
 

USB-2-X 
 
 

 
 
 

Host Communication Protocol 
 

Version: 0.23 
2009-JUN-20 

 
 
 

 
 

TRINAMIC Motion Control GmbH & Co. KG 
Sternstraße 67 

D - 20357 Hamburg, Germany 
http://www.TRINAMIC.com 

http://www.trinamic.com/


USB-2-X Communication Protocol to the USB host (V023 / 2009-JUN-20)         2 
 
 

 
Copyright © 2009, TRINAMIC Motion Control GmbH & Co. KG 
 
 

 

Table of contents 
1 Life support policy ...................................................................................................................................................... 3 
2 Basic definitions .......................................................................................................................................................... 4 

2.1 Communication .................................................................................................................................................. 4 
2.2 Data packets ........................................................................................................................................................ 4 
2.3 ASCII codes of control characters ................................................................................................................ 4 

3 Definition of data packets ........................................................................................................................................ 5 
3.1 Overview .............................................................................................................................................................. 5 
3.2 IIC write ............................................................................................................................................................... 6 
3.3 IIC read ................................................................................................................................................................. 6 
3.4 IIC bit rate ........................................................................................................................................................... 6 
3.5 CAN write ............................................................................................................................................................. 7 
3.6 CAN read............................................................................................................................................................... 7 
3.7 CAN filter .............................................................................................................................................................. 8 
3.8 CAN bit rate ......................................................................................................................................................... 9 
3.9 LIN write ............................................................................................................................................................ 10 
3.10 LIN read .............................................................................................................................................................. 10 
3.11 LIN bit rate ........................................................................................................................................................ 11 
3.12 SPI write ............................................................................................................................................................. 12 
3.13 SPI write no response ................................................................................................................................... 12 
3.14 SPI timestamp .................................................................................................................................................. 12 
3.15 SPI read .............................................................................................................................................................. 13 
3.16 SPI init ................................................................................................................................................................ 14 
3.17 RS485 bit rate ................................................................................................................................................... 15 
3.18 RS485 write........................................................................................................................................................ 15 
3.19 RS485 read ......................................................................................................................................................... 15 
3.20 Firmware version ............................................................................................................................................. 16 

4 Firmware update and bootstrap loader ............................................................................................................. 17 
5 Revision history ......................................................................................................................................................... 18 
 

Table of tables 
Table 2.1: ASCII Codes of control characters................................................................................................................ 4 
Table 3.1: Overview of command and response codes............................................................................................. 5 
Table 3.2: IIC Bit rate Code ................................................................................................................................................ 6 
Table 3.3: Extended CAN identifier format..................................................................................................................... 7 
Table 3.4: Standard CAN identifier format ..................................................................................................................... 7 
Table 3.5 16-bit Filter Format for Extended CAN Identifier ...................................................................................... 8 
Table 3.6 16-bit Filter Format for Standard CAN Identifier ....................................................................................... 8 
Table 3.7 8-bit Filter Format for Extended or Standard CAN Identifier ................................................................ 8 
Table 3.8 CAN Bitrate ........................................................................................................................................................... 9 
Table 3.9: SPI init parameters ......................................................................................................................................... 14 
Table 3.10: Bootstrap loader status codes .................................................................................................................. 17 



USB-2-X Communication Protocol to the USB host (V023 / 2009-JUN-20)         3 
 
 

 
Copyright © 2009, TRINAMIC Motion Control GmbH & Co. KG 
 
 

 

1 Life support policy 
 
TRINAMIC Motion Control GmbH & Co. KG does not authorize or 
warrant any of its products for use in life support systems, 
without the specific written consent of TRINAMIC Motion 
Control GmbH & Co. KG.  
 
Life support systems are equipment intended to support or 
sustain life, and whose failure to perform, when properly used 
in accordance with instructions provided, can be reasonably 
expected to result in personal injury or death. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
© TRINAMIC Motion Control GmbH & Co. KG 2005 
 
Information given in this data sheet is believed to be accurate 
and reliable. However neither responsibility is assumed for the 
consequences of its use nor for any infringement of patents or 
other rights of third parties, which may result from its use.  
 
Specifications are subject to change without notice. 



