

Digi TransPort[®] Routers

for model LR54

User Guide

Revision history—90001461

Revision	Date	Description
A	August 2016	Initial release.
В	October 2016	Added features for TransPort firmware 1.2.0.
C	January 2017	Added support and usability features: traceroute, show dhcp, show tech-support, and traffic and data packet capture/traffic analyzer features.
D	April 2017	Added port forwarding and updated firewall topics. Added support for SIM PIN and unlocking a SIM card using a SIM PUK code. Updated Firewall section to include information on system firewall rules and to show enabling SSH and HTTPS access via the wan command. Added information on performing file management and viewing the event log from the web interface. Updated Configure a user and user command to include restrictions on characters in usernames.
E	June 2017	Added IP filtering; updated firewall topics; removed on-demand parameter value from interface state options; updated regulatory information for compliance with European Union (EU) Radio Equipment Directive (RE-D); miscellaneous editorial corrections and enhancements.
F	August 2017	Added documentation for TransPort firmware 3.0 features and enhancements: Certificate management for OpenVPN
		 Dynamic Mobile Network Routing (DMNR)
		 IPv6 addressing
		OpenVPN
		New commands:
		dmnr/show dmnr firewall6/show firewall6 openvpn-client/show openvpn-client openvpn-route openvpn-server/show openvpn-server openvpn-user pki
		Modified commands:
		ip-filter/show ip-filter lan/show lan ping wan/show wan

Revision	Date	Description
G	October 2017	Added documentation for TransPort version 3.1 features and enhancements:
		 Generic Routing Encapsulation (GRE)
		 About Python support
		 Quality of Service (QoS)
		 Remote Authentication Dial-In User Service (RADIUS)
		 Virtual Router Redundancy Protocol (VRRP)
		New commands:
		gre/show gre python/python-autostart/show python qos-filter/qos-queue radius vrrp/show vrrp
Н	December 2017	 Added documentation for TransPort version 3.2 features and enhancements: Added support for dynamic DNS and web filtering. See Dynamic DNS and Web filtering (OpenDNS).
		 Added support for Digi Remote Manager device health reporting. See Enable health reporting.
		 Added Python autostart page to the webui. See Python autostart page.
		Added Device preference page