AVCC, VREF, and analog input pins (ANi (i = 0 to 7), AN0_i, and AN2_i) each and the AVSS pin. Similarly, insert a capacitor between the VCC pin and the VSS pin. Figure 23.2 shows the Use of Capacitors to Reduce Noise.

Make sure the port direction bits for those pins that are used as analog inputs are set to 0 (input mode). Also, if the TGR bit in the ADCON0 register = 1 (external trigger), make sure the port direction bit for the $\overline{\text{ADTRG}}$ pin is set to 0 (input mode).

When using key input interrupt, do not use any of four pins AN4 to AN7 as analog inputs. (A key input interrupt request is generated when the A/D input voltage goes low.)

The ϕ AD frequency must be 10 MHz or less. Without sample and hold, limit the ϕ AD frequency to 250 kHz or more. With the sample and hold, limit the ϕ AD frequency to 1 MHz or more.

When changing an A/D operating mode, select analog input pin again in bits CH2 to CH0 in the ADCON0 register and bits SCAN1 to SCAN0 in the ADCON1 register.

If the CPU reads the ADi register (i = 0, 1) at the same time the conversion result is stored in the ADi register after completion of A/D conversion, an incorrect value may be stored in the ADi register. This problem occurs when a divide-by-n clock derived from the main clock or a sub clock is selected for CPU clock.

- When operating in one-shot or single-sweep mode Check to see that A/D conversion is completed before reading the target ADi register. (Check the IR bit in the ADIC register to see if A/D conversion is completed.)
- When operating in repeat mode or repeat sweep mode 0 or 1 Use the main clock for CPU clock directly without dividing it.

If A/D conversion is forcibly terminated while in progress by setting the ADST bit in the ADCON0 register to 0 (A/D conversion halted), the conversion result of the A/D converter is undefined. The contents of ADi register irrelevant to A/D conversion may also become undefined. If while A/D conversion is underway the ADST bit is set to 0 in a program, ignore the values of all ADi registers.

When setting the ADST bit to 0 in single sweep mode during A/D conversion and A/D conversion is aborted, disable the interrupt before setting the ADST bit to 0.

The applied intermediate potential may cause more increase in power consumption than other analog input pins (AN0 to AN3, AN0_0 to AN0_7, and AN2_0 to AN2_7), since the AN4 to AN7 are used with the $\overline{\text{KI0}}$ to $\overline{\text{KI3}}$.

23.11 CAN Module

23.11.1 Reading CiSTR Register (i = 0, 1)

The CAN module on the M16C/6N Group (M16C/6N4) updates the status of the CiSTR register in a certain period. When the CPU and the CAN module access to the CiSTR register at the same time, the CPU has the access priority; the access from the CAN module is disabled. Consequently, when the updating period of the CAN module matches the access period from the CPU, the status of the CAN module cannot be updated. (See **Figure 23.3 When Updating Period of CAN Module Matches Access Period from CPU**.)

Accordingly, be careful about the following points so that the access period from the CPU should not match the updating period of the CAN module:

- (a) There should be a wait time of 3fCAN or longer (see Table 23.2 CAN Module Status Updating Period) before the CPU reads the CiSTR register. (See Figure 23.4 With Wait Time of 3 fCAN before CPU Read.)
- (b) When the CPU polls the CiSTR register, the polling period must be 3 fCAN or longer. (See Figure 23.5 When Polling Period of CPU is 3 fCAN or Longer.)

i _ 5						
3fCAN Period = 3 × XIN (Original Oscillation Period) × Division Value of CAN Clock (CCLK)						
(Example 1) Condition XIN 16 MHz CCLK: Divide-by-1	3 fCAN period = 3×62.5 ns $\times 1$ = 187.5 ns					
(Example 2) Condition XIN 16 MHz CCLK: Divide-by-2	3 fCAN period = 3×62.5 ns $\times 2 = 375$ ns					
(Example 3) Condition XIN 16 MHz CCLK: Divide-by-4	3 fCAN period = 3×62.5 ns $\times 4$ = 750 ns					
(Example 4) Condition XIN 16 MHz CCLK: Divide-by-8	3 fCAN period = 3×62.5 ns $\times 8 = 1.5 \ \mu$ s					
(Example 5) Condition XIN 16 MHz CCLK: Divide-by-16	3 fCAN period = 3×62.5 ns $\times 16$ = 3 μ s					

Table 23.2 CAN Module Status Updating Period

fCAN						
CPU read signal						
Updating period of CAN module						
CPU reset signal						
CiSTR register b8: State_Reset bit	 ×	×	×	×	×	
0: CAN operation mode 1: CAN reset/initial- ization mode					natches the CPU's s the higher priorit	

Figure 23.3 When Updating Period of CAN Module Matches Access Period from CPU

Figure 23.4 With Wait Time of 3 fCAN before CPU Read

Figure 23.5 When Polling Period of CPU is 3 fCAN or Longer

23.11.2 Performing CAN Configuration

If the Reset bit in the CiCTLR register (i = 0, 1) is changed from 0 (operation mode) to 1 (reset/initialization mode) in order to place the CAN module from CAN operation mode into CAN reset/initialization mode, always be sure to check that the State_Reset bit in the CiSTR register is set to 1 (reset mode).

Similarly, if the Reset bit is changed from 1 to 0 in order to place the CAN module from CAN reset/ initialization mode into CAN operation mode, always be sure to check that the State_Reset bit is set to 0 (operation mode).

The procedure is described below.

To Place CAN Module from CAN Operation Mode into CAN Reset/Initialization Mode

- Change the Reset bit from 0 to 1
- Check that the State_Reset bit is set to 1

To Place CAN Module from CAN Reset/Initialization Mode into CAN Operation Mode

- Change the Reset bit from 1 to 0
- Check that the State_Reset bit is set to 0

23.11.3 Suggestions to Reduce Power Consumption

When not performing CAN communication, the operation mode of CAN transceiver should be set to "standby mode" or "sleep mode".

When performing CAN communication, the power consumption in CAN transceiver in not performing CAN communication can be substantially reduced by controlling the operation mode pins of CAN transceiver.

Tables 23.3 and 23.4 show the Recommended Pin Connections.

	Standby Mode	High-speed Mode
Rs pin ⁽¹⁾	"H"	"L"
Power consumption in	less than 170 μA	less than 70 mA
CAN transceiver (2)		
CAN communication	impossible	possible
Connection	M16C/6N4 CTXi CRXi Port (3) "H" output	M16C/6N4 CTXi CTXi CRXi Port (3) "L" output

i = 0, 1

NOTES:

- 1. The pin which controls the operation mode of CAN transceiver.
- 2. In case of Ta = 25 °C
- 3. Connect to enabled port to control CAN transceiver.