USB-2-X Communication Protocol to the USB host (V023 / 2009-JUN-20)         4 
 
 

 
Copyright © 2009, TRINAMIC Motion Control GmbH & Co. KG 
 
 

2 Basic definitions 
2.1  Communication 
Communication between the USB host and the USB-2-X device always takes place over USB. The 
communication protocol is a master-slave protocol: The USB host is the master sending commands to 
the USB-2-X device. The USB-2-X device is the slave executing commands and sending back responses 
to the USB host if required by the command. Communication is based on data packets containing 
start character, packet ID, payload size, payload data, packet checksum and stop character. If start, 
stop and some other control characters are part of the payload data itself there must be foregoing a 
special delimiter control character to indicate that they are not to be treated as control characters. 
Packet reception can be acknowledged by the ACK control character or in case of an error by the NAK 
control character. 
 

2.2  Data packets 
STX 
1 Byte:  Packet ID (must not be a control character) 
2 Bytes:  Payload Size n (n < 256), 1st Byte = 0xF0 + High Nibble of n,  

2nd Byte = 0xF0 + Low Nibble of n 
n Bytes:  Payload Data 
2 Bytes: 8-Bit  Checksum c, calculated by adding ID, size and payload bytes, 1st Byte = 0xF0 + High 
Nibble   of c, 2nd Byte = 0xF0 + Low Nibble of c 
ETX 
 
Payload data must not contain STX, ETX, and DLE, ACK or NAK control characters. If such a character 
shall be transmitted as a payload data byte it has to be preceded by a DLE character. These additional 
DLE characters must not be included in the payload size. 
 
The checksum is calculated by 8-bit addition starting from the packet ID byte up to and including the 
last payload data byte. Additional DLE control characters have to be included in the checksum 
calculation. 
 
Each packet is responded by the receiver by either ACK indicating successful command execution or by 
NAK indicating an error condition. The composition of packets is the same for both transfer directions. 
 

2.3  ASCII codes of control characters 
 

Control 
Character 

ASCII Code 
(decimal) 

STX 2 

ETX 3 

ACK 6 

DLE 16 

NAK 21 

Table 2.1: ASCII Codes of control characters 



USB-2-X Communication Protocol to the USB host (V023 / 2009-JUN-20)         5 
 
 

 
Copyright © 2009, TRINAMIC Motion Control GmbH & Co. KG 
 
 

3 Definition of data packets 
 

3.1  Overview 
Table 3.1 shows an overview of all USB-2-X packet ID codes. Packet ID codes in the left column are 
commands sent from the USB host to the USB-2-X device. Some commands require a response from 
the USB-2-X device. ID codes of USB-2-X responses are shown in the right column. 
 

Command Packet ID 

(HostUSB-2-X) 

Purpose Response Packet ID 

(USB-2-XHost) 

0x31 IIC-Write --- 

0x32 IIC-Read 0x42 

0x33 CAN-Write --- 

0x34 CAN-Read 0x44 

0x35 CAN-Filter --- 

0x36 LIN-Write --- 

0x37 LIN-Read 0x47 

0x38 SPI-Write 0x48 

0x39 SPI-Read 0x49 

0x3A SPI-Write-No-Response --- 

0x3B RS485-Write --- 

0x3C RS485-Read 0x4C 

   

0x51 IIC-Bit rate --- 

0x52 CAN-Bit rate --- 

0x53 LIN-Bit rate --- 

0x54 SPI-Init --- 

0x55 RS485-Bitrate -- 

   

0xFF Firmware-Version 0xF0 

Table 3.1: Overview of command and response codes 

 



USB-2-X Communication Protocol to the USB host (V023 / 2009-JUN-20)         6 
 
 

 
Copyright © 2009, TRINAMIC Motion Control GmbH & Co. KG 
 
 

3.2  IIC write 
USB host transmits: 

 Packet ID: 0x31 

 Payload Data: 1 Byte = IIC Address, followed by the IIC data bytes 
 
USB-2-X responds: 

 ACK or NAK 
 
 

3.3  IIC read 
USB host transmits: 

 Packet ID: 0x32 

 Payload Data: 1 Byte IIC Address, 1 Byte Number of bytes to be read 
 
USB-2-X responds: 

 ACK or NAK 
 

Then USB-2-X transmits the read data in the following data packet: 

