1.8 V 28-bit 1 : 2 configurable registered buffer with parity for DDR2-800 RDIMM applications

Rev. 04 — 22 April 2010

Product data sheet

1. General description

The SSTUB32868 is a 1.8 V 28-bit 1 : 2 register specifically designed for use on two rank by four $(2R \times 4)$ and similar high-density Double Data Rate 2 (DDR2) memory modules. It is similar in function to the JEDEC-standard 14-bit DDR2 register, but integrates the functionality of the normally required two registers in a single package, thereby freeing up board real-estate and facilitating routing to accommodate high-density Dual In-line Memory Module (DIMM) designs.

The SSTUB32868 also integrates a parity function, which accepts a parity bit from the memory controller, compares it with the data received on the D-inputs and indicates whether a parity error has occurred on its open-drain PTYERR pin (active LOW).

It further offers added features over the JEDEC standard register in that it can be configured for normal or high output drive strength, simply by tying input pin SELDR either HIGH or LOW as needed. This allows use in different module designs varying from low to high density designs by picking the appropriate drive strength to match net loading conditions. Furthermore, the SSTUB32868 features two additional chip select inputs, which allow more versatile enabling and disabling in densely populated memory modules. Both added features (drive strength and chip selects) are fully backward compatible to the JEDEC standard register.

The SSTUB32868 is packaged in a 176-ball, 8×22 grid, 0.65 mm ball pitch, thin profile fine-pitch ball grid array (TFBGA) package, which (while requiring a minimum 6 mm \times 15 mm of board space) allows for adequate signal routing and escape using conventional card technology.

2. Features and benefits

- 28-bit data register supporting DDR2
- Supports 2 rank by 4 DIMM density by integrating equivalent functionality of two JEDEC-standard DDR2 registers (that is, 2 × SSTUA32864 or 2 × SSTUA32866)
- Parity checking function across 22 input data bits
- Parity out signal
- Controlled multi-impedance output impedance drivers enable optimal signal integrity and speed
- Meets or exceeds SSTUB32868 JEDEC standard speed performance
- Supports up to 450 MHz clock frequency of operation
- Programmable for normal or high output drive
- Optimized pinout for high-density DDR2 module design
- Chip-selects minimize power consumption by gating data outputs from changing state

- Two additional chip select inputs allow optional flexible enabling and disabling
- Supports Stub Series Terminated Logic SSTL_18 data inputs
- Differential clock (CK and CK) inputs
- Supports Low Voltage Complementary Metal-Oxide Semiconductor (LVCMOS) switching levels on the control and RESET inputs
- Single 1.8 V supply operation (1.7 V to 2.0 V)
- Available in 176-ball 6 mm × 15 mm, 0.65 mm ball pitch TFBGA package

3. Applications

- 400 MT/s to 800 MT/s high-density (for example, 2 rank by 4) DDR2 registered DIMMs
- DDR2 Registered DIMMs (RDIMM) desiring parity checking functionality

4. Ordering information

Table 1.	Ordering	information

Type number	Solder process	Package					
		Name	Description	Version			
SSTUB32868ET/G	Pb-free (SnAgCu solder ball compound)	TFBGA176	plastic thin fine-pitch ball grid array package; 176 balls; body $6 \times 15 \times 0.7$ mm	SOT932-1			
SSTUB32868ET/S	Pb-free (SnAgCu solder ball compound)	TFBGA176	plastic thin fine-pitch ball grid array package; 176 balls; body $6\times15\times0.7$ mm	SOT932-1			

4.1 Ordering options

Table 2. Ordering options

Type number	Temperature range
SSTUB32868ET/G	$T_{amb} = 0 \circ C \text{ to } +70 \circ C$
SSTUB32868ET/S	$T_{amb} = 0 \circ C \text{ to } +85 \circ C$