Table 23.4 Recommended Pin Connections (In case of PCA82C252: Philips product)

	Sleep Mode	Normal Operation Mode
STB pin ⁽¹⁾	"L"	"H"
EN pin ⁽¹⁾	"L"	"H"
Power consumption in	less than 50 μA	less than 35 mA
CAN transceiver (2)		
CAN communication	impossible	possible
Connection	M16C/6N4 CTXi CRXi Port (3) Port (3) Port (3) L" output Port (3) Port (3) Port (3) L" output	M16C/6N4 PCA82C252 TXD CANH RXD CANL Port (3) Port (3) Port (3) H" output

i = 0, 1 NOTES:

1. The pin which controls the operation mode of CAN transceiver.

2. Ta = 25 °C

3. Connect to enabled port to control CAN transceiver.

23.11.4 CAN Transceiver in Boot Mode

When programming the flash memory in boot mode via CAN bus, the operation mode of CAN transceiver should be set to "high-speed mode" or "normal operation mode". If the operation mode is controlled by the MCU, CAN transceiver must be set the operation mode to "high-speed mode" or "normal operation mode" before programming the flash memory by changing the switch etc.

Tables 23.5 and 23.6 show the Pin Connections of CAN Transceiver.

Table 23.5 Pin Connections of CAN Transceiver (In case of PCA82C250: Philips product)

i = 0, 1

NOTES:

1. The pin which controls the operation mode of CAN transceiver.

2. Connect to enabled port to control CAN transceiver.

	Sleep Mode	Normal Operation Mode
STB pin ⁽¹⁾	"L"	"H"
EN pin ⁽¹⁾	"L"	"H"
CAN communication	impossible	possible
Connection	M16C/6N4 CTXi CRXi Port ⁽²⁾ Fort ⁽²⁾ Switch OFF	M16C/6N4 PCA82C252 TXD CANH RXD CANL Port ⁽²⁾ Fort ⁽²⁾ Switch ON

Table 23.6 Pin Connections of CAN Transceiver (In case of PCA82C252: Philips product)

i = 0, 1

NOTES:

1. The pin which controls the operation mode of CAN transceiver.

2. Connect to enabled port to control CAN transceiver.

23.12 Programmable I/O Ports

If a low-level signal is applied to the $\overline{\text{NMI}}$ pin when the IVPCR1 bit in the TB2SC register = 1 (three-phase output forcible cutoff by input on $\overline{\text{NMI}}$ pin enabled), pins P7_2 to P7_5, P8_0, and P8_1 go to a high-impedance state.

Setting the SM32 bit in the S3C register to 1 causes the P9_2 pin to go to a high-impedance state.

The input threshold voltage of pins differs between programmable I/O ports and peripheral functions. Therefore, if any pin is shared by a programmable I/O port and a peripheral function and the input level at this pin is outside the range of recommended operating conditions VIH and VIL (neither "high" nor "low"), the input level may be determined differently depending on which side—the programmable I/O port or the peripheral function—is currently selected.

Undefined values are read from bits P3_7 to P3_4, and PD3_7 to PD3_4 by reading registers P3 and PD3 when bits PM01 to PM00 in the PM0 register are set to 01b (memory expansion mode) or 11b (microprocessor mode) and setting the PM11 bit to 1.

Use the MOV instruction when rewriting registers P3 and PD3 (including the case that the size specifier is ".W" and registers P2 and PD2 are rewritten).

When bits PM01 to PM00 are rewritten, "L" is output from pins P3_7 to P3_4 during 0.5 cycles of the BCLK by setting bits PM01 to PM00 in the PM0 register to 01b (memory expansion mode) or 11b (microprocessor mode) from 00b (single-chip mode) after setting the PM11 bit to 1.

23.13 Electrical Characteristic Differences between Mask ROM and Flash Memory Version MCUs

Flash memory version and mask ROM version may have different characteristics, operating margin, noise tolerated dose, noise width dose in electrical characteristics due to internal ROM, different layout pattern, etc. When switching to the mask ROM version, conduct equivalent tests as system evaluation tests conducted in the flash memory version.

23.14 Mask ROM Version

When using the masked ROM version, write nothing to internal ROM area.

23.15 Flash Memory Version

23.15.1 Functions to Prevent Flash Memory from Rewriting

ID codes are stored in addresses 0FFFDFh, 0FFFE3h, 0FFFEBh, 0FFFEFh, 0FFFF3h, 0FFFF7h, and 0FFFFBh. If wrong data are written to theses addresses, the flash memory cannot be read or written in standard serial I/O mode and CAN I/O mode.

The ROMCP register is mapped in address 0FFFFh. If wrong data is written to this address, the flash memory cannot be read or written in parallel I/O mode.

In the flash memory version of MCU, these addresses are allocated to the vector addresses (H) of fixed vectors.

23.15.2 Stop Mode

When entering stop mode, execute the instruction which sets the CM10 bit to 1 (stop mode) after setting the FMR01 bit to 0 (CPU rewrite mode disabled) and disabling the DMA transfer.

23.15.3 Wait Mode

When entering wait mode, set the FMR01 bit in the FMR0 register to 0 (CPU rewrite mode disabled) before executing the WAIT instruction.

23.15.4 Low Power Dissipation Mode and On-Chip Oscillator Low Power Dissipation Mode

If the CM05 bit is set to 1 (main clock stopped), do not execute the following commands:

- Program
- Block erase
- Erase all unlocked blocks
- Lock bit program
- Read lock bit status

23.15.5 Writing Command and Data

Write commands and data to even addresses in the user ROM area.

23.15.6 Program Command

By writing xx40h in the first bus cycle and data to the write address in the second bus cycle, an auto-program operation (data program and verify) will start. The address value specified in the first bus cycle must be the same even address as the write address specified in the second bus cycle.

23.15.7 Lock Bit Program Command

By writing xx77h in the first bus cycle and xxD0h to the highest-order even address of a block in the second bus cycle, the lock bit for the specified block is set to 0. The address value specified in the first bus cycle must be the same highest-order even address of a block specified in the second bus cycle.

23.15.8 Operating Speed

Before entering CPU rewrite mode (EW0 or EW1 mode), set the CM11 bit in the CM1 register to 0 (main clock), select 10 MHz or less for CPU clock using the CM06 bit in the CM0 register and bits CM17 to CM16 in the CM1 register. Also, set the PM17 bit in the PM1 register to 1 (with wait state).

23.15.9 Prohibited Instructions

The following instructions cannot be used in EW0 mode because the CPU tries to read data in flash memory: the UND instruction, INTO instruction, JMPS instruction, JSRS instruction, and BRK instruction

23.15.10 Interrupts

EW0 Mode

To use interrupts having vectors in a relocatable vector table, the vectors must be relocated to the RAM area.

• The NMI and watchdog timer interrupts are available since registers FMR0 and FMR1 are forcibly reset when either interrupt request is generated. Allocate the jump addresses for each interrupt service routines to the fixed vector table. Flash memory rewrite operation is suspended when the NMI or watchdog timer interrupt request is generated. Execute the rewrite program again after exiting the interrupt routine.

• The address match interrupt is not available since the CPU tries to read data in the flash memory.

