

PNP Silicon Small Signal Transistor

Qualified per MIL-PRF-19500/382

Qualified Levels: JAN, JANTX, and JANTXV

DESCRIPTION

This 2N2944AUB through 2N2946AUB PNP silicon transistor device is military qualified up to a JANTXV level for high-reliability applications. Microsemi also offers numerous other products to meet higher and lower power voltage regulation applications.

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- Surface mount equivalent of JEDEC registered 2N2944A thru 2N2946A series.
- Low-profile ceramic surface mount package.
- JAN, JANTX, and JANTXV qualification per MIL-PRF-19500/382 available.
- RoHS compliant versions available (commercial grade only).

APPLICATIONS / BENEFITS

- Small lightweight package.
- ESD to Class 3 per MIL-STD-750, method 1020.

Also available in:

UB Package

TO-46 (TO-206AB)

(axial leaded)

MAXIMUM RATINGS @ +25 °C unless otherwise noted

Parameters/Test Conditions	Symbol	Value	Unit	
Junction and Storage Temperature	T _J and T _{STG}	-65 to +200	°C	
Thermal Resistance Junction-to-Ambi	R _{OJA}	435	°C/W	
Thermal Resistance surface mount Ju Point	R _{OJSP}	90	°C/W	
Collector Current (dc)	Ic	-100	mA	
Emitter to Base voltage (static),	2N2944AUB	V_{EBO}	-15	V
collector open	2N2945AUB		-25	
	2N2946AUB		-40	
Collector to Base voltage (static),	2N2944AUB	V_{CBO}	-15	V
emitter open	2N2945AUB		-25	
	2N2946AUB		-40	
Collector to Emitter voltage (static),	2N2944AUB	$V_{\sf CEO}$	-10	V
base open	2N2945AUB		-20	
	2N2946AUB		-35	
Emitter to Collector voltage	2N2944AUB	V_{ECO}	-10	V
	2N2945AUB		-20	
	2N2946AUB		-35	
Total Power Dissipation, all terminals	P _T	400	mW	
Total Power Dissipation, all terminals	P_T	800	mW	

Notes: 1. Derate linearly 2.30 mW / $^{\circ}$ C above $T_A = +25^{\circ}$ C.

2. T_A = +55°C for UB on printed circuit board (PCB), PCB = FR4 .0625 inch (1.59 mm) 1 - layer 1 Oz Cu, horizontal, still air, pads (UB) = .034 inch (0.86 mm) x .048 inch (1.22 mm), $R_{\theta JA}$ with a defined thermal resistance condition included is measured at $P_T = 400 \text{ mW}$.

MSC - Lawrence

6 Lake Street, Lawrence, MA 01841 Tel: 1-800-446-1158 or (978) 620-2600 Fax: (978) 689-0803

MSC - Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:

www.microsemi.com

MECHANICAL and PACKAGING

- CASE: Ceramic.
- TERMINALS: Gold plating over nickel under-plate. RoHS compliant matte/tin available on commercial grade only.
- MARKING: Part number, date code, manufacturer's ID.
- TAPE & REEL option: Standard per EIA-418D. Consult factory for quantities.
- WEIGHT: < 0.04 Grams.
- See <u>Package Dimensions</u> on last page.

PART NOMENCLATURE

SYMBOLS & DEFINITIONS							
Symbol	Definition						
I _B	Base current (dc).						
Ι _Ε	Emitter current (dc).						
V_{CB}	Collector to base voltage (dc).						
V_{EB}	Emitter to base voltage (dc).						
$V_{(BR)}$	Minimum Breakdown Voltage: The minimum voltage the device will exhibit at a specified current.						

ELECTRICAL CHARACTERISTICS @ 25 °C unless otherwise noted.