 Packet ID: 0x42 

 Payload Data: the read data, number of bytes as requested by host 

3.4  IIC bit rate 
USB host transmits: 

 Packet ID: 0x51 

 Payload Data: 1 Byte IIC Bit rate Code (see table 3.2): 
 

IIC Bit rate Code resulting IIC Bit rate [kBit/s] 
0 11,71875 

1 23,43750 

2 35,15625 

3 46,87500 

4 58,59375 

5 93,75000 

6 140,62500 

7 187,50000 

8 234,37500 

9 375,00000 

Table 3.2: IIC Bit rate Code 

 
USB-2-X responds: 

 ACK or NAK 



USB-2-X Communication Protocol to the USB host (V023 / 2009-JUN-20)         7 
 
 

 
Copyright © 2009, TRINAMIC Motion Control GmbH & Co. KG 
 
 

3.5  CAN write 
As long as the CAN interface is switched off (e.g. after power-on) each CAN write command is 
responded with NAK. The CAN interface can be switched on using the  CAN bit rate command. 
 
USB host transmits: 

 Packet ID:  0x33 

 Payload Data: 
- 4 Byte CAN identifier, most significant byte first, format according to table 3.3 and table 

3.4 
- 0…8 Bytes CAN message data. In case of a remote frame (RTR=1) the message data bytes 

won’t be transmitted on the CAN bus but rather their number is treated as the data 
length code (DLC) of the remote frame. There must be as many data bytes as requested 
by the remote frame. 

 
USB-2-X responds: 

 ACK or NAK 

31 30 29 28                                                             0 
IDE=1 RTR don’t care Extended Identifier Bits [28:0] 

Table 3.3: Extended CAN identifier format 

31 30  29                                11 10                                 0 
IDE=0 RTR don’t care Standard Identifier Bits [10:0] 

Table 3.4: Standard CAN identifier format 

3.6  CAN read 
USB host transmits: 

 Packet ID: 0x34 

 Payload Data:  no payload data 
 
USB-2-X responds: 

 ACK or NAK 
 

Then USB-2-X transmits the read data in the following data packet: 

 Packet ID:  0x44 

 Payload Data (only if payload size differs from zero): 
- 1 Byte Error code: 0=no error  

   1=software receive buffer overflow  
   2=hardware receive buffer overflow  
   3=software and hardware receive buffer overflow 

- 4 Bytes reception time, most significant byte first, resolution 170²/3 µs, wrap-around after 
203h 36m 47,75s 

- 4 Byte CAN identifier, most significant byte first, format according to table 3.3 and table 
3.4 

- 0...8 Bytes CAN message data. In case of a remote frame (RTR=1) the data bytes were not 
received from the CAN bus, their values have to be treated as don’t care. However, their 
number indicates, how many data bytes the requested message shall contain. 

 
USB host responds: 

 ACK or NAK 
 
 



USB-2-X Communication Protocol to the USB host (V023 / 2009-JUN-20)         8 
 
 

 
Copyright © 2009, TRINAMIC Motion Control GmbH & Co. KG 
 
 

3.7  CAN filter 
This command can be used to restrict the reception of CAN messages to dedicated identifiers or 
ranges of identifiers. By default all CAN messages are received and stored in the internal software 
receive buffer. This may lead to buffer overflow: messages received earlier will be overwritten by 
messages received later if they are not read out in time using the  CAN read command. 
 
USB host transmits: 

 Packet ID:   0x35 

 Payload Data: 
- 1st Byte: Filter Organization: 0=one 32-bit Filter 

    1=two 16-bit Filter 
    2=four 8-bit Filter 
    3=no message will pass the Filter (bytes may be omitted) 

 

 2nd to 5th Byte: 4 Byte CAN Identifier, most significant byte first, Interpretation acc. to Filter 
Organization: 
    one 32-bit Filter: Format acc. to table 3.3 and table 3.4 
    two 16-bit Filter:  Format acc. to table 3.5 and table 3.6 
    four 8-bit Filter:  Format acc. to table 3.7 

 

 6th to 9th Byte: 4 Byte Mask (Format like Identifier): 
    Bit=1: Identifier-Bit is ignored by the filter 
    Bit=0: Identifier-Bit must match in order that the message is 
stored 
 

USB-2-X responds: 