EW1 Mode

- Do not acknowledge any interrupts with vectors in the relocatable vector table or address match interrupt during auto-programming or auto-erasure.
- Do not use the watchdog timer interrupt.
- The NMI interrupt is available since registers FMR0 and FMR1 are forcibly reset when the interrupt request is generated. Allocate the jump address for the interrupt service routine to the fixed vector table. Flash memory rewrite operation is suspended when the NMI interrupt request is generated. Execute the rewrite program again after exiting the interrupt service routine.

23.15.11 How to Access

To set the FMR01, FMR02, or FMR11 bit to 1, write 1 after first setting the bit to 0. Do not generate an interrupt or a DMA transfer between the instruction to set the bit to 0 and the instruction to set the bit to 1. Set the bit while an "H" signal is applied to the $\overline{\text{NMI}}$ pin.

23.15.12 Rewriting in User ROM Area

EW0 Mode

If the supply voltage drops while rewriting the block where the rewrite control program is stored, the flash memory cannot be rewritten because the rewrite control program is not correctly rewritten. If this error occurs, rewrite the user ROM area while in standard serial I/O mode, parallel I/O mode, or CAN I/O mode.

EW1 Mode

Avoid rewriting any block in which the rewrite control program is stored.

23.15.13 DMA Transfer

In EW1 mode, do not perform a DMA transfer while the FMR00 bit in the FMR0 register is set to 0 (auto-programming or auto-erasure).

23.16 Flash Memory Programming Using Boot Program

When programming the on-chip flash memory using boot program, be careful about the pins state and connection as follows.

23.16.1 Programming Using Serial I/O Mode

CTX0 pin : This pin automatically outputs "H" level.

CRX0 pin : Connect to CAN transceiver or connect via resister to VCC (pull-up)

Figure 23.6 shows the Pin Connection for Programming Using Serial I/O Mode.

Figure 23.6 Pin Connection for Programming Using Serial I/O Mode

23.16.2 Programming Using CAN I/O Mode

RTS1 pin : This pin automatically outputs "H" and "L" level.

Figure 23.7 shows the Pin Connection for Programming Using CAN I/O Mode.

Figure 23.7 Pin Connection for Programming Using CAN I/O Mode
23.17 Noise

Connect a bypass capacitor (approximately 0.1 μ F) across pins VCC1 and VSS, and pins VCC2 and VSS using the shortest and thicker possible wiring.

Figure 23.8 shows the Bypass Capacitor Connection.

Figure 23.8 Bypass Capacitor Connection

Appendix 1. Package Dimensions

RENESAS

Register Index

A

AD0 to AD7 196
ADCON0 195,198,200,202,204,206
ADCON1 195,198,200,202,204,206
ADCON2 196
ADIC 80
AIER
AIER2

С

C01ERRIC 80
C01WKIC 80
C0AFS, C1AFS 224
C0CONR, C1CONR 223
COCTLR, C1CTLR 220
C0GMR, C1GMR 218
C0ICR, C1ICR 222
C0IDR, C1IDR 222
COLMAR, C1LMAR 218
COLMBR, C1LMBR 218
COMCTL0 to COMCTL15 219
CORECIC 80
CORECR, C1RECR 224
COSSTR, C1SSTR 225
C0STR, C1STR 221
COTECR, C1TECR 224
C0TRMIC 80
C0TSR, C1TSR 224
C1MCTL0 to C1MCTL15 219
C1RECIC 81
C1TRMIC 81
CAN0/1 Slot 0 to 15
: Time Stamp 216,217
: Data Field 216,217
: Message Box 216,217
CCLKR 56
CM0
CM1
CM2
CPSRF 110,124
CRCD 212
CRCIN 212
CSE 47
CSR 41
D

DA0, DA1	211
DACON	211

DAR0, DAR1 99
DM0CON, DM1CON 98
DM0IC, DM1IC 80
DM0SL 97
DM1SL 98
DTT 134

F

FMR0	257
FMR1	257

L

ICTB2	136
IDB0, IDB1	134
IFSR0	89
IFSR1	89
INT0IC to INT5IC	81
INVC0	132
INVC1	133

Κ

KUPIC 80 O

	-	
ONSF	 	110

Ρ

P0 to P10	246
PCLKR	56
PCR	248
PD0 to PD10	245
PLC0	57
PM0	35
PM1	36
PM2	57
PRCR	74
PUR0 to PUR2	247

R

RMAD0 to RMAD3	. 92
ROMCP	254

S

SORIC to S2RIC 80
S0TIC to S2TIC 80
S3BRG 189
S3C 189
S3IC 81
S3TRR 189
SAR0, SAR1

Т

	-
TA0	
TA0IC	
TA0MR	108,111,113,118,120
TA1	
TA11	
TA1IC	
TA1MR	108,111,113,118,120,138
TA2	
TA21	
TA2IC	
TA2MR	. 108,111,113,115,118,120,138
TA3IC	
TA3MR	108,111,113,115,118,120
TA4IC	
TA4MR	. 108,111,113,115,118,120,138
TB0IC	
TB0MR	
TB1MR	
TB2	
TB2MR	
TB2SC	
TB3	
TB3IC	
TB3MR	
TB4	
TB5IC	
TCR0, TC	R1 99

U

U0BCNIC to U2BCNIC	. 80
U0BRG to U2BRG	145
U0C0 to U2C0	146
U0C1 to U2C1	147

U0MR to U2MR 146
U0RB to U2RB 145
U0SMR to U2SMR 148
U0SMR2 to U2SMR2 149
U0SMR3 to U2SMR3 149
U0SMR4 to U2SMR4 150
U0TB to U2TB 145
UCON 148
UDF 109