Characteristic		Symbol	Min.	Max.	Unit
OFF CHARACTERISTICS:		,	I	I	
Collector-Emitter Breakdown Voltage					
$I_{C} = -10 \mu A$	2N2944AUB	V(BR)CEO	-10		V
	2N2945AUB	(2.1,020	-20		
	2N2946AUB		-35		
Emitter-Collector Breakdown Voltage					
$I_E = -10 \mu A, I_B = 0$	2N2944AUB	V(BR)ECO	-10		V
	2N2945AUB	(=1.7,200	-20		
	2N2946AUB		-35		
Collector-Base Cutoff Current					
Vcb = -15 V	2N2944AUB	I _{CBO}	10		μΑ
Vcb = -25 V	2N2945AUB	1000	10		
Vcb = -40 V	2N2946AUB		10		
Emitter-Base Cutoff Current					
VEB = -12 V	2N2944AUB	I _{EBO}		-0.1	ηΑ
VEB = -20 V	2N2945AUB			-0.2	
VEB = -32 V	2N2946AUB			-0.5	
ON CHARACTERISTICS: (1)					
Forward-Current Transfer Ratio	2N2944AUB				
$I_C = -1.0 \text{ mA}, V_{CE} = -0.5 \text{ V}$	2N2945AUB	hFE	100		
	2N2946AUB		70		
			50		
Forward-Current Transfer Ratio (inverted con	nection)				
$I_E = -200 \mu A, V_{EC} = -0.5 V$	2N2944AUB	hFE(inv)	50		
	2N2945AUB	, ,	30		
	2N2946AUB		20		
Emitter-Collector Offset Voltage					
$I_B = -200 \mu A, I_E = 0$	2N2944AUB	VEC(ofs)		-0.3	mV
	2N2945AUB			-0.5	
	2N2946AUB			-0.8	
$I_B = -1.0 \text{ mA}, I_E = 0$	2N2944AUB			-0.6	
	2N2945AUB			-1.0	
	2N2946AUB			-2.0	
$I_B = -2.0 \text{ mA}, I_E = 0$	2N2944AUB			-1.0	
.B = 2.0 m, , .E = 0	2N2945AUB			-1.6	
	2N2946AUB			-2.5	
DYNAMIC CHARACTERISTICS:		1	1	1	1
Emitter-Collector On-State Resistance					
$I_B = -100 \mu\text{A}, I_E = 0, I_e = 100 \mu\text{A} \text{ ac (rms)}$	2N2944AUB	r _{ec} (on)		10	
f = 1.0 kHz	2N2945AUB	ec,		12	
	2N2946AUB			14	Ω
$I_B = -1.0 \text{ mA}, I_E = 0, I_e = 100 \mu\text{A ac (rms)}$	2N2944AUB			4.0	
f =1.0 kHz	2N2945AUB			6.0	
	2N2946AUB			8.0	
Magnitude of Small-Signal Forward					
Current Transfer Ratio	2N2944AUB	h _{fe}	15	55	
$I_C = -1.0 \text{ mA}, V_{CE} = -6.0 \text{V}, f = 1.0 \text{ MHz}$	2N2945AUB	1 101	10	55	
5	2N2946AUB		5.0	55	
Output Capacitance		_			
$V_{CB} = -6.0 \text{ V}, I_E = 0, 100 \text{ kHz} \le f \le 1.0 \text{ MHz}$		C _{obo}		10	pF
Input Capacitance					
·		Cibo		6.0	pF
$V_{EB} = -6.0 \text{ V}, I_C = 0, 100 \text{ kHz} \le f \le 1.0 \text{ MHz}$			I		

⁽¹⁾ Pulse Test: Pulse Width = 300 s, duty cycle 2.0%.

GRAPHS

FIGURE 1 – Temperature-Power Derating Curve $(R_{\Theta JA})$

FIGURE 2 – Temperature-Power Derating Curve (R_{OJSP})

PACKAGE DIMENSIONS

	Dimensions					Dimensions					
Symbol	inch		millimeters		Note	Symbol	inch		millimeters		Note
	Min	Max	Min	Max			Min	Max	Min	Max	
BH	.046	.056	1.17	1.42		LS1	.035	.039	0.89	0.99	
BL	.115	.128	2.92	3.25		LS2	.071	.079	1.80	2.01	
BW	.085	.108	2.16	2.74		LW	0.16	0.24	0.41	0.61	
CL		.128		3.25		r		.008		0.20	
CW		.108		2.74		r1		.012		0.31	
LL1	.022	.038	0.56	0.97		r2		.022		.056	
LL2	.017	.035	0.43	0.89							

NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. Hatched areas on package denote metallized areas.
- 4. Pad 1 = Base, Pad 2 = Emitter, Pad 3 = Collector, Pad 4 = Shielding connected to the lid.
- 5. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.