1.8 V DDR2-800 configurable registered buffer with parity

5. Functional diagram

SSTUB32868

1.8 V DDR2-800 configurable registered buffer with parity

1.8 V DDR2-800 configurable registered buffer with parity

6. Pinning information

6.1 Pinning

SSTUB32868

1.8 V DDR2-800 configurable registered buffer with parity

	1	2	3	4	5	6	7	8
A	D2	D1	С	GND	VREF	GND	Q1A	Q1B
в	D4	D3	V _{DD}	V _{DD}	V _{DD}	V _{DD}	Q2A	Q2B
с	D6 (DCKE1)	D5	GND	GND	GND	GND	Q3A	Q3B
D	D8 (DCKE0)	D7	V _{DD}	V _{DD}	V _{DD}	V _{DD}	Q4A	Q4B
Е	D9	Q6A (QCKE1A)	GND	GND	GND	GND	Q5A	Q5B
F	D10	Q8A (QCKE0A)	V _{DD}	V _{DD}	V _{DD}	V _{DD}	Q7A	Q6B (QCKE1B)
G	D11	Q10A	GND	GND	GND	GND	Q9A	Q7B
н	D12	Q12A	V _{DD}	V _{DD}	V _{DD}	V _{DD}	Q11A	Q8B (QCKE0B)
J	DCS1 (D13)	QCS1A (Q13A)	GND	GND	GND	GND	Q10B	Q9B
к	DCS0 (D14)	QCS0A (Q14A)	DCS2	V _{DD}	V _{DD}	V _{DD}	Q12B	Q11B
L	СК	CSGEN	PAR_IN	GND	GND	GND	(Q14B (QCS0B)	Q13B (QCS1B)
м	CK	RESET	QERR	V _{DD}	V _{DD}	V _{DD}	Q15B (QODT0B)	Q16B (QODT1B)
N	D15 (DODT0)	Q15A (QODT0A)	GND	GND	GND	GND	Q17B	Q18B
Р	D16 (DODT1)	Q16A (QODT1A)	DCS3	V _{DD}	V _{DD}	V _{DD}	Q19B	Q20B
R	D17	Q17A	GND	GND	GND	GND	Q18A	Q21B
т	D18	Q19A	V _{DD}	V _{DD}	V _{DD}	V _{DD}	Q20A	Q22B
U	D19	Q21A	GND	GND	GND	GND	Q22A	Q23B
v	D20	Q23A	V _{DD}	V _{DD}	V _{DD}	V _{DD}	Q24A	Q24B
w	D21	D22	GND	GND	GND	GND	Q25A	Q25B
Y	D23	D24	V _{DD}	V _{DD}	V _{DD}	V _{DD}	Q26A	Q26B
АА	D25	D26	GND	GND	GND	GND	Q27A	Q27B
AB	D27	D28	SELDR	V _{DD}	VREF	V _{DD}	Q28A	Q28B
I	176-ball 8	× 22 grid; to	p view	1	1	1	1	002aac49

Fig 4. Ball mapping (1 : 2 Register A; C = 0)

SSTUB32868

1.8 V DDR2-800 configurable registered buffer with parity

	1	2	3	4	5	6	7	8
А	D2	D1	С	GND	VREF	GND	Q1A	Q1B
в	D4	D3	V _{DD}	V _{DD}	V _{DD}	V _{DD}	Q2A	Q2B
С	D6	D5	GND	GND	GND	GND	Q3A	Q3B
D	D8	D7	V _{DD}	V _{DD}	V _{DD}	V _{DD}	Q4A	Q4B
Е	D9	Q6A	GND	GND	GND	GND	Q5A	Q5B
F	D10	Q8A	V _{DD}	V _{DD}	V _{DD}	V _{DD}	Q7A	Q6B
G	D11	Q10A	GND	GND	GND	GND	Q9A	Q7B
н	D12	Q12A	V _{DD}	V _{DD}	V _{DD}	V _{DD}	Q11A	Q8B
J	D13 (DODT1)	Q13A (QODT1A)	GND	GND	GND	GND	Q10B	Q9B
к	D14 (DODT0)	Q14A (QODT0A)	DCS2	V _{DD}	V _{DD}	V _{DD}	Q12B	Q11B
L	СК	CSGEN	PAR_IN	GND	GND	GND	Q14B (QODT0B)	Q13B (QODT1B)
М	СК	RESET	QERR	V _{DD}	V _{DD}	V _{DD}	Q15B (QCS0B)	Q16B (QCS1B)
Ν	D15 (DCS0)	Q15A (QCS0A)	GND	GND	GND	GND	Q17B	Q18B
Ρ	D16 (DCS1)	(Q16A (QCS1A)	DCS3	V _{DD}	V _{DD}	V _{DD}	Q19B	Q20B
R	D17	Q17A	GND	GND	GND	GND	Q18A	Q21B (QCKE0B)
т	D18	Q19A	V _{DD}	V _{DD}	V _{DD}	V _{DD}	Q20A	Q22B
U	D19	Q21A (QCKE0A)	GND	GND	GND	GND	Q22A	Q23B (QCKE1B)
V	D20	Q23A (QCKE1A)	V _{DD}	V _{DD}	V _{DD}	V _{DD}	Q24A	Q24B
W	D21 (DCKE0)	D22	GND	GND	GND	GND	Q25A	Q25B
Y	D23 (DCKE1)	D24	V _{DD}	V _{DD}	V _{DD}	V _{DD}	Q26A	Q26B
AA	D25	D26	GND	GND	GND	GND	Q27A	Q27B
AB	D27	D28	SELDR	V _{DD}	VREF	V _{DD}	Q28A	Q28B
	176 k-11 0	× 22 grid; to	n view					002aac4

Fig 5. Ball mapping (1 : 2 Register B; C = 1)