W

WDC	94
WDTS	94

Rev.	Date		Description
nev.	Dale	Page	Summary
1.00	May. 30, 2003	_	First edition issued
2.00	Nov. 10, 2004	_	Revised edition issued
			* Words standardizes (on-chip oscillator)
			* 100P6Q-A (100-pin version) is added.
			* Usage Notes Reference Book is added to Chapter 23 Usage Precaution.
			* Revised parts and revised contents are as follows (except for change of chapter composition,
			change of a layout, and an expressional change).
		1	1. Overview 3rd line: "and LQFP" is added.
		2	Table 1.1 Performance outline of M16C/6N Group (M16C/6N4)
			Operation Mode is added.
			Address Space is added.
			Power Consumption is revised.
			"LQFP" is added to Package.
		4	Table 1.2 Product List is revised.
			Figure 1.2 Type No., Memory Size, and Package:
			 "GP: Package 100P6Q-A" is added to Package type.
		5	Figure 1.3 Pin Configuration (Top View) (1): "ZP" is added.
		6	Figure 1.4 Pin Configuration (Top View) (2) is added. (100P6Q-A)
		8	Table 1.4 Pin Description (2): "ZP" is added to Timer A.
		12	3. Memory
			• 5th to 6th lines: The description about the flash memory version (block A) is added.
			Figure 3.1 Memory Map:
			Internal ROM (data area) is added.
			• NOTES 3, 4 are added and NOTE 5 is revised.
		13	Table 4.1 SFR Information (1)
			• The value of After Reset in PM1 register is revised.
			• The value of After Reset in CM2 register is revised.
		19	Table 4.7 SFR Information (7)
			• The value of After Reset in FMR0 register is revised.
		27	Table 4.15 SFR Information (15)
			• The value of After Reset in U0C1 register is revised.
			• The value of After Reset in U1C1 register is revised.
			•NOTE 1 is added.
		28	Table 4.16 SFR Information (16)
		~~~	• The value of After Reset in DA0, DA1 registers are revised.
		30	Figure 5.1 Example Reset Circuit: NOTE 1 is added.
		34	Figure 6.2 PM1 Register
			• The value of After Reset is revised.
		07	•NOTES 2, 6 are revised.
		37	Figure 6.6 Memory Map and CS Area in Memory Expansion Mode and Microprocessor Mode (3)
			•NOTE 2 is added.
			Figure 6.7 Memory Map and CS Area in Memory Expansion Mode and Microprocessor Mode (4)
			NOTE 1 is added.

Rev.	Date		Description
1100.	Date	Page	Summary
2.00	Nov. 10, 2004	38	Table 7.1 Difference between Separate Bus and Multiplexed Bus is added.
		39	Figure 7.1 CSR Register: NOTE 2 is revised.
		46	Table 7.8 Software Wait Related Bits and Bus Cycles
			• Bus Cycle of SFR (PM20 = 0) is revised from "2 BCLK cycles" to "3 BCLK cycles".
			• Bus Cycle of SFR (PM20 = 1) is revised from "3 BCLK cycles" to "2 BCLK cycles".
			• From bottom to 5th item in CSR Register: The value is revised from "1" to "0".
			• NOTE 5 is added.
		49	Table 8.1 Clock Generating Circuit Specifications
			<ul> <li>Clock Frequency in PLL Frequency Synthesizer: 16 MHz is added.</li> </ul>
		50	Figure 8.1 Clock Generating Circuit: Block diagram (upper) is revised.
		51	Figure 8.2 CM0 Register
			• Bit name of CM02 is revised.
			NOTE 6 (2) and NOTE 8 are revised.
		52	Figure 8.3 CM1 Register: NOTE 3 of CM11 bit is deleted.
		54	Figure 8.6 CCLKR Register: Location of NOTE 2 is changed and NOTE 3 is added.
		55	Figure 8.7 PM2 Register: NOTE 2 is revised.
			Figure 8.8 PLC0 Register: Function of 011b and 100b in PLC02 to PLC00 bits are revised
			from "Multiply by 6 and Multiply by 8" to "Do not set a value".
		58	8.1.4 PLL Clock 11th line: 16 MHz is added to PLL clock frequency.
			Table 8.2 Example for Setting PLL Clock Frequencies
			• PLL clock = 16 MHz is added. (8×2, 4×4)
			• 16 MHz is added to NOTE 1.
		59	Figure 8.11 Procedure to Use PLL Clock as CPU Clock Source
			<ul> <li>4th frame: "(To select a 16 MHz or higher PLL clock)" is revised to "(When PLL clock &gt;16 MHz)".</li> </ul>
		61	8.4.1.2 PLL Operation Mode: 1st line
			• The main clock multiplied is revised from "by 2, 4, 6 or 8" to "by 2 or 4".
		62	Table 8.3 Setting Clock Related Bit and Modes
			• CM21 bit in Low Power Dissipation Mode: Value is revised from "-" to "0".
			• CM11 bit in Low-Speed Mode, Low Power Dissipation Mode, On-chip Oscillator Mode
			and On-chip Oscillator Low Power Dissipation Mode: Value is revised from "-" to "0".
		63	8.4.2 Wait Mode 4th line: "PLL clock" is deleted.
			Table 8.4 Pin Status During Wait Mode
			<ul> <li>Memory Expansion Mode, Microprocessor Mode in ALE: Value is revised from "H" to "L".</li> </ul>
		64	Table 8.5 Interrupts to Exit Wait Mode
			• CAN0/1 Wake-up Interrupt: "in CAN sleep mode" is added.
		65	8.4.3 Stop Mode
			•CAN0/1 Wake-up interrupt: "(when CAN sleep mode is selected)" is added.
			Table 8.6 Pin Status in Stop Mode
			• Memory Expansion Mode, Microprocessor Mode in ALE: Value is revised from
			" H" to "indeterminate".

Day	Data		Description
Rev.	Date	Page	Summary
2.00	Nov. 10, 2004	67	Figure 8.12 State Transition to Stop Mode and Wait Mode
			• Figure is revised.
			• NOTE 3 is revised.
		68	Figure 8.13 State Transition in Normal Operation Mode
			• Low-Speed and Low Power Dissipation Mode: "CM7 = 1" is revised to "CM7 = 0" (3 places).
			• NOTES 2, 6 are revised.
		71	Figure 8.14 Procedure to Switch Clock Source from On-chip Oscillator to Main Clock
			is revised.
		77	Table 10.2 Relocatable Vector Tables
			<ul> <li>Interrupt Source: "Software interrupt" is revised to "INT Instruction Interrupt"</li> </ul>
			•NOTES 10, 11 are added.
		78	Figure 10.3 Interrupt Control Registers (1): NOTES 5, 6, 7 are added.
		79	Figure 10.4 Interrupt Control Registers (2)
			NOTE 2 is added to C1RECIC/INT5IC, C1TRMIC/S3IC/INT4IC
			NOTES 6, 7 are added.
		87	Figure 10.11 (upper) IFSR0 Register: NOTE 3 is added.
		88	10.9 CAN0/1 Wake-up Interrupt is revised.
			Figure 10.13 CAN0/1 Wake-up Interrupt Block Diagram is revised.
		91	Figure 11.1 Watchdog Timer Block Diagram: "RESET" is revised to "Internal RESET signal".
		108	Figure 13.6 (upper and middle) ONSF Register, TRGSR Register: NOTE 2 is added.
		109	Table 13.1 Specifications in Timer Mode
			Specification of Divide Ratio: "TAiMR register" is revised to "TAi register".
			• Specification of Select Function: "When not counting, the pin outputs a low" is
			revised to "When TAiS bit is set to "0" (stop counting), the pin outputs a low".
		110	Table 13.2 Specifications in Event Counter Mode (when not processing two-phase pulse signal)
			• Specification in Select Function: "When not counting, the pin outputs a low" is
			revised to "When TAiS bit is set to "0" (stop counting), the pin outputs a low".
		114	13.1.2.1 Counter Initialization by Two-Phase Pulse Signal Processing 4th line
			• "the INT2 pin" is revised to "the ZP pin".
			Figure 13.10 Two-phase Pulse (A phase and B phase) and Z Phase • "INT2 (Z phase)" is revised to "ZP".
		118	Figure 13.12 TA0MR to TA4MR Registers in PWM Mode
		110	Bit name and Function in MR0 bit is revised from "Set to "1" in PWM mode" to "Pulse
			Output Function Select Bit ⁽³⁾ ".
			• NOTE 3 is added.
		123	Table 13.6 Specifications in Timer Mode
1		.20	Specification in Divide Ratio: "TBiMR register" is revised to "TBi register".
		129	Figure 14.1 Three-Phase Motor Control Timer Function Block Diagram is revised.
		130	Figure 14.2 INVC0 Register is revised.
		131	Figure 14.3 INVC1 Register: Function of INV13 bit is revised.
		132	Figure 14.4 (upper) IDB0 and IDB1 Registers: (b7-b6) is revised.
			Figure 14.4 (lower) DTT Register: NOTE 2 is revised.

Devi	Dete		Description
Rev.	Date	Page	Summary
2.00	Nov. 10, 2004	134	Figure 14.6 (upper) ICTB2 Register
			• (b7-b4) is revised.
			• NOTE 3 is added.
		135	Figure 14.7 (upper) TRGSR Register: NOTE 2 is added.
		136	Figure 14.8 (upper) TA1MR, TA2MR and TA4MR Registers
			<ul> <li>Function of MR1 bit: "Has no effect" is revised to "Set to "0" ".</li> </ul>
		137	Figure 14.9 Triangular Wave Modulation Operation is revised.
		139	15.1 UARTi: "UART0, UART1" in Special mode 3 is deleted.
		140, 141	Figures 15.1 to 15.3 UART0 to 2 Block Diagram are revised.
		142	Figure 15.4 UARTi Transmit/Receive Unit is revised.
		144	Figure 15.6 (lower) U0C0 to U2C0 Registers: NOTES 3, 4 are revised.
		145	Figure 15.7 (upper) U0C1, U1C1 Registers
			<ul> <li>The value of After Reset is revised.</li> </ul>
			• (b5-b4) is revised from "When read, their contents are "0" " to "When read, their
			contents are indeterminate".
			•NOTE 1 is added.
			Figure 15.7 (lower) U2C1 Register: NOTE 1 is added.
		153	15.1.1.1 Counter Measure for Communication Error Occurs is added.
		154	15.1.1.4 Continuous Receive Mode: first to 4th lines are added.
		156	15.1.1.7 CTS/RTS Function is added.