 ACK or NAK 
 

15 14 13…                                                      0 
IDE=1 don’t care Extended Identifier Bits [28:15] 

Table 3.5 16-bit Filter Format for Extended CAN Identifier 

 

15 14 13…        11 10…                                        0 
IDE=0 RTR don’t care Standard Identifier Bits [10:0] 

Table 3.6 16-bit Filter Format for Standard CAN Identifier 

7…                                  0 

Extended Identifier Bits [28:21] 
Standard Identifier Bits [10:3] 

Table 3.7 8-bit Filter Format for Extended or Standard CAN Identifier 

 



USB-2-X Communication Protocol to the USB host (V023 / 2009-JUN-20)         9 
 
 

 
Copyright © 2009, TRINAMIC Motion Control GmbH & Co. KG 
 
 

3.8  CAN bit rate 
USB host transmits: 

 Packet ID:  0x52 

 Payload Data: 
- 1 Byte CAN Bit rate: 

 
See table 3.8. Power-on setting is 0: CAN controller disabled and CAN transceiver in 
standby mode. This is the suggested setting to save power if CAN is not used. 
 
Bit 7 (MSB)=1: Incoming CAN messages which have passed the filter will directly be 
forwarded to the USB host using packet ID 0x44 without prior CAN read command.  
The USB host must not acknowledge such data packets. 
 

 

CAN Bit rate Code resulting CAN Bit rate [kBit/s] 
0 CAN disabled 

1 10 

2 20 

3 50 

4 100 

5 125 

6 250 

7 500 

8 800 

9 1000 

Table 3.8 CAN bit rate 

USB-2-X responds: 

 ACK or NAK 



USB-2-X Communication Protocol to the USB host (V023 / 2009-JUN-20)         10 
 
 

 
Copyright © 2009, TRINAMIC Motion Control GmbH & Co. KG 
 
 

3.9  LIN write 
USB host transmits: 

 Packet ID:  0x36 

 Payload Data: 
-    1 Byte LIN message ID 
-    0..8 Bytes LIN message data 
-    1 Byte Period: 

 Bit 7 (MSB) = 1: send this LIN message periodically to avoid the idle condition on the 
LIN bus. A previously defined periodic LIN message is replaced by this message, i.e., 
only one message can be defined as periodic message at any one time. Singular 
messages can be sent in parallel with the periodic message even if they have the 
same ID. Singular messages delay the transmission of the periodic message, i.e., the 
periodic message will only be sent after not having sent a singular message for the 
duration of one period.  
Bits [6...0] = Transmission period in integer multiples of 10 milliseconds 
Period = 0: stop transmission of periodic LIN message immediately  
After Reset initially no message is sent periodically. 

 Bit 7 (MSB) = 0: send this LIN message only once (singular message). A previously 
defined periodic LIN message is sent out periodically further on. 
Bits [6...0] are don’t care 

 
USB-2-X responds: 

 ACK or NAK 
 

3.10  LIN read 
USB host transmits: 

 Packet ID:  0x37 

 Payload Data: 
- 1 Byte LIN message ID 
- 1 Byte Number of requested data bytes 

 
USB-2-X responds: 

 ACK or NAK 
 

Then USB-2-X transmits the read data in the following data packet: 

 Packet ID:  0x47 

 Payload Data: 
- 1 Byte  Error code: 0 = no error 

   1 = read timeout 
   2 = LIN checksum error 
   3 = loss of data (receive overrun) 
   4 = LIN header corrupted 

- 0..8 Bytes LIN message data 
 
USB host responds: 

 ACK or NAK 



USB-2-X Communication Protocol to the USB host (V023 / 2009-JUN-20)         11 
 
 

 
Copyright © 2009, TRINAMIC Motion Control GmbH & Co. KG 
 
 

3.11  LIN bit rate 
USB host transmits: 

 Packet ID:  0x53 

 Payload Data: 1 Byte Bit rate: 0 = 2400 bit/s, 1 = 9600 bit/s, 2 = 19200 bit/s 
 
USB-2-X responds: 

 ACK or NAK 
 



USB-2-X Communication Protocol to the USB host (V023 / 2009-JUN-20)         12 
 
 

 
Copyright © 2009, TRINAMIC Motion Control GmbH & Co. KG 
 
 

3.12  SPI write 
This command allows transferring data bytes between the USB host and the SPI slave over the SPI 
bus. USB-2-X always acts as the SPI master. The received number of bytes equals the sent number of 
bytes. 
 