1.8 V DDR2-800 configurable registered buffer with parity

6.2 Pin description

Table 3.	Pin description							
Symbol	Pin		Туре	Description				
	1 : 2 Register A (C = 0)	1 : 2 Register B (C = 1)						
Ungated i	inputs							
DCKE0	D1	W1	SSTL_18	The outputs of this register will not be				
DCKE1	C1	Y1		suspended by the DCS0 and DCS1 control				
DODT0	N1	K1	SSTL_18	The outputs of this register will not be				
DODT1	P1	J1		suspended by the DCS0 and DCS1 control				
Chip Sele	ect gated inputs							
D1 to D28	A2, A1, B2, B1, C2, C1, D2, D1, E1, F1, G1, H1, N1, P1, R1, T1, U1, V1, W1, W2, Y1, Y2, AA1, AA2, AB1, AB2	A2, A1, B2, B1, C2, C1, D2, D1, E1, F1, G1, H1, J1, K1, N1, P1, R1, T1, U1, V1, W1, W2, Y1, Y2, AA1, AA2, AB1, AB2	SSTL_18	Data inputs, clocked in on the crossing of the rising edge of CD and the falling edge of CK.				
Chip Sele	ect inputs							
DCS0	K1	N1	SSTL_18	Chip select inputs. These pins initiate				
DCS1	J1	P1		DRAM address/command decodes, and as such at least one will be LOW when a valic				
DCS2	K3	K3		address/command is present. The register				
DCS3	Ρ3	Ρ3		can be programmed to re-drive all D-inputs (CSGEN = HIGH) only when at least one chip select input is LOW. If CSGEN, DCSC and DCS1 inputs are HIGH, D1 to D28 ^[1] inputs will be disabled.				
Configura	ation control inputs							
С	A3	A3	LVCMOS input	Configuration control inputs; Register A or Register B				
Re-driven	outputs							
Q1A to Q28A	A7, B7, C7, D7, E7, E2, F7, F2, G7, G2, H7, H2, N2, P2, R2, R7, T2, T7, U2, U7, V2, V7, W7, Y7, AA7, AB7	A7, B7, C7, D7, E7, E2, F7, F2, G7, G2, H7, H2, J2, K2, N2, P2, R2, R7, T2, T7, U2, U7, V2, V7, W7, Y7, AA7, AB7	1.8 V CMOS outputs	Data outputs ^[2] that are suspended by the DCS0 and DCS1 control.				
Q1B to Q28B	A8, B8, C8, D8, E8, F8, G8, H8, J8, J7, K8, K7, L8, L7, M7, M8, N7, N8, P7, P8, R8, T8, V8, U8, W8, Y8, AA8, AB8	A8, B8, C8, D8, E8, F8, G8, H8, J8, J7, K8, K7, L8, L7, M7, M8, N7, N8, P7, P8, R8, T8, U8, V8, W8, Y8, AA8, AB8						
QCS0A	K2	N2	1.8 V	Data outputs that will not be suspended by				
QCS0B	L7	M7	CMOS	the DCS0 and DCS1 control.				
QCS1A	J2	P2	outputs					
QCS1B	L8	M8						
QUUID		U2	1.8 V	Data outputs that will not be suspended by				
	F2	02		the DCS0 and DCS1 control.				
QCKE0A	F2 H8	R8	CMOS					
QCKE0A QCKE0B QCKE1A								

SSTUB32868

1.8 V DDR2-800 configurable registered buffer with parity

Table 3.	Pin descriptioncontinue	<i></i>		
Symbol	Pin		Туре	Description
	1 : 2 Register A (C = 0)	1 : 2 Register B (C = 1)		
QODT0A	N2	K2	1.8 V	Data outputs that will not be suspended by
QODT0B	M7	L7	CMOS outputs	the DCS0 and DCS1 control.
QODT1A	P2	J2	ouipulo	
QODT1B	M8	L8		
Output er	ror			
QERR	M3	M3	open-drain output	Output error bit; generated on clock cycle after the corresponding data output.
Parity inp	out			
PAR_IN	L3	L3	SSTL_18	Parity input. Arrives one clock cycle after the corresponding data input.
Program	inputs			
CSGEN	L2	L2	LVCMOS input	Chip select gate enable. When HIGH, the D1 to D28 ^[1] inputs will be latched only when at least one chip select input is LOW during the rising edge of the clock. When LOW, the D1 to D28 ^[1] inputs will be latched and re-driven on every rising edge of the clock.
Clock inp	uts			
СК	L1	L1	differential input	Positive master clock input.
CK	M1	M1	differential input	Negative master clock input.
Miscellan	eous inputs			
RESET	M2	M2	LVCMOS input	Asynchronous reset input. Resets registers and disables VREF data and clock differential-input receivers.
VREF	A5, AB5	A5, AB5	0.9 V nominal	Input reference voltage.
V _{DD}	B3, B4, B5, B6, D3, D4, D5, D6, F3, F4, F5, F6, H3, H4, H5, H6, K4, K5, K6, M4, M5, M6, P4, P5, P6, T3, T4, T5, T6, V3, V4, V5, V6, Y3, Y4, Y5, Y6, AB4, AB6	B3, B4, B5, B6, D3, D4, D5, D6, F3, F4, F5, F6, H3, H4, H5, H6, K4, K5, K6, M4, M5, M6, P4, P5, P6, T3, T4, T5, T6, V3, V4, V5, V6, Y3, Y4, Y5, Y6, AB4, AB6	1.8 V nominal	Power supply voltage.
GND	A4, A6, C3, C4, C5, C6, E3, E4, E5, E6, G3, G4, G5, G6, J3, J4, J5, J6, L4, L5, L6, N3, N4, N5, N6, R3, R4, R5, R6, U3, U4, U5, U6, W3, W4, W5, W6, AA3, AA4, AA5, AA6	A4, A6, C3, C4, C5, C6, E3, E4, E5, E6, G3, G4, G5, G6, J3, J4, J5, J6, L4, L5, L6, N3, N4, N5, N6, R3, R4, R5, R6, U3, U4, U5, U6, W3, W4, W5, W6, AA3, AA4, AA5, AA6	ground input	Ground.
SELDR	AB3	AB3	LVCMOS input with weak pull-up	Selects output drive strength: 'HIGH' for normal drive; 'LOW' for high drive. This pin will default HIGH if left open-circuit (built-in weak pull-up resistor).

