Dual General Purpose Transistor The NST3906DP6T5G device is a spin-off of our popular SOT-23/SOT-323/SOT-563 three-leaded device. It is designed for general purpose amplifier applications and is housed in the SOT-963 six-leaded surface mount package. By putting two discrete devices in one package, this device is ideal for low-power surface mount applications where board space is at a premium. #### **Features** - h_{FF}, 100-300 - Low $V_{CE(sat)}$, $\leq 0.4 \text{ V}$ - Simplifies Circuit Design - Reduces Board Space - Reduces Component Count - This is a Pb-Free Device ## **MAXIMUM RATINGS** | Rating | | Symbol | Value | Unit | |--------------------------------|-----------|------------------|--------|------| | Collector - Emitter Voltage | | V_{CEO} | -40 | V | | Collector - Base Voltage | | V_{CBO} | -40 | V | | Emitter - Base Voltage | | V _{EBO} | -5.0 | V | | Collector Current - Continuous | | I _C | -200 | mA | | Electrostatic Discharge | HBM
MM | ESD
Class | 2
B | | #### THERMAL CHARACTERISTICS | Characteristic (Single Heated) | Symbol | Max | Unit | |--|-----------------------------------|----------------|-------------| | Total Device Dissipation T _A = 25°C Derate above 25°C (Note 1) | P _D | 240
1.9 | mW
mW/°C | | Thermal Resistance, Junction-to-Ambient (Note 1) | $R_{\theta JA}$ | 520 | °C/W | | Total Device Dissipation T _A = 25°C Derate above 25°C (Note 2) | P _D | 280
2.2 | mW
mW/°C | | Thermal Resistance, Junction-to-Ambient (Note 2) | $R_{\theta JA}$ | 446 | °C/W | | Characteristic (Dual Heated) (Note 3) | Symbol | Max | Unit | | Total Device Dissipation T _A = 25°C
Derate above 25°C (Note 1) | P _D | 350
2.8 | mW
mW/°C | | Thermal Resistance, Junction-to-Ambient (Note 1) | $R_{\theta JA}$ | 357 | °C/W | | Total Device Dissipation T _A = 25°C Derate above 25°C (Note 2) | P _D | 420
3.4 | mW
mW/°C | | Thermal Resistance, Junction-to-Ambient (Note 2) | $R_{\theta JA}$ | 297 | °C/W | | Junction and Storage Temperature Range | T _J , T _{stg} | −55 to
+150 | °C | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. FR-4 @ 100 mm², 1 oz. copper traces, still air. 2. FR-4 @ 500 mm², 1 oz. copper traces, still air. - 3. Dual heated values assume total power is sum of two equally powered channels. ## ON Semiconductor® ## www.onsemi.com NST3906DP6T5G SOT-963 CASE 527AD #### **MARKING DIAGRAM** = Device Code M = Date Code ## ORDERING INFORMATION | Device | Package | Shipping [†] | |---------------|----------------------|-----------------------| | NST3906DP6T5G | SOT-963
(Pb-Free) | 8000/Tape & Reel | †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. ## **ELECTRICAL CHARACTERISTICS** (T_A = 25°C unless otherwise noted) | Characteristic | | Symbol | Min | Max | Unit | |---|---|--|-----------------------------|--------------------|------| | OFF CHARACTER | ISTICS | 1 | • | 1 | 1 | | Collector – Emitter Breakdown Voltage (Note 4) (I _C = 1.0 mAdc, I _B = 0) | | V _{(BR)CEO} | -40 | _ | V | | Collector - Base Brea | akdown Voltage (I _C = 10 μAdc, I _E = 0) | V _{(BR)CBO} | -40 | _ | V | | Emitter – Base Breakdown Voltage (I _E = 10 μAdc, I _C = 0) | | V _{(BR)EBO} | -5.0 | _ | V | | Collector Cutoff Current (V _{CE} = 30 Vdc, V _{EB} = 3.0 Vdc) | | or Cutoff Current (V _{CE} = 30 Vdc, V _{EB} = 3.0 Vdc) I _{CEX} | | -50 | nA | | ON CHARACTERIS | STICS (Note 4) | | | | • | | DC Current Gain $ \begin{aligned} &(I_C = -0.1 \text{ mA, V}_{CE} \\ &(I_C = -1.0 \text{ mA, V}_{CE} \\ &(I_C = -10 \text{ mA, V}_{CE} \\ &(I_C = -50 \text{ mA, V}_{CE} \\ &(I_C = -100 \text{ mA, V}_{CE} \end{aligned} $ | = -1.0 V)
= -1.0 V)
= -1.0 V) | h _{FE} | 60
80
100
60
30 | -
300
-
- | - | | Collector – Emitter Saturation Voltage ($I_C = -10 \text{ mA}$, $I_B = -1.0 \text{ mA}$) ($I_C = -50 \text{ mA}$, $I_B = -5.0 \text{ mA}$) | | V _{CE(sat)} | _
_ | -0.25
-0.4 | V | | Base – Emitter Saturation Voltage
(I_C = -10 mA, I_B = -1.0 mA)
(I_C = -50 mA, I_B = -5.0 mA) | | V _{BE(sat)} | -0.65
- | -0.85
-0.95 | V | | SMALL-SIGNAL C | CHARACTERISTICS | | | | | | Current – Gain – Bandwidth Product (I _C = 10 mAdc, V _{CE} = 20 Vdc, f = 100 MHz) | | f _T | 250 | _ | MHz | | Output Capacitance (V _{CB} = -5.0 V, I _E = 0 mA, f = 1.0 MHz) | | C _{obo} | - | 4.5 | pF | | Input Capacitance (V _{EB} = -0.5 V, I _E = 0 mA, f = 1.0 MHz) | | C _{ibo} | - | 10.0 | pF | | Noise Figure (V _{CE} = -5.0 V, I _C = -100 μ A, R _S = 1.0 k Ω , f = 1.0 kHz) | | NF | - | 4.0 | dB | | SWITCHING CHAP | RACTERISTICS | | | | | | Delay Time | $(V_{CC} = -3.0 \text{ V}, V_{BE} = 0.5 \text{ V})$ | t _d | - | 35 | | | Rise Time | $(I_C = -10 \text{ mA}, I_{B1} = -1.0 \text{ mA})$ | t _r | - | 35 | ns | | Storage Time | $(V_{CC} = -3.0 \text{ V}, I_C = -10 \text{ mA})$ | t _s | - | 250 | | ^{4.} Pulse Test: Pulse Width ≤ 300 μs; Duty Cycle ≤ 2.0%. Fall Time $(I_{B1} = I_{B2} = -1.0 \text{ mA})$ Figure 1. Collector Emitter Saturation Voltage vs. Collector Current t_f ns 50 Figure 2. DC Current Gain vs. Collector Current Figure 3. Base Emitter Saturation Voltage vs. Collector Current Figure 4. Base Emitter Turn-On Voltage vs. Collector Current Figure 5. Saturation Region Figure 6. Input Capacitance Figure 7. Output Capacitance #### PACKAGE DIMENSIONS SOT-963 CASE 527AD **ISSUE E** #### NOTES - DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS - MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL. - 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. | | MILLIMETERS | | | | |-----|-------------|------|------|--| | DIM | MIN | NOM | MAX | | | Α | 0.34 | 0.37 | 0.40 | | | b | 0.10 | 0.15 | 0.20 | | | С | 0.07 | 0.12 | 0.17 | | | D | 0.95 | 1.00 | 1.05 | | | E | 0.75 | 0.80 | 0.85 | | | е | 0.35 BSC | | | | | Hε | 0.95 | 1.00 | 1.05 | | | L | 0.19 REF | | | | | L2 | 0.05 | 0.10 | 0.15 | | #### **RECOMMENDED MOUNTING FOOTPRINT*** *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. Coverage may be accessed at www.onsemi.com/site/par/-atent_-warking.pgr. On Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. ## **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative Phone: 81-3-5817-1050