USB host transmits: 

 Packet ID:  0x38 

 Payload Data: data bytes to be sent 
 
USB-2-X responds: 

 ACK or NAK 
Then USB-2-X transmits the read data in the following data packet: 

 Packet ID:  0x48 

 Payload Data: data bytes received, byte count equals number of bytes sent 
 
USB host responds: 

 ACK or NAK 
 

3.13  SPI write no response 
This command is the same as SPI write except that the received slave data is not returned to the USB 
host. If the received slave data is not of interest this command can be used instead of SPI write to 
save the time required by the USB host to acknowledge the received slave data. 
 
Packet ID:  0x3A 
Payload Data:  data bytes to be sent 
 
USB-2-X response: ACK or NAK 
 

3.14  SPI timestamp 
The SPI write timestamp package is an additional response that will be generated after each SPI write 
or SPI write no response command when the write timestamp flag is set in the SPI init command. 
 
The USB-2-X transmits the timestamp in the following packet: 

 Packet ID: 0x4A 

 Payload data:  4 Bytes SPI write cycle start time, most significant byte first,  
resolution 170²/3 µs, wrap-around after 203h 36m 47.75s 
 



USB-2-X Communication Protocol to the USB host (V023 / 2009-JUN-20)         13 
 
 

 
Copyright © 2009, TRINAMIC Motion Control GmbH & Co. KG 
 
 

3.15  SPI read 
This command is intended to read out the SPI slave receive buffer. The SPI slave receive buffer stores 
data which were retrieved from the SPI slave by USB-2-X in reaction to a falling edge on the SPI slave 
request line. Enable Slave Request must be set to one (see table 3.9) in order to enable USB-2-X to 
react on the SPI slave request line. 
 
USB host transmits: 

 Packet ID:  0x39 

 Payload Data:  no payload 
 
USB-2-X responds: 

 ACK or NAK 
 

Then USB-2-X transmits the data received from the SPI slave in the following data packet: 

 Packet ID:  0x49 

 Payload Data:  received SPI data (one datagram only) 
 
USB host responds: 

 ACK or NAK 
 
If Enable Slave Request and Push Slave Data are both set to one (see table 3.9) this command is not 
required. In this case the data received from the SPI slave will be forwarded to the USB host 
automatically: 
 
USB-2-X sends: 

 Packet ID:  0x49 

 Payload Data: 
- 4 Bytes reception time, most significant byte first,  

resolution 170²/3 µs, wrap-around after 203h 36m 47.75s 
- received SPI data (up to 251 bytes incl. leading byte count, one datagram at a time) 

 
Data packets of this type will only be sent from USB-2-X to the USB host when any command 
processing and responding has been finished, i.e., when USB-2-X waits for the reception of the next 
command start character STX. 
 

In contrast to the other data packets it is neither required nor allowed to acknowledge this type 
of data packet by sending ACK or NAK. This implies that transmission of such a data packet 
cannot be repeated in case of failure to receive it error-free. 

 



USB-2-X Communication Protocol to the USB host (V023 / 2009-JUN-20)         14 
 
 

 
Copyright © 2009, TRINAMIC Motion Control GmbH & Co. KG 
 
 

3.16  SPI init 
This command adjusts SPI clock settings, further SPI related parameters and flushes the SPI slave 
receive buffer. The SPI init command must be executed before any other SPI command can be used. 
 
Packet ID:  0x54 
Payload Data: 

 
USB-2-X response: ACK/NAK 
 

 7 6 5 4 3 2 1 0 

1st Byte 0 Base Clock[2:0] Clock Polarity Clock Phase Clock Divisor [1:0] 

2nd Byte 0 Slave Select Delay [2:0] Inter-Byte Delay [3:0] 

3rd Byte SPI Enable 0 0 
Half 

Duplex 
Write 

Timestamp 
Push Slave 

Data 
EnableSlave 

Request 
3V3 

Parameter Name Parameter Coding 

Base Clock [2:0] 0: CPU clock frequency = 1.5 MHz 2: CPU clock frequency = 4.5 MHz (only allowed for 5V operation) 
1: CPU clock frequency = 3.0 MHz 3: CPU clock frequency = 6.0 MHz (only allowed for 5V operation) 
    4: CPU clock frequency = 7.5 MHz (only allowed for 5V operation) 
SPI clock frequency = CPU clock frequency / SPI clock divider 