		157	Table 15.5 UART Mode Specifications: NOTE 3 is added.
		159	Table 15.7 I/O Pin Functions
			Method of Selection in TXDi: "Output dummy data" is revised to "Output "H" ".
		161	15.1.2.1 Bit Rates and Table 15.9 Example of Bit Rates and Settings are added.
		162	15.1.2.2 Counter Measure for Communication Error Occurs is added.
		164	15.1.2.6 CTS/RTS Function is added.
		176	Table 15.15 Registers to Be Used and Settings in Special Mode 2
		170	• "U2LCH" in UiC1 register is revised to "UiLCH".
		179	Table 15.16 Registers to Be Used and Settings in IE Mode
		181	<ul> <li>"UIRRM" in UiC1 register is revised to "U2RRM".</li> <li>Table 15.17 SIM Mode Specifications: NOTE 3 is added.</li> </ul>
		189	Figure 15.39 Polarity of Transfer Clock is revised.
		205	16.2.4 External Operation Amplifier (Op-Amp) Connection Mode: 6th line
		205	• "Note that the ANEX0 and ANEX1 pins cannot be directly connected to each other."
			is deleted.
		206	16.2.6 Output Impedance of Sensor under A/D Conversion is added.
		209	Figure 17.2 (lower) DA0 and DA1 Registers: The value of After Reset are revised.
		216	Figure 19.4 Bit Mapping of Mask Registers in Byte Access: NOTES 1, 2 are added.
		-	Figure 19.5 Bit Mapping of Mask Registers in Word Access: NOTES 1, 2 are added.
		217	Figure 19.6 C0MCTLj and C1MCTLj Registers: NOTE 2 is revised.
		218	Figure 19.7 C0CTLR and C1CTLR Registers (upper)
			• NOTE 1 (Rev.1.00) is deleted and NOTES 1, 2, 3 are added.
			Figure 19.7 C0CTLR and C1CTLR Registers (lower): NOTES 3, 4 are added.

Rev.	Date		Description
110 .	Duio	Page	Summary
2.00	Nov. 10, 2004	219	Figure 19.8 C0STR and C1STR Registers (upper): NOTE 2 is added.
		223	19.5 Operational Modes
			<ul> <li>1st line: "three operational modes" is revised to "four operational modes".</li> </ul>
			<ul> <li>5th line: "CAN Interface Sleep Mode" is added.</li> </ul>
			Figure 19.12 Transition Between Operational Modes is revised.
			19.5.1 CAN Reset/Initialization Mode is revised.
		224	19.5.2 CAN Operation Mode is revised.
			19.5.3 CAN Sleep Mode is revised.
		005	19.5.4 CAN Interface Sleep Mode is added.
		225 231	19.5.5 Bus Off State is revised. 19.12 Return from Bus Off Function is revised.
		231	
			<ul><li>19.14 Listen-Only Mode</li><li>last line: "When listen-only mode is selected, do not request the transmission." is added.</li></ul>
		233	Figure 19.20 Timing of Receive Data Frame Sequence: Waveform of RecState bit is revised.
		200	19.15.1 Reception: (4) (5) are revised.
		234	Figure 19.21 Timing of Transmit Sequence
		_0.	• The position of the number corresponding to the text is revised.
			19.15.2 Transmission: (1) to (4) are revised.
		251	21.2.1 ROM Code Protect Function is revised.
			21.2.2 ID Code Check Function is revised.
		252	Figure 21.2 ROMCP Register is revised.
		255	Figure 21.4 (upper) FMR0 Register: The value of After Reset is revised.
		256	21.3.3.1 FMR00 Bit is revised.
			21.3.3.8 FMR11 Bit is revised.
			21.3.3.9 FMR16 Bit is revised.
		257	Figure 21.5 Setting and Resetting of EW0 Mode is revised.
			Figure 21.6 Setting and Resetting of EW1 Mode: NOTE 3 is revised.
		258	Figure 21.7 Processing Before and After Low Power Dissipation Mode: NOTE 4 is added.
		260	21.3.4.12 Low Power Dissipation Mode and On-chip Oscillator Low Power Dissipation
		261	Mode is revised. Table 21.4 Software Commands: NOTE 2 is deleted.
		262	21.3.5.4 Program Command (40h)
		202	From bottom to 3rd line: "read command" is revised to "read array command".
		265	Figure 21.11 Read Lock Bit Status Command
			• "Locked", "Not locked" are revised to "Block is locked", "Block is not locked".
		266	21.3.7.1 Sequencer Status (SR7 and FMR00 Bits) is revised.
		271	Table 21.7 Pin Functions for Standard Serial I/O Mode
			<ul> <li>"VCC" is revised to "VCC1", and "VCC2" is added.</li> </ul>
			<ul> <li>VCC1, VCC2, VSS: VCC apply condition is added.</li> </ul>
		273	Figure 21.14 Pin Connections for Standard Serial I/O Mode (2) is added.
		274	Figure 21.16 Circuit Application in Standard Serial I/O Mode 2: "RESET" is added.
		276	Table 21.8 Pin Functions for CAN I/O Mode
			<ul> <li>"VCC" is revised to "VCC1", and "VCC2" is added.</li> </ul>
			<ul> <li>VCC1, VCC2, VSS: VCC apply condition is added.</li> </ul>

Rev.	Date		Description
nev.	Dale	Page	Summary
2.00	Nov. 10, 2004	278	Figure 21.18 Pin Connections for CAN I/O Mode (2) is added.
		280	Table 21.9 Flash Memory Version Electrical Characteristics
			<ul> <li>Parameter is added and the value of some item is revised.</li> </ul>
		281	Table 22.1 Absolute Maximum Ratings
			<ul> <li>"Flash Program Erase" in Operating Ambient Temperature is added.</li> </ul>
		283	Table 22.3 Recommended Operating Conditions (2)
			<ul> <li>Parameters of Power Supply Ripple are added.</li> </ul>
			NOTE 4 is revised.
			Figure 22.1 Timing of Voltage Fluctuation is added.
		284	Table 22.4 Electrical Characteristics (1): Hysteresis
			<ul> <li>"CLK4" is revised to "CLK3", and "TA2OUT" is revised to "TA0OUT".</li> </ul>
			• Max. of Standard in RESET is revised from "2.2" to "2.5".
			• XIN is added.
		286	Table 22.6 A/D Conversion Characteristics: "Tolerance Level Impedance" is added.
		287	Table 22.8 Power Supply Circuit Timing Characteristics: "td(M-L)" is deleted.
			Figure 22.2 Power Supply Circuit Timing Diagram is added.
		288	Table 22.10 Memory Expansion Mode and Microprocessor Mode: "td(BCLK-HLDA)" is deleted.
		290	Table 22.21 Serial I/O: Min. of standard in $t_{su(D-C)}$ is revised from "30" to "70".
		291	Table 22.23 Memory Expansion Mode and Microprocessor Mode (for setting with no wait)
			• Max. of Standard in td(BCLK-ALE) is revised from "25" to "15".
			• td(BCLK-HLDA) is added.
		292	Table 22.24 Memory Expansion Mode and Microprocessor Mode (for 1- to 3-wait setting
			and external area access)
			• Max. of Standard in td(BCLK-ALE) is revised from "25" to "15".
			• td(BCLK-HLDA) is added.
		293	Table 22.25 Memory Expansion Mode and Microprocessor Mode (for 2- to 3-wait setting,
			external area access and multiplexed bus selection)
			• td(BCLK-HLDA) is added.
			• Max. of Standard in td(BCLK-ALE) is revised from "25" to "15".
		294	Figure 22.4 Timing Diagram (1): "XIN input" is added.
		296, 297	Figures 22.6 and 22.7 Timing Diagram (3) (4): "DB" in Read timing is revised to "DBi".
		298, 299	Figures 22.8 and 22.9 Timing Diagram (5) (6): "DB" in Write timing is revised to "DBi".
		301	Figure 22.11 Timing Diagram (8)
			<ul> <li>"ADi/DB" in Read/Write timing is revised to "ADi/DBi".</li> </ul>
		302	23.1 External Bus: The description of the external ROM version is deleted.
		303	23.2 PLL Frequency Synthesizer is revised.
		304	23.3 Power Control
			• 2nd item is added. (Set the MR0 bit in the TAiMR register to •••)
			• 4th item is revised. (Wait for main clock oscillation •••)
			Section of "External clock" is deleted.
		316	23.8.2.1 Special Mode 1 (I ² C Mode) is added.
		317	23.8.3 SI/O3 is added.

Rev.	Date		Description
110 .	Duit	Page	Summary
2.00	Nov. 10, 2004	319	23.9 A/D Converter: last item is added. (When setting the ADST bit to •••)
		322	23.10.2 Performing CAN Configuration is added.
		323	23.10.3 Suggestions to Reduce Power Consumption is added.
		327	23.13 Mask ROM Version is added.
		328	23.14.4 Low Power Dissipation Mode and On-Chip Oscillator Low Power Dissipation
			Mode is revised.
		330	23.15 Flash Memory Programming Using Boot Program is added.
		331	23.16 Noise is added.
		332	Appendix 1. Package Dimensions: 100P6Q-A is added.
2.10	Jun. 24, 2005	_	Revised edition issued
			* The contents of product are revised. (Normal-ver. is added.)
			* Revised parts and revised contents are as follows (except for expressional change).
		2	Table 1.1 Performance outline of M16C/6N Group (M16C/6N4)
			<ul> <li>Performance outline of Normal-ver. is added.</li> </ul>
		4	Table 1.2 Product List is revised. (Normal-ver. is added.)
			Figure 1.2 Type No., Memory Size, and Package:
			<ul> <li>"(no): Normal-ver." is added to Characteristics.</li> </ul>
		19	Figure 4.7 SFR Information (7): NOTE 1 is revised.
		53	Figure 8.4 CM2 Register: The value of After Reset is revised.
		68	Figure 8.13 State Transition in Normal Operation Mode: NOTE 7 is revised.
		217	Figure 19.6 C0MCTLj and C1MCTLj Registers
			RemActive bit: Function is revised.
			RspLock bit: Bit Name is revised.
			NOTE 2 is revised.
		218	Figure 19.7 C0CTLR and C1CTLR Registers (upper)
			<ul> <li>LoopBack bit: The expression of Function is revised.</li> </ul>
			<ul> <li>BasicCAN bit: The expression of Function is revised.</li> </ul>
			Figure 19.7 C0CTLR and C1CTLR Registers (lower)