SSTUB32868_4

© NXP B.V. 2010. All rights reserved.

- [1] Data inputs = D1 to D5, D7, D9 to D12, D17 to D28 when C = 0. Data inputs = D1 to D12, D17 to D20, D22, D24 to D28 when C = 1.
- [2] Data outputs = Q1x to Q5x, Q7x, Q9x to Q12x, Q17x to Q28x when C = 0. Data outputs = Q1x to Q12x, Q17x to Q20x, Q22x, Q24x to Q28x when C = 1.

7. Functional description

7.1 Function table

Table 4.Function table (each flip-flop)

			Inputs					Out	tputs <mark>[1]</mark>	
RESET	DCS0 ^[2]	DCS1 ^[2]	CSGEN	СК	СК	Dn, DODTn, DCKEn	Qn	QCS0x	QCS1x	QODTn, QCKEn
Н	L	L	Х	1	\downarrow	L	L	L	L	L
Н	L	L	Х	\uparrow	\downarrow	Н	Н	L	L	Н
Н	L	L	Х	L or H	L or H	Х	Q_0	Q_0	Q ₀	Q_0
Н	L	Н	Х	\uparrow	\downarrow	L	L	L	Н	L
Н	L	Н	Х	\uparrow	\downarrow	Н	Н	L	Н	Н
Н	L	Н	Х	L or H	L or H	Х	Q_0	Q_0	Q ₀	Q_0
Н	Н	L	Х	\uparrow	\downarrow	L	L	Н	L	L
Н	Н	L	Х	\uparrow	\downarrow	Н	Н	Н	L	Н
Н	Н	L	Х	L or H	L or H	Х	Q_0	Q_0	Q_0	Q_0
Н	Н	Н	L	\uparrow	\downarrow	L	L	Н	Н	L
Н	Н	Н	L	\uparrow	\downarrow	Н	Н	Н	Н	Н
Н	Н	Н	L	L or H	L or H	Х	Q_0	Q_0	Q_0	Q_0
Н	Н	Н	Н	\uparrow	\downarrow	L	Q_0	Н	Н	L
Н	Н	Н	Н	\uparrow	\downarrow	Н	Q_0	Н	Н	Н
Н	Н	Н	Н	L or H	L or H	Х	Q_0	Q_0	Q_0	Q_0
L	X or floating	X or floating	X or floating	X or floating	X or floating	X or floating	L	L	L	L

[1] Q_0 is the previous state of the associated output.

[2] DCS2 and DCS3 operate identically to DCS0 and DCS1, except they do not have corresponding re-driven (QCS) outputs.

			Inputs	i			Output
RESET	DCS0 ^[1]	DCS1 ^[1]	СК	СК	Σ of inputs = H (D1 to D28)	PAR_IN ^[2]	QERR ^{[3][4]}
Н	L	Х	\uparrow	\downarrow	even	L	Н
Н	L	Х	\uparrow	\downarrow	odd	L	L
Н	L	Х	\uparrow	\downarrow	even	Н	L
Н	L	Х	\uparrow	\downarrow	odd	Н	Н
Н	Х	L	\uparrow	\downarrow	even	L	Н
Н	Х	L	\uparrow	\downarrow	odd	L	L
Н	Х	L	\uparrow	\downarrow	even	Н	L
Н	Х	L	\uparrow	\downarrow	odd	Н	Н
Н	Н	Н	\uparrow	\downarrow	Х	Х	QERR ₀ ^[5]
Н	Х	Х	L or H	L or H	Х	Х	QERR ₀
L	X or floating	X or floating	X or floating	X or floating	Х	X or floating	Н

Table 5. Parity and standby function table

[1] DCS2 and DCS3 operate identically to DCS0 and DCS1 with regard to the parity function.

[2] PAR_IN arrives one clock cycle after the data to which it applies.

[3] This transition assumes QERR is HIGH at the crossing of CK going HIGH and CK going LOW. If QERR is LOW, it stays latched LOW for two clock cycles or until RESET is driven LOW.

[4] $\overline{\text{QERR}}_0$ is the previous state of output $\overline{\text{QERR}}$.

[5] If DCS0, DCS1, DCS2, DCS3 and CSGEN are driven HIGH, the device is placed in Low-Power Mode (LPM). If a parity error occurs on the clock cycle before the device enters the LPM and the QERR output is driven LOW, it stays latched LOW for the LPM duration plus two clock cycles or until RESET is driven LOW.

7.2 Functional information

The SSTUB32868 is a 28-bit 1 : 2 configurable registered buffer designed for 1.7 V to 1.9 V V_{DD} operation.

All inputs are compatible with the JEDEC standard for SSTL_18, except the chip-select gate-enable (CSGEN), control (C), and reset (RESET) inputs, which are LVCMOS. All outputs are edge-controlled circuits optimized for unterminated DIMM loads, and meet SSTL_18 specifications, except the open-drain error (QERR) output.

The device supports low-power standby operation. When RESET is LOW, the differential input receivers are disabled, and undriven (floating) data, clock, and reference voltage (VREF) inputs are allowed. In addition, when RESET is LOW, all registers are reset and all outputs are forced LOW except QERR. The LVCMOS RESET and C inputs always must be held at a valid logic HIGH or LOW level.

To ensure defined outputs from the register before a stable clock has been supplied, RESET must be held in the LOW state during power-up.