Clock Polarity 0: SPI clock line idle level = low 1: SPI clock line idle level = high 

Clock Phase 0: 1st clock edge latches bit 7, 2nd clock edge shifts out bit 6 onto the bus 
1: 1st clock edge shifts out bit 7 onto the bus, 2nd clock edge latches bit 6 

Clock Divisor [1:0] 0: SPI clock divider = 2  2: SPI clock divider = 32 
1: SPI clock divider = 8  3: SPI clock divider = 128 
SPI clock frequency = CPU clock frequency / SPI clock divider 

Slave Select Delay 
[2:0] 

Minimum delay after slave select going low until 1st byte / after last byte until slave select going high: 
min_ss_delay [CPU clock cycles] = 6 + 3 * 2^Slave Select Delay 
 
0: min_ss_delay = 9 cycles  4: min_ss_delay = 54 cycles 
1: min_ss_delay = 12 cycles  5: min_ss_delay = 102 cycles 
2: min_ss_delay = 18 cycles  6: min_ss_delay = 198 cycles 
3: min_ss_delay = 30 cycles  7: min_ss_delay = 390 cycles 
 
Note: Due to SPI hardware constraints the actual delay act_ss_delay varies: 
 min_ss_delay ≤ act_ss_delay ≤ min_ss_delay + SPI bit time  
with  SPI bit time [CPU clock cycles] = SPI clock divider 

Inter-Byte Delay 
[3:0] 

Delay between any two bytes of an SPI transfer: 
byte_delay [CPU clock cycles] = 8 * 2^Inter-Byte Delay for 1 ≤ Inter-Byte Delay ≤ 8 (0 means no delay) 
 
0: byte_delay = 0 cycles (back-to-back byte transfer without delay)  
1: byte_delay = 16 cycles (only for SPI clock divider 2 or 8)  5: byte_delay = 256 cycles 
2: byte_delay = 32 cycles (only for SPI clock divider 2, 8 or 32) 6: byte_delay = 512 cycles 
3: byte_delay = 64 cycles (only for SPI clock divider 2, 8 or 32) 7: byte_delay = 1024 cycles 
4: byte_delay = 128 cycles     8: byte_delay = 2048 cycles 
 
Note: The delay after the first byte of a Slave Request transfer is up to 15 CPU clock cycles plus one SPI bit 
time longer than the delay between the following bytes. This is because the first byte of a Slave Request 
transfer contains the number of the following bytes and must be processed before the following bytes can 
be transferred. 

SPI Enable 0: SPI hardware disabled  1: SPI hardware enabled 

Half Duplex 1: Slave requests have priority over master writes (packet 0x3A)       0: write commands have priority 

Write Timestamp 0: No timestamps for SPI writes will be generated. 
1: After every SPI write, the exact start time of the write cycle will be send back as a type 0x4A package. 

Push Slave Data Only evaluated if Enable Slave Request = 1 
0: Data received in reaction to SPI slave request must be read using SPI read command 
1: Data received in reaction to SPI slave request are forwarded to the USB host automatically 

Enable Slave 
Request 

0: SPI slave request line is ignored, SPI slave cannot request a transfer 
1: SPI slave can request USB-2-X to start a transfer by a falling edge on the SPI slave select line. The first 
byte received from the slave is interpreted as remaining byte count of this transfer. 

3V3 0: logic high level of SPI bus lines is 5V 
1: logic high level of SPI bus lines is 3.3V (only allowed for CPU clock frequency = 1.5 MHz or 3.0 MHz) 

Table 3.9: SPI init parameters 



USB-2-X Communication Protocol to the USB host (V023 / 2009-JUN-20)         15 
 
 

 
Copyright © 2009, TRINAMIC Motion Control GmbH & Co. KG 
 
 

 IIC cannot be used simultaneously with SPI. To re-enable IIC after SPI has been used, disable 
the SPI interface by executing an SPI init command with the SPI Enable bit (Bit 7 of data byte 
3) set to zero. This will disable SPI (all SPI pins will be tri-stated then) and re-initialize IIC. 
After that, the IIC bit rate must also be set up again using the IIC bit rate command.  