			<ul> <li>TSPreScale bit: Bit Symbol is revised. ("Bit1, Bit0" is deleted.)</li> </ul>
			<ul> <li>TSReset bit: The expression of Function is revised.</li> </ul>
			<ul> <li>RetBusOff bit: The expression of Function is revised.</li> </ul>
			<ul> <li>RXOnly bit: The expression of Function is revised.</li> </ul>
		219	Figure 19.8 C0STR and C1STR Registers (upper): NOTE 1 is deleted.
			Figure 19.8 C0STR and C1STR Registers (lower)
			<ul> <li>State_LoopBack bit: The expression of Function is revised.</li> </ul>
			<ul> <li>State_BasicCAN bit: The expression of Function is revised.</li> </ul>
		222	Figure 19.11 CORECR, C1RECR Registers, C0TECR, C1TECR Registers, C0TSR,
			C1TSR Registers, and C0AFS, C1AFS Registers
			CORECR, C1RECR Registers: NOTE 2 is deleted.
			COTECR, C1TECR Registers: NOTE 1 is deleted.
			COTSR, C1TSR Registers: NOTE 1 is deleted.
		233	19.15.1 Reception (1): "(refer to 19.15.2 Transmission)" is deleted.

Dev	Dete		Description
Rev.	Date	Page	Summary
2.10	Jun. 24, 2005	238	Figure 20.1 I/O Ports (1): "P7_0" in 4th figure is deleted.
		240	Figure 20.3 I/O Ports (3): "P7_0" is added to middle figure.
		242	Figure 20.6 I/O Pins: NOTE 1 is deleted.
		284	Table 22.4 Electrical Characteristics (1)
			• Measuring Condition of $V_{OL}$ is revised from "LoL = -200µA" to "LoL = 200µA".
		285	Table 22.5 Electrical Characteristics (2): Mask ROM (5th item)
			<ul> <li>"f(XCIN)" is changed to "(f(BCLK)).</li> </ul>
		286	Table 22.6 A/D Conversion Characteristics: "Tolerance Level Impedance" is deleted.
2.30	Oct. 24, 2005	-	Revised edition issued
			* Electric Characteristics of Normal-ver. is added.
			* Revised parts and revised contents are as follows (except for expressional change).
		1	1.1 Applications: Comment of Normal-ver. is added.
		4	Table 1.2 Product List: NOTE 1 is added.
		7, 8	Tables 1.3 and 1.4 Pin Characteristics (1)(2) are added.
		9	Table 1.5 Pin Description (1)
			<ul> <li>3.0 to 3.6 V (Normal-ver.) is added to Description of Power supply input.</li> </ul>
		31 to 33	5. Reset: Layout is changed.
		33	5.5 Internal Space is added.
		44	7.2.6 RDY Signal: Last sentence is revised.
		51	Table 8.1 Clock Generating Circuit Specifications
			Clock Frequency in PLL Frequency Synthesizer: 24 MHz ⁽¹⁾ is added.
			• NOTE 1 is added.
		57	Figure 8.8 PLC0 Register
			PLC02 to PLC00 bits: Function of 011b is revised.
		50	NOTE 4 is added.
		58	Figure 8.9 Examples of Main Clock Connection Circuit is revised.
		59 60	Figure 8.10 Examples of Sub Clock Connection Circuit is revised. 8.1.4 PLL Clock
		60	• 9th line: The sentence (When the PLL to) is added.
			<ul> <li>12th line: 24 MHz and NOTE 1 is added to PLL clock frequency.</li> </ul>
			• NOTE 1 is added.
			Table 8.2 Example for Setting PLL Clock Frequencies
			• 24 MHz is added to PLL clock.
			• 24 MHz is added to NOTE 1.
			NOTES 2 and 3 are added.
		63	8.4.1.2 PLL Operation Mode
			1st line: The main clock multiplied by "6" and NOTE 1 is added.
		64	8.4.1.6 On-chip Oscillator Mode: Last sentence (When the operation mode is) is added.
			8.4.1.7 On-chip Oscillator Low Power Dissipation Mode: Last sentence (When the
			operation mode is) is deleted.
		67	Table 8.6 Interrupts to Stop Mode and Use Conditions is added.
		70	Figure 8.13 State Transition in Normal Operation Mode: NOTE 7 is deleted.

Rev.	Date		Description
110 V.	Date	Page	Summary
2.30	Oct. 24, 2005	86	10.5.8 Returning from an Interrupt Routine: Last sentence (Register bank) is added.
			10.5.9 Interrupt Priority: First sentence (If two or more) is revised.
			10.5.10 Interrupt Priority Resolution Circuit: First sentence (The interrupt priority level)
			is revised.
		89	Figure 10.11 IFSR1 Register (upper)
			IFSR17: NOTE 2 is added to Bit Name.
			NOTE 2 is revised.
		96	Table 12.1 DMAC Specifications: DMA transfer Cycles is added.
		100	12.1.3 Effect of Software Wait: 3rd to 9th lines is moved from next section of 12.1.4.
		120	Figure 13.12 TA0MR to TA4MR Registers in PWM Mode: b2 is revised from "1" to "(blank)".
		131	Figure 14.1 Three-Phase Motor Control Timer Function Block Diagram is revised.
		132	Figure 14.2 INVC0 Register: NOTES 5 and 6 are revised.
		145	Figure 15.5 U0BRG to U2BRG Registers (lower): NOTE 3 is added.
		146	Figure 15.6 U0C0 to U2C0 Registers (lower): NOTE 5 is added.
		163	Table 15.9 Example of Bit Rates and Settings: 24 MHz and NOTE 1 is added.
		189	Figure 15.37 S3C Register (upper): NOTE 5 is added.
			Figure 15.37 S3BRG Register (middle): NOTE 3 is added.
		193	Table 16.1 A/D Converter Performance
			• Performance of Integral Nonlinearity Error: "When AVCC = VREF = 3.3 V" is added.
		194	Figure 16.1 A/D Converter Block Diagram
			• ADGSEL1 to ADGSEL0 (right/lower) is revised from "10b" to "11b".
		208	16.2.6 Output Impedance of Sensor under A/D Conversion
			• 10th line: f(XIN) is revised to f(\u03c6AD).
		209	Figure 16.10 Analog Input Pin and External Sensor Equivalent Circuit
		010	• fAD is revised to $\phi$ AD.
		210	Figure 17.1 D/A Converter Block Diagram is revised.
		211	Figure 17.2 DA0 and DA1 Registers: Setting Range is added.
		010	Figure 17.3 D/A Converter Equivalent Circuit: NOTE 2 is added.
		213 224	Figure 18.3 CRC Calculation: Details of CRC operation is revised. Figure 19.11 C0TECR, C1TECR Registers (2nd register): NOTE 1 is added.
		229 247	Table 19.2 Examples of Bit-rate: 24 MHz and NOTE 2 is added. Figure 20.9 PUR1 Register (middle): Value of After Reset is revised.
		247 252	Figure 21.1 Flash Memory Block Diagram is revised.
		252 254	Figure 21.2 ROMCP Register is revised.
		254 255	Table 21.3 EW0 Mode and EW1 Mode: NOTE 1 is revised.
		255 256	21.3.2 EW1 Mode: Last sentence (When an erase/program) is added.
		258 258	21.3.3.4 FMSTP Bit
		200	8th line: Procedure to change the FMSTP bit setting (1) to (4) are added.
		261	Figure 21.7 Processing Before and After Low Power Dissipation Mode or On-chip Oscillator
			Low Power Dissipation Mode
			• Title, First and second frames (left) and top of right: "on-chip oscillator low power
			dissipation mode" is added.

Davi	Data		Description
Rev.	Date	Page	Summary
2.30	Oct. 24, 2005	263	21.3.4.11 Stop Mode is revised.
			21.3.4.12 Low Power Dissipation Mode and On-chip Oscillator Low Power Dissipation
			Mode is partly revised.
		266	21.3.5.5 Block Erase Command: Last sentence (Also execute) is added.
			Figure 21.9 Block Erase Command: NOTES 2 and 3 are added.
		272	Figure 21.12 Full Status Check and Handling Procedure for Each Error
			• Erase error: (4) is added.
		274	Table 21.7 Pin Functions for Standard Serial I/O Mode
			Description of VCC1, VCC2, VSS is revised.
			<ul> <li>Description of P8_4 is revised.</li> </ul>
			NOTE 1 is revised.
			NOTE 2 is added.
		277	Figures 21.15 and 21.16 Circuit Application in Serial I/O Mode 1/2
			<ul> <li>"VCC1" and "VCC2" are added.</li> </ul>
		279	Table 21.8 Pin Functions for CAN I/O Mode
			<ul> <li>Description of VCC1, VCC2, VSS is revised.</li> </ul>
			<ul> <li>Description of P8_4 is revised.</li> </ul>
			NOTE 1 is added.
		282	Figure 21.19 Circuit Application in CAN I/O Mode: "VCC1" and "VCC2" are added.
		283	Table 21.9 Flash Memory Version Electrical Characteristics
			<ul> <li>Measuring condition is revised in word program time and block erase time.</li> </ul>
		284	21.7.2 Electrical Characteristics (Normal-ver.) is added.
		306 to 341	22.2 Electrical Characteristics (Normal-ver.) is added.
		344	23.3 Power Control: 3rd and 4th items (When entering wait mode / When entering
			stop mode) are revised.
		359	Figure 23.2 Use of Capacitors to Reduce Noise is partly revised.
		360	23.9 A/D Converter: Last item (The applied intermediate) is added.
		366	23.11 Programmable I/O Ports: 4th and 5th items (Indeterminate values / When the
			PM01) are added.
		369	23.14.2 Stop Mode is revised.
			23.14.4 Low Power Dissipation Mode and On-Chip Oscillator Low Power Dissipation
			Mode is partly revised.
	• • • • • • • •		23.14.8 Operation Speed is revised.
2.40	Apr.14, 2006	_	Revised edition issued
			* Revised parts and revised contents are as follows (except for expressional change).
		4	Table 1.2 Product Information: Note 2 is added.       Table 4.2 255 la (smarting (0))
		22	Table 4.8 SFR Information (8)
			The value of After Reset in IDB0 register is revised.
		~~~	The value of After Reset in IDB1 register is revised.
		69 100	Figure 8.12 State Transition to Stop Mode and wait Mode is revised.
		100	12.1.3 Effect of Software Wait: 3rd to 9th lines (Figure 12.5 shows required.) is moved
			to next section of 12.1.4.

