UHF power LDMOS transistor Rev. 01 — 3 July 2007

Product data sheet

Product profile 1.

1.1 General description

130 W LDMOS power transistor for base station applications at frequencies from 2000 MHz to 2200 MHz.

Table 1. **Typical performance**

 $T_{case} = 25 \circ C$ in a common source class-AB test circuit.

Mode of operation	f	V_{DS}	P _{L(AV)}	Gp	η_{D}	IMD3	ACPR
	(MHz)	(V)	(W)	(dB)	(%)	(dBc)	(dBc)
2-carrier W-CDMA ^[1]	$f_1 = 2135;$ $f_2 = 2145$	28	33	13.5	26	-37	-41

[1] 10 MHz carrier spacing PAR 7 dB at 0.01 % probability on CCDF, 3GPP test model 1, 1 - 64 DPCH.

CAUTION

This device is sensitive to ElectroStatic Discharge (ESD). Therefore care should be taken during transport and handling.

1.2 Features

- Typical 2-carrier W-CDMA performance at a supply voltage of 28 V and an I_{Dg} of 1150 mA:
 - Average output power = 33 W
 - Power gain = 13.8 dB
 - Efficiency = 26 %
 - ♦ ACPR = -41 dBc
 - ◆ IMD3 = -37 dBc
- Easy power control
- Integrated ESD protection
- Excellent ruggedness (> 10 : 1 VSWR at 130 W (CW))
- High efficiency
- High peak power capability (> 190 W)
- Excellent thermal stability
- Designed for broadband operation (2000 MHz to 2200 MHz)
- Internally matched for ease of use

1.3 Applications

RF power amplifiers for W-CDMA base stations and multi carrier applications in the 2000 MHz to 2200 MHz frequency range.

2. Pinning information

Pin	Description	Simplified outline	Symbol
BLF4G2	2-130 (SOT502A)		
1	drain		
2	gate		1 لــــا
3	source		2 – – – 3 sym112
BLF4G2	2LS-130 (SOT502B)		
1	drain		
2	gate		1 لـــــ
3	source		2 – – – 3 sym112

[1] Connected to flange

3. Ordering information

Table 3. Ordering information					
Type number Pack		je			
	Name	Description	Version		
BLF4G22-130	-	flanged LDMOST ceramic package; 2 mounting holes; 2 leads	SOT502A		
BLF4G22LS-130	-	earless flanged LDMOST ceramic package; 2 leads	SOT502B		

4. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{DS}	drain-source voltage		-	65	V
V _{GS}	gate-source voltage		-0.5	+15	V
I _D	drain current		-	15	А
T _{stg}	storage temperature		-65	+150	°C
Tj	junction temperature		-	200	°C

UHF power LDMOS transistor

5. Thermal characteristics

Table 5:	Thermal characteristics					
Symbol	Parameter	Conditions	Туре	Тур	Max	Unit
R _{th(j-case)}			BLF4G22-130	0.56	0.65	K/W
	junction to case	P _L = 33 W	BLF4G22LS-130	0.50	0.59	K/W

6. Characteristics

Table 6. Characteristics

 $T_i = 25 \circ C$ unless otherwise specified

,	1					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{(BR)DSS}	drain-source breakdown voltage	$V_{GS} = 0 \text{ V}; I_D = 2.1 \text{ mA}$	65	-	-	V
V _{GS(th)}	gate-source threshold voltage	V_{DS} = 10 V; I_{D} = 230 mA	2.5	3.1	3.5	V
I _{DSS}	drain leakage current	V_{GS} = 0 V; V_{DS} = 28 V	-	-	5	μΑ
I _{DSX}	drain cut-off current	$\label{eq:VGS} \begin{array}{l} V_{\mathrm{GS}} = V_{\mathrm{GS}(\mathrm{th})} + 6 \ V; \\ V_{\mathrm{DS}} = 10 \ V \end{array}$	35	44	-	A
I _{GSS}	gate leakage current	V_{GS} = +15 V; V_{DS} = 0 V	-	-	420	nA
g fs	forward transconductance	V_{DS} = 10 V; I_{D} = 12.8 A	-	11	-	S
R _{DS(on)}	drain-source on-state resistance	$V_{GS} = V_{GS(th)} + 6 V;$ $I_D = 7.7 A$	-	0.07	-	Ω
C _{rs}	feedback capacitance	$V_{GS} = 0 V; V_{DS} = 28 V;$ f = 1 MHz	-	3.4	-	pF