 The bit rates of all the other interfaces are calculated using a base clock value of 7.5MHz. So, 
when setting the base clock frequency to a value different than 7.5MHz, all bit rates of the 
other interfaces (IIC, LIN, RS485, and CAN) will be wrong. So, set the clock frequency back to 
7.5MHz when disabling SPI to get all other bit rates right or use a base clock frequency of 
7.5MHz when planning to use SPI simultaneously with LIN, RS485 or CAN. 

 

3.17  RS485 bit rate 
This command enables the RS485 interface and sets up its baud rate. It also disables the LIN interface, 
as RS485 and LIN cannot be used simultaneously (to re-enable LIN after RS485 has been used, the LIN 
bit rate command has to be used once again, as the LIN bit rate command also disables RS485). 
 
USB host transmits: 

 Packet ID:  0x55 

 Payload Data:  1 Byte Bit rate: 0 = 2400 bit/s, 1 = 9600 bit/s, 2 = 19200 bit/s 
 
USB-2-X responds: 

 ACK or NAK 
 

3.18  RS485 write 
This command writes data to the RS485 interface. The response will not be sent until all data bytes 
have been written to the RS485 interface. 
USB host transmits: 

 Packet ID:  0x3B 

 Payload Data:  data bytes to be sent via the RS485 interface 
USB-2-X responds: 

 ACK or NAK 
 

3.19  RS485 read 
This command reads data from the receive buffer of the RS485 interface. 
USB host transmits: 

 Packet ID:  0x3C 

 Payload data:  no payload data 
USB-2-X responds: 

 ACK or NAK 
 
Then, the USB-2-X device returns all data bytes that could be read from the receive buffer in the 
following packet: 

 Packet ID:  0x4C 

 Payload data:  the data bytes that were read form the RS485 receive buffer 
 
This packet will also be sent back when the receive buffer is empty (in this case with no payload 
data). 
 
USB host responds: 

 ACK or NAK 



USB-2-X Communication Protocol to the USB host (V023 / 2009-JUN-20)         16 
 
 

 
Copyright © 2009, TRINAMIC Motion Control GmbH & Co. KG 
 
 

3.20  Firmware version 
USB host transmits: 

 Packet ID:  0xFF 

 Payload Data: 1 Byte Reset-Flag (0=don’t reset USB-2-X device, 1=reset USB-2-X device) 
 
USB-2-X responds: 

 ACK or NAK 
Then USB-2-X transmits the read data in the following data packet: 

 Packet ID:  0xF0 

 Payload Data: 
- 1 Byte Reset-Flag (0=no reset executed since last 0xFF command, 1 otherwise) 
- up to 32 bytes of plain ASCII version information text 

 
USB host responds: 

 ACK or NAK 
 



USB-2-X Communication Protocol to the USB host (V023 / 2009-JUN-20)         17 
 
 

 
Copyright © 2009, TRINAMIC Motion Control GmbH & Co. KG 
 
 

4 Firmware update and bootstrap loader 
Firmware Updates can be executed using the bootstrap loader (BSL). The BSL is independent from the 
firmware, stored in a separate flash memory area and protected against erasure. The BSL is able to 
receive a firmware, to program it into the flash memory, to check it on integrity and to start it. The 
BSL is automatically started after Reset. Reset can be initiated by power-on (plugging the USB cable) 
or by the Firmware-Version command with Reset-Flag set to 1. The BSL expects Motorola S-record 
compliant data over the USB interface. Motorola S-records are made up of ASCII characters and are 
usually combined in files. One S-record corresponds to one line of text in the file. The BSL supports 
the following S-record syntax: 
 
typedef struct { 
  char[2]     type;  // e.g. “S1” (= 53h 31h) 
  char[2]     count;  // e.g. “23” (= 32h 33h): 23h ASCII-Bytes follow 
  char[4]     address;  // e.g. “C400” (= 43h 34h 30h 30h): data storage address 
  char[0-504] data;  // up to 252 data bytes 
  char[2]     checksum; // one’s-complement of the modulo-256 sum over count, addr + data 
} S_RECORD; 

 
Each S-record is completed by line end character(s) not to be sent to the BSL. S-record types S0, S1 
and S9 are supported (file format .s19). Each S-record is acknowledged with a status code by the BSL. 
Any positive status code (0...0x7F) corresponds to the version number of the BSL and indicates error-
free reception and processing of the S-record. Any negative status code (0x80...0xFF) indicates an error 
according to table 3.10. 
 

BSL status code 
(hexadecimal) 

Meaning 

0...0x7F BSL version number; S-record received and processed error-free 

0x80 Error: Firmware could not be started, is not available or corrupted 

0x81 Error: wrong S-record type: only S0, S1 and S9 are supported 

0x82 Error: wrong S-record address: firmware storage at this address is not allowed 

0x83 Error: wrong checksum, S-record corrupted 

0x84 Error: Erasing a flash memory page failed 

0x85 Error: Programming a S1-record into the flash memory failed 

0x86 Error: S-record contains illegal character(s)  

0x87 Error: illegal S-record length 

Table 4.1: Bootstrap loader status codes 

S0 and S9-records are evaluated regarding their checksum and acknowledged with a status code. 
 
The data field of S1-records contains the actual firmware bytes. Checksum and storage address of S1-
records are evaluated and the related flash memory pages are erased if necessary. The received 
firmware bytes are programmed into the flash memory. Afterwards the record is acknowledged with a 
status code. 
 
Starting the firmware is accomplished by an arbitrary firmware command (see 3 Definition of data 
packets). This is possible since each firmware command starts with the STX control character (see 2.2  
Data packets). STX is recognized by the BSL as not being part of an S-record. STX causes the BSL to 
jump to the fix firmware entry point if a firmware is stored in the flash memory. The BSL is exit, and 
then the firmware receives the command bytes following after STX and processes the command 
accordingly. This way the firmware can be started also without prior update. After starting the 
firmware updates are possible only after a new Reset. In case there is no functioning firmware stored 
in the flash memory the STX control character is acknowledged with an error code and the BSL stays 
active. 
 



USB-2-X Communication Protocol to the USB host (V023 / 2009-JUN-20)         18 
 
 

 
Copyright © 2009, TRINAMIC Motion Control GmbH & Co. KG 
 
 

5 Revision history 
 

Rev. No. Date Author Changes 

0.01 2003-AUG-18 OK first draft 

0.02 2003-AUG-26 OK ASCII codes of control characters added 

0.03 2003-AUG-28 OK LIN commands and version info added 

0.04 2003-OKT-08 TG LIN read: parameter count of requested Bytes added 

0.05 2003-OKT-14 TG LIN read: more error codes added 

0.06 2003-OKT-20 TG Firmware update added 

0.07 2004-JAN-24 TG CAN commands revised and expanded 

0.08 2004-FEB-05 TG LIN write expanded for periodic message repetition 

0.09 2004-MAR-05 TG CAN commands structure changed for faster execution; CAN Bit 
rate supports 750 instead of 800 kbps, CAN-Read error codes 
added/changed 

0.10 2004-MAR-10 TG CAN commands completely revised again 

0.11 2004-APR-05 TG SPI, Async-Data and commands overview added 

0.12 2004-MAY-10 TG Translation to English 

0.13 2004-MAY-12 TG SPI init changed 

0.14 2004-MAY-19 TG Minor corrections 

0.16 2004-JUL-22 TG CAN push mode added 

0.18 2004-JUL-27 TG JTAG commands and SPI write no response added 

0.19 2004-AUG-12 TG SPI init: changed Base Clock, Slave Select Delay and Inter-Byte 
Delay 

0.20 2004-OCT-01 TG new company address 

0.21 2005-JAN-25 OK RS485 commands added 

0.22 2005-NOV-11 OK New SPI features added 

0.23 2009-JUN-20 SD Minor changes 

 


	Life support policy
	Basic definitions
	Communication
	Data packets
	ASCII codes of control characters

	Definition of data packets
	Overview
	IIC write
	IIC read
	IIC bit rate
	CAN write
	CAN read
	CAN filter
	CAN bit rate
	LIN write
	LIN read
	LIN bit rate
	SPI write
	SPI write no response
	SPI timestamp
	SPI read
	SPI init
	RS485 bit rate
	RS485 write
	RS485 read
	Firmware version

	Firmware update and bootstrap loader
	Revision history