Rev.	Date		Description
Tiev.	Dale	Page	Summary
2.40	Apr.14, 2006	111	Figure 13.7 Registers TA0MR to TA4MR in Timer Mode: Note 2 is added.
		118	Figure 13.11 Registers TA0MR to TA4MR in One-shot Timer Mode: Note 3 is added.
		120	Figure 13.12 Registers TA0MR to TA4MR in PWM Mode: Note 4 is added.
		125	Figure 13.18 Registers TB0MR to TB5MR in Timer Mode: Note 1 is added.
		128	Figure 13.20 Registers TA0MR to TA4MR in Pulse Period and Pulse Width Measurement
			Mode: Note 2 is added.
		133	Figure 14.3 INVC1 Register: Note 6 is added.
		134	Figure 14.4 Registers IDB0 and IDB1 (upper): The value of After Reset is revised.
		138	Figure 14.8 Registers TA1MR, TA2MR, TA4MR (upper): Note 1 is added.
			Figure 14.8 TB2MR Register (lower): Note 1 is added.
		142, 143	Figures 15.1 to 15.3 are revised.
		145	Figure 15.5 Registers U0RB to U2RB (middle): Note 3 is added.
		146	Figure 15.6 Registers U0C0 to U2C0 (lower): Note 6 is added.
		151	Table 15.1 Clock Synchronous Serial I/O Mode Specifications
			 Transfer clock: "fj/2(n+1)" is revised to "fj/(2(n+1))".
			Note 3 is revised.
		154	Figure 15.11 Transmit and Receive Operation is revised.
		159	Table 15.5 UART Mode Specifications
			 Transfer clock: "fj/16(n+1)" is revised to "fj/(16(n+1))" and "fEXT/16(n+1)" is revised
			to "fEXT/(16(n+1))" .
			Note 2 is revised.
		162	Figure 15.17 Transmit Operation is revised.
		163	Table 15.9 Example of Bit Rates and Settings: "Actual Time" is revised to "Bit Rate".
		167	Table 15.10 I ² C Mode Specifications
			 Transfer clock: "fj/2(n+1)" is revised to "fj/(2(n+1))".
		169	Table 15.11 Registers to Be Used and Settings in I ² C Mode: Note 3 is added.
		176	Table 15.14 Special Mode 2 Specifications
			• Transfer clock: "fj/2(n+1)" is revised to "fj/(2(n+1))".
		183	Table 15.17 SIM Mode Specifications
			• Transfer clock: "fj/16(n+1)" is revised to "fj/(16(n+1))" and "fEXT/16(n+1)" is revised
		105	to "fEXT/(16(n+1))".
		185	Figure 15.32 Transmit and Receive Timing in SIM Mode is revised.
		187	15.1.6.2 Format is revised.
		189	Figure 15.37 S3C Register (upper): Note 6 is added.
		190	Table 15.19 SI/O3 Specifications
		191	 Transfer clock: "fj/2(n+1)" is revised to "fj/(2(n+1))". Figure 15.38 SI/O3 Operation Timing: Cycle and Note 1 is revised. (1.5 -> 0.5 to 1.0)
		191	15.2.3 Functions for Setting SOUT3 Initial Value: 2nd item (However) is added.
		211	Figure 17.3 D/A Converter Equivalent Circuit is revised.
		220	Figure 19.7 Registers C0CTLR and C1CTLR (upper): NOTE 4 is added.
		224	Figure 19.11 Registers C0TSR and C1TSR (3rd register): Note 1 is added.
		224	Figure 19.12 Transition between Operational Modes is revised.
		220	rigaro 10.12 transmon between Operational modes is revised.