In the DDR2 RDIMM application, RESET is specified to be completely asynchronous with respect to CK and CK. Therefore, no timing relationship can be ensured between the two. When entering reset, the register will be cleared and the data outputs will be driven LOW quickly, relative to the time to disable the differential input receivers. However, when coming out of reset, the register will become active quickly, relative to the time to enable the differential input receivers. As long as the data inputs are LOW, and the clock is stable

1.8 V DDR2-800 configurable registered buffer with parity

during the time from the LOW-to-HIGH transition of RESET until the input receivers are fully enabled, the design of the SSTUB32868 must ensure that the outputs will remain LOW, thus ensuring no glitches on the output.

The SSTUB32868 includes a parity checking function. Parity, which arrives one cycle after the data input to which it applies, is checked on the PAR_IN input of the device. The corresponding QERR output signal for the data inputs is generated two clock cycles after the data, to which the QERR signal applies, is registered.

The SSTUB32868 accepts a parity bit from the memory controller on the parity bit (PAR_IN) input, compares it with the data received on the DIMM-independent D inputs (D1 to D5, D7, D9 to D12, D17 to D28 when C = 0; or D1 to D12, D17 to D20, D22, D24 to D28 when C = 1) and indicates whether a parity error has occurred on the open-drain QERR pin (active LOW). The convention is even parity, that is, valid parity is defined as an even number of ones across the DIMM-independent data inputs combined with the parity input bit. To calculate parity, all DIMM-independent D inputs must be tied to a known logic state.

If an error occurs and the QERR output is driven LOW, it stays latched LOW for a minimum of two clock cycles or until RESET is driven LOW. If two or more consecutive parity errors occur, the QERR output is driven LOW and latched LOW for a clock duration equal to the parity error duration or until RESET is driven LOW. If a parity error occurs on the clock cycle before the device enters the Low-Power Mode (LPM) and the QERR output is driven LOW, then it stays latched LOW for the LPM duration plus two clock cycles or until RESET is driven LOW. The DIMM-dependent signals (DCKE0, DCKE1, DODT0, DODT1, DCS0, DCS1, DCS2 and DCS3) are not included in the parity check computation.

The C input controls the pinout configuration from Register A configuration (when LOW) to Register B configuration (when HIGH). The C input should not be switched during normal operation. It should be hard-wired to a valid LOW or HIGH level to configure the register in the desired mode.

The device also supports low-power active operation by monitoring both system chip select (DCS0, DCS1, DCS2 and DCS3) and CSGEN inputs and will gate the Qn outputs from changing states when CSGEN, DCS0 and DCS1 inputs are HIGH. If CSGEN or the DCSn inputs are LOW, the Qn outputs will function normally. Also, if all DCSn inputs are HIGH, the device will gate the QERR output from changing states. If any of the DCSn are LOW, the QERR output will function normally. The RESET input has priority over the DCSn control, and when driven LOW will force the Qn outputs LOW and the QERR output HIGH. If the chip-select control functionality is not desired, then the CSGEN input can be hard-wired to ground (GND), in which case the setup time requirement for DCSn would be the same as for the other D data inputs. To control the Low-power mode with DCSn only, the CSGEN input should be pulled up to V_{DD} through a pull-up resistor.

The two VREF pins (A5 and AB5) are connected together internally by approximately 150 Ω . However, it is necessary to connect only one of the two VREF pins to the external V_{ref} power supply. An unused VREF pin should be terminated with a V_{ref} coupling capacitor.

The SSTUB32868 is available in a TFGBA176 package.

1.8 V DDR2-800 configurable registered buffer with parity

7.3 Register timing

SSTUB32868_4

SSTUB32868

1.8 V DDR2-800 configurable registered buffer with parity

SSTUB32868

1.8 V DDR2-800 configurable registered buffer with parity

8. Limiting values

Table 6. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions		Min	Max	Unit
V _{DD}	supply voltage			-0.5	+2.5	V
VI	input voltage	receiver	[1][2]	-0.5	+2.5	V
Vo	output voltage	driver	[1][2]	-0.5	V_{DD} + 0.5	V
I _{IK}	input clamping current	$V_I < 0 V \text{ or } V_I > V_{DD}$		-	±50	mA
I _{OK}	output clamping current	$V_{O} < 0 V \text{ or } V_{O} > V_{DD}$		-	±50	mA
lo	output current	continuous; 0 V < V_O < V_{DD}		-	±50	mA
I _{CCC}	continuous current through each V _{DD} or GND pin			-	±100	mA
T _{stg}	storage temperature			-65	+150	°C
V _{ESD}	electrostatic discharge	Human Body Model (HBM); 1.5 k Ω ; 100 pF		2	-	kV
	voltage	Machine Model (MM); 0 Ω ; 200 pF		200	-	V

[1] The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

[2] This value is limited to 2.5 V maximum.

9. Recommended operating conditions

Table 7. Recommended operating conditions

	1 0						
Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V _{DD}	supply voltage			1.7	-	2.0	V
V _{ref}	reference voltage			$0.49 \times V_{DD}$	$0.50\times V_{DD}$	$0.51 \times V_{DD}$	V
V _T	termination voltage			$V_{ref} - 0.040$	V _{ref}	V _{ref} + 0.040	V
VI	input voltage			0	-	V _{DD}	V
V _{IH(AC)}	AC HIGH-level input voltage	Dn, CSR and PAR_IN inputs	[1]	V _{ref} + 0.250	-	-	V
V _{IL(AC)}	AC LOW-level input voltage	Dn, $\overline{\text{CSR}}$ and PAR_{IN} inputs	[1]	-	-	$V_{ref} - 0.250$	V
V _{IH(DC)}	DC HIGH-level input voltage	Dn, $\overline{\text{CSR}}$ and PAR_{IN} inputs	[1]	V _{ref} + 0.125	-	-	V
V _{IL(DC)}	DC LOW-level input voltage	Dn, $\overline{\text{CSR}}$ and PAR_{IN} inputs	[1]	-	-	$V_{ref} - 0.125$	V
V _{IH}	HIGH-level input voltage	RESET, CSGEN	[2]	$0.65 \times V_{DD}$	-	-	V
V _{IL}	LOW-level input voltage	RESET, CSGEN	[2]	-	-	$0.35\times V_{DD}$	V
V _{ICR}	common mode input voltage range	СК, <u>СК</u>		0.675	-	1.125	V
V _{ID}	differential input voltage	CK, CK		600	-	-	mV
I _{OH}	HIGH-level output current	SELDR either HIGH or LOW		-	-	-8	mA
I _{OL}	LOW-level output current	SELDR either HIGH or LOW		-	-	8	mA
T _{amb}	ambient temperature	operating in free air					
		SSTUB32868ET/G		0	-	70	°C
		SSTUB32868ET/S		0	-	85	°C

[1] The differential inputs must not be floating, unless RESET is LOW.

[2] The RESET input of the device must be held at valid logic levels (not floating) to ensure proper device operation.

10. Characteristics

Table 8. Characteristics

Over recommended operating conditions, unless otherwise noted.

Symbol	Parameter	Conditions	Ν	<i>l</i> in	Тур	Max	Unit
V _{OH}	HIGH-level output voltage	$I_{OH} = -6 \text{ mA}; V_{DD} = 1.7 \text{ V}$	1	.2	-	-	V
V _{OL}	LOW-level output voltage	$I_{OL} = 6 \text{ mA}; V_{DD} = 1.7 \text{ V}$	-		-	0.5	V
l _l	input current	all inputs; $V_I = V_{DD}$ or GND; $V_{DD} = 1.9 V$	-		-	±5	μA
I _{DD}	supply current	static standby; $\overline{\text{RESET}}$ = GND; V _{DD} = 1.9 V; I _O = 0 mA	-		-	2	mA
		static operating; $\overline{\text{RESET}} = V_{DD}$; $V_{DD} = 1.9 \text{ V}$; $I_O = 0 \text{ mA}$; $V_I = V_{IH(AC)} \text{ or } V_{IL(AC)}$	-		-	80	mA
I _{DDD}	dynamic operating current per MHz	clock only; $\overline{\text{RESET}} = V_{DD}$; $V_I = V_{IH(AC)}$ or $V_{IL(AC)}$; CK and $\overline{\text{CK}}$ switching at 50 % duty cycle. $I_O = 0$ mA; $V_{DD} = 1.8$ V	-		16	-	μΑ
		per each data input (1 : 1 mode); RESET = V_{DD} ; $V_I = V_{IH(AC)}$ or $V_{IL(AC)}$; CK and CK switching at 50 % duty cycle; one data input switching at half clock frequency, 50 % duty cycle; $I_O = 0$ mA; $V_{DD} = 1.8$ V	-		19	-	μΑ
		per each data input (1 : 2 mode); RESET = V_{DD} ; $V_I = V_{IH(AC)}$ or $V_{IL(AC)}$; CK and CK switching at 50 % duty cycle; one data input switching at half clock frequency, 50 % duty cycle; $I_O = 0$ mA; $V_{DD} = 1.8$ V	-		19	-	μΑ
C _i	input capacitance	Dn, CSGEN, PAR_IN inputs; $V_I = V_{ref} \pm 250 \text{ mV}$; $V_{DD} = 1.8 \text{ V}$	2	2.5	-	4	pF
		$\overline{\text{DCSn}}$; V _{ICR} = 0.9 V; V _{ID} = 600 mV; V _{DD} = 1.8 V	2	2.5	-	4	pF
		CK and \overline{CK} ; V _{ICR} = 0.9 V; V _{ID} = 600 mV; V _{DD} = 1.8 V	2	2	-	3	pF
		$\overline{\text{RESET}}$; V _I = V _{DD} or GND; V _{DD} = 1.8 V	3	3	-	5	pF
Zo	output impedance	normal drive; instantaneous	<u>[1]</u> -		15	-	Ω
		normal drive; steady-state	-		53	-	Ω
		high drive; instantaneous	<u>[1]</u> -		7	-	Ω
		high drive; steady-state	-		53	-	Ω
Input RE	SET						
V _{IL}	LOW-level input voltage			-0.5	-	+0.3V _{DD}	V
V _{IH}	HIGH-level input voltage		0).7V _{DD}	-	2.5	V
l _l	input current	$V_{I} = V_{DD}$	_	-5	-	+5	μΑ
ΙL	leakage current	$V_{I} = V_{SS}$	-	-100	-25	-10	μA

[1] Instantaneous is defined as within < 2 ns following the output data transition edge.

1.8 V DDR2-800 configurable registered buffer with parity

Table 9. Timing requirements

Over recommended operating conditions, unless otherwise noted.

Symbol	Parameter	Conditions		Min	Тур	Мах	Unit
f _{clk}	clock frequency			-	-	450	MHz
t _W	pulse width	CK, CK HIGH or LOW		1	-	-	ns
t _{ACT}	differential inputs active time		[1][2]	-	-	10	ns
t _{INACT}	differential inputs inactive time		<u>[1][3]</u>	-	-	15	ns
t _{su}	set-up time	$\frac{DCSn}{CSR} \text{ before CK}^{\uparrow}, \overline{CK} \downarrow, \overline{CSR} \text{ HIGH};$ $\frac{CSR}{CSR} \text{ before CK}^{\uparrow}, \overline{CK} \downarrow, \overline{DCSn} \text{ HIGH}$		0.6	-	-	ns
		\overline{DCSn} before CK \uparrow , $\overline{CK}\downarrow$, \overline{CSR} LOW		0.5	-	-	ns
		DODTn, DCKEn ad Dn before CK \uparrow , $\overline{CK}\downarrow$		0.5	-	-	ns
		PAR_IN before CK \uparrow , $\overline{CK}\downarrow$		0.5	-	-	ns
t _h	hold time	DCSn, DODTn, DCKEn and Dn after CK↑, CK↓		0.4	-	-	ns
		PAR_IN after CK \uparrow , $\overline{CK}\downarrow$		0.4	-	-	ns

[1] This parameter is not necessarily production tested.

[2] VREF must be held at a valid input voltage level, and data inputs must be held LOW for a minimum time of t_{ACT(max)} after RESET is taken HIGH.

[3] VREF, data and clock inputs must be held at valid voltage levels (not floating) a minimum time of t_{INACT(max)} after RESET is taken LOW.

Table 10. Switching characteristics

Over recommended operating conditions, unless otherwise noted.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{clk(max)}	maximum clock frequency	input	450	-	-	MHz
t _{PDM}	peak propagation delay	single bit switching; from CK↑ and CK↓ to Qn	<u>[1]</u> 1.1	-	1.5	ns
t _{PLH}	LOW to HIGH propagation delay	from CK [↑] and \overline{CK} to \overline{QERR}	1.2	-	3	ns
		from \overline{RESET} to $\overline{QERR}\downarrow$	-	-	3	ns
t _{PHL}	HIGH to LOW propagation delay	from CK [↑] and \overline{CK} to \overline{QERR}	1	-	2.4	ns
		from RESET↑ to Qn↓	-	-	3	ns
t _{PDMSS}	simultaneous switching peak propagation delay	from CK \uparrow and $\overline{CK}\downarrow$ to Qn	<u>[1]</u> _	-	1.6	ns

[1] Includes 350 ps of test-load transmission line delay.

Table 11. Output edge rates

Over recommended operating conditions, unless otherwise noted.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
dV/dt_r	rising edge slew rate	from 20 % to 80 %	1	-	4	V/ns
dV/dt_f	falling edge slew rate	from 80 % to 20 %	1	-	4	V/ns
dV/dt_ Δ	absolute difference between dV/dt_r and dV/dt_f	(from 20 % to 80 %) or (from 80 % to 20 %)	-	-	1	V/ns

11. Test information

11.1 Parameter measurement information for data output load circuit

 V_{DD} = 1.8 V \pm 0.1 V.

All input pulses are supplied by generators having the following characteristics: Pulse Repetition Rate (PRR) \leq 10 MHz; Z₀ = 50 Ω ; input slew rate = 1 V/ns \pm 20 %, unless otherwise specified.

The outputs are measured one at a time with one transition per measurement.

SSTUB32868 4

SSTUB32868

1.8 V DDR2-800 configurable registered buffer with parity

1.8 V DDR2-800 configurable registered buffer with parity

11.2 Data output slew rate measurement

 V_{DD} = 1.8 V \pm 0.1 V.

All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz; Z₀ = 50 Ω ; input slew rate = 1 V/ns \pm 20 %, unless otherwise specified.

1.8 V DDR2-800 configurable registered buffer with parity

11.3 Error output load circuit and voltage measurement

 V_{DD} = 1.8 V \pm 0.1 V.

All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz; Z₀ = 50 Ω ; input slew rate = 1 V/ns \pm 20 %, unless otherwise specified.

SSTUB32868

1.8 V DDR2-800 configurable registered buffer with parity

SSTUB32868

1.8 V DDR2-800 configurable registered buffer with parity

12. Package outline

Fig 23. Package outline SOT932-1 (TFBGA176)

SSTUB32868_4 Product data sheet

24 of 30

13. Soldering of SMD packages

This text provides a very brief insight into a complex technology. A more in-depth account of soldering ICs can be found in Application Note *AN10365* "Surface mount reflow soldering description".

13.1 Introduction to soldering

Soldering is one of the most common methods through which packages are attached to Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both the mechanical and the electrical connection. There is no single soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high densities that come with increased miniaturization.

13.2 Wave and reflow soldering

Wave soldering is a joining technology in which the joints are made by solder coming from a standing wave of liquid solder. The wave soldering process is suitable for the following:

- Through-hole components
- Leaded or leadless SMDs, which are glued to the surface of the printed circuit board

Not all SMDs can be wave soldered. Packages with solder balls, and some leadless packages which have solder lands underneath the body, cannot be wave soldered. Also, leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered, due to an increased probability of bridging.

The reflow soldering process involves applying solder paste to a board, followed by component placement and exposure to a temperature profile. Leaded packages, packages with solder balls, and leadless packages are all reflow solderable.

Key characteristics in both wave and reflow soldering are:

- Board specifications, including the board finish, solder masks and vias
- · Package footprints, including solder thieves and orientation
- The moisture sensitivity level of the packages
- Package placement
- Inspection and repair
- Lead-free soldering versus SnPb soldering

13.3 Wave soldering

Key characteristics in wave soldering are:

- Process issues, such as application of adhesive and flux, clinching of leads, board transport, the solder wave parameters, and the time during which components are exposed to the wave
- Solder bath specifications, including temperature and impurities

13.4 Reflow soldering

Key characteristics in reflow soldering are:

- Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to higher minimum peak temperatures (see <u>Figure 24</u>) than a SnPb process, thus reducing the process window
- Solder paste printing issues including smearing, release, and adjusting the process window for a mix of large and small components on one board
- Reflow temperature profile; this profile includes preheat, reflow (in which the board is heated to the peak temperature) and cooling down. It is imperative that the peak temperature is high enough for the solder to make reliable solder joints (a solder paste characteristic). In addition, the peak temperature must be low enough that the packages and/or boards are not damaged. The peak temperature of the package depends on package thickness and volume and is classified in accordance with Table 12 and 13

Table 12. SnPb eutectic process (from J-STD-020C)

Package thickness (mm)	Package reflow temperature (°C)		
	Volume (mm ³)		
	< 350	≥ 350	
< 2.5	235	220	
≥ 2.5	220	220	

Table 13. Lead-free process (from J-STD-020C)

Package thickness (mm)	Package reflow temperature (°C) Volume (mm ³)			
	< 350	350 to 2000	> 2000	
< 1.6	260	260	260	
1.6 to 2.5	260	250	245	
> 2.5	250	245	245	

Moisture sensitivity precautions, as indicated on the packing, must be respected at all times.

Studies have shown that small packages reach higher temperatures during reflow soldering, see Figure 24.

1.8 V DDR2-800 configurable registered buffer with parity

For further information on temperature profiles, refer to Application Note *AN10365* "Surface mount reflow soldering description".

14. Abbreviations

Table 14.	Abbreviations
Acronym	Description
CMOS	Complementary Metal-Oxide Semiconductor
DDR2	Double Data Rate 2
DIMM	Dual In-line Memory Module
DRAM	Dynamic Random Access Memory
LVCMOS	Low Voltage Complementary Metal-Oxide Semiconductor
RDIMM	Registered Dual In-line Memory Module
SSTL	Stub Series Terminated Logic

15. Revision history

Table 15. Revisio	on history			
Document ID	Release date	Data sheet status	Change notice	Supersedes
SSTUB32868_4	20100422	Product data sheet		SSTUB32868_3
Modifications:		eatures and benefits": delete racteristics": added sub-sec	. ,	
SSTUB32868_3	20070307	Product data sheet	-	SSTUB32868_2
SSTUB32868_2	20060912	Product data sheet	-	SSTUB32868_1
SSTUB32868_1	20060825	Product data sheet	-	-

16. Legal information

16.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

16.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

16.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or

malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on a weakness or default in the customer application/use or the application/use of customer's third party customer(s) (hereinafter both referred to as "Application"). It is customer's sole responsibility to check whether the NXP Semiconductors product is suitable and fit for the Application planned. Customer has to do all necessary testing for the Application in order to avoid a default of the Application and the product. NXP Semiconductors does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the

SSTUB32868_4

1.8 V DDR2-800 configurable registered buffer with parity

Notice: All referenced brands, product names, service names and trademarks

16.4 Trademarks

are the property of their respective owners.

product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

17. Contact information

For more information, please visit: <u>http://www.nxp.com</u>

For sales office addresses, please send an email to: salesaddresses@nxp.com

SSTUB32868_4

29 of 30

SSTUB32868

1.8 V DDR2-800 configurable registered buffer with parity

18. Contents

1	General description	. 1
2	Features and benefits	. 1
3	Applications	. 2
4	Ordering information	. 2
4.1	Ordering options	
5	Functional diagram	. 3
6	Pinning information	
6.1	Pinning	
6.2	Pin description	. 8
7	Functional description	10
7.1	Function table	10
7.2	Functional information	11
7.3	Register timing	13
8	Limiting values	16
9	Recommended operating conditions	16
10	Characteristics	17
11	Test information	19
11.1	Parameter measurement information for	
	data output load circuit	19
11.2	Data output slew rate measurement	21
11.3	Error output load circuit and voltage measurement	22
40		22 24
12	Package outline	
13		
13.1 13.2	Introduction to soldering	25 25
13.2	Wave soldering	25
13.4	Reflow soldering	26
14	Abbreviations	27
15	Revision history	27
16	Legal information	28
16.1	Data sheet status	28
16.2	Definitions	28
16.3	Disclaimers	28
16.4	Trademarks	29
17	Contact information	29
18	Contents	30

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2010.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 22 April 2010 Document identifier: SSTUB32868_4