7. Application information

Table 7. Application information

Mode of operation: 2-carrier W-CDMA, PAR 7 dB at 0.01 % probability on CCDF, 3GPP test model 1, 1-64 DPCH; $f_1 = 2112.5$ MHz; $f_2 = 2122.5$ MHz; $f_3 = 2157.5$ MHz; $f_4 = 2167.5$ MHz.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
Gp	power gain	$P_{L(AV)} = 33 \text{ W}$	12.5	13.5	-	dB
RL _{in}	input return loss	$P_{L(AV)} = 33 \text{ W}$	-9	-15	-	dB
η_D	drain efficiency	$P_{L(AV)} = 33 \text{ W}$	24	26	-	%
IMD3	third order intermodulation distortion	$P_{L(AV)} = 33 \text{ W}$	-	-37	-34	dBc
ACPR	adjacent channel power ratio	P _{L(AV)} = 33 W	-	-41	-39	dBc

7.1 Ruggedness in class-AB operation

The BLF4G22-130 and the BLF4G22LS-130 are capable of withstanding a load mismatch corresponding to VSWR = 10 : 1 through all phases under the following conditions: $V_{DS} = 28 \text{ V}; \text{ I}_{Dq} = 1150 \text{ mA}; \text{ P}_{L} = 130 \text{ W} (CW).$

NXP Semiconductors

BLF4G22-130; BLF4G22LS-130

UHF power LDMOS transistor

Table 8. Typical impedance

$V_{DS} = 28 V; I_{Dq} = 11$	150 mA; $P_{L(AV)}$ = 33 W; T_{case} = 25 °	С.
f	Z _S	ZL
MHz	Ω	Ω
2110	1.9 – j2.8	1.7 – j1.8
2140	1.8 – j2.7	1.6 – j1.6
2170	1.7 – j2.6	1.5 – j1.4

NXP Semiconductors

BLF4G22-130; BLF4G22LS-130

UHF power LDMOS transistor

NXP Semiconductors

BLF4G22-130; BLF4G22LS-130

UHF power LDMOS transistor

8. Test information

See Table 9 for list of components.

T

© NXP B.V. 2007. All rights reserved.

7 of 13 Fig 8. Component layout for 2.14 GHz test circuit

NXP

Semiconductors

P

UHF power LDMOS transistor

Table 9. List of	components (see <mark>Figure 7</mark> and <mark>Fig</mark>	<mark>jure 8</mark>)		
Component	Description	Value		Remarks
C1, C2, C11	tantalum capacitor	10 μF; 35 V		
C3	multilayer ceramic chip capacitor	4.7 μF; 25 V		
C4, C10	multilayer ceramic chip capacitor	8.2 pF	[2]	
C5, C8, C14, C15	multilayer ceramic chip capacitor	1.5 μF; 50 V		
C6	multilayer ceramic chip capacitor	0.6 pF	[1]	
C7	multilayer ceramic chip capacitor	4.7 pF	[2]	
C9	multilayer ceramic chip capacitor	220 nF; 50 V		
C12	electrolytic capacitor	220 μF; 63 V		
C13	tantalum capacitor	4.7 μF; 50 V		
C16	multilayer ceramic chip capacitor	7.5 pF	<u>[1]</u>	ATC180R
L1	stripline	$Z_0 = 50 \ \Omega$	[3]	(W \times L) 32.3 mm \times 1.7 mm
L2	stripline	$Z_0 = 50 \ \Omega$	[3]	(W \times L) 2.2 mm \times 1.7 mm
L3	stripline	$Z_0 = 24 \Omega$	[3]	(W \times L) 2.3 mm \times 4.8 mm
L4	stripline	$Z_0 = 15 \ \Omega$	[3]	(W \times L) 2.4 mm \times 8 mm
L5	stripline	$Z_0 = 9.5 \ \Omega$	[3]	(W \times L) 9.3 mm \times 14 mm
L6	stripline	$Z_0 = 60 \ \Omega$	[3]	(W \times L) 4 mm \times 1.2 mm
L7	stripline	$Z_0 = 60 \ \Omega$	[3]	(W \times L) 14.5 mm \times 1.2 mm
L8	stripline	$Z_0 = 8.2 \ \Omega$	[3]	(W \times L) 9.3 mm \times 16.8 mm
L9	stripline	$Z_0 = 5.5 \ \Omega$	[3]	(W \times L) 3 mm \times 25.8 mm
L10	stripline	$Z_0 = 50 \ \Omega$	[3]	(W \times L) 11 mm \times 1.7 mm
L11	stripline	$Z_0 = 50 \ \Omega$	[3]	(W \times L) 9.5 mm \times 1.7 mm
L12	stripline	$Z_0 = 34 \ \Omega$	[3]	(W \times L) 3 mm \times 3 mm
L13	stripline	$Z_0 = 50 \ \Omega$	[3]	(W \times L) 12.7 mm \times 1.7 mm
L14	stripline	$Z_0 = 43 \ \Omega$	[3]	(W \times L) 13.5 mm \times 2.1 mm
R1	SMD resistor	4.7 Ω; 0.1 W		

[1] American Technical Ceramics type 100A or capacitor of same quality.

[2] American Technical Ceramics type 100B or capacitor of same quality.

[3] Striplines are on a double copper-clad Taconic RF35 Printed-Circuit Board (PCB) (ϵ_r = 3.5); thickness = 0.76 mm.

UHF power LDMOS transistor

9. Package outline

Fig 9. Package outline SOT502A

BLF4G22-130_4G22LS-130_1
Product data sheet

UHF power LDMOS transistor

Fig 10. Package outline SOT502B

UHF power LDMOS transistor

10. Abbreviations

Table 10.	Abbreviations
Acronym	Description
3GPP	Third Generation Partnership Project
ACPR	Adjacent Channel Power Ratio
CCDF	Complementary Cumulative Distribution Function
CW	Continuous Wave
DPCH	Dedicated Physical CHannel
EDGE	Enhanced Data rates for GSM Evolution
EVM	Error Vector Magnitude
GSM	Global System for Mobile communications
LDMOS	Laterally Diffused Metal Oxide Semiconductor
LDMOST	Laterally Diffused Metal-Oxide Semiconductor Transistor
PAR	Peak-to-Average power Ratio
RF	Radio Frequency
VSWR	Voltage Standing Wave Ratio
W-CDMA	Wideband Code Division Multiple Access

11. Revision history

Table 11. Revision history				
Document ID	Release date	Data sheet status	Change notice	Supersedes
BLF4G22-130_4G22LS-130_1	20070703	Product data sheet	-	-

12. Legal information

12.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

12.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

12.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or

malfunction of a NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

12.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

13. Contact information

For additional information, please visit: http://www.nxp.com

For sales office addresses, send an email to: salesaddresses@nxp.com

BLF4G22-130_4G22LS-130_1

UHF power LDMOS transistor

14. Contents

founded by

PHILIPS

1	Product profile 1
1.1	General description
1.2	Features 1
1.3	Applications 2
2	Pinning information 2
3	Ordering information 2
4	Limiting values 2
5	Thermal characteristics 3
6	Characteristics 3
7	Application information 3
7.1	Ruggedness in class-AB operation 3
8	Test information 6
9	Package outline 9
10	Abbreviations 11
11	Revision history 11
12	Legal information 12
12.1	Data sheet status 12
12.2	Definitions 12
12.3	Disclaimers
12.4	Trademarks 12
13	Contact information 12
14	Contents 13

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2007.

For more information, please visit: http://www.nxp.com

All rights reserved.

For sales office addresses, please send an email to: salesaddresses@nxp.com Date of release: 3 July 2007 Document identifier: BLF4G22-130_4G22LS-130_1