Rev.	Date	Description		
		Page	Summary	
2.40	Apr.14, 2006	226	19.5.3 CAN Sleep Mode	
			 1st item: "and Reset bit to 0" is deleted. 	
		229	Table 19.2 Examples of Bit-rate is revised.	
		249	Table 20.2 Unassigned Pin Handling in Memory expansion Mode and Microprocessor Mode	
			 Pin Name: "P0 to P7" is revised to "P6, P7". 	
		288	Table 22.4 Electrical Characteristics (1): Hysteresis XIN is deleted.	
		311	Table 22.32 Electrical Characteristics (1): Hysteresis XIN is deleted.	
		327	Table 22.51 Electrical Characteristics: Hysteresis XIN is deleted.	
		342	23.1 SFR is added.	
		345	23.4 Power Control	
			4th item: Notes when entering stop mode is revised.	
		346	• 5th item: Notes is added.	
		360	23.10 A/D Converter1st item: "After stopping" is added.	
├ ─		_	· Ist item. Alter stopping is added.	
1				
1				
1				
1				

M16C/6N Group (M16C/6N4) Hardware Manual Publication Data : Rev.1.00 May 30, 2003 Rev.2.40 Apr 14, 2006 Published by : Sales Strategic Planning Div. Renesas Technology Corp.

© 2006. Renesas Technology Corp., All rights reserved. Printed in Japan.

M16C/6N Group (M16C/6N4) Hardware Manual

Renesas Electronics Corporation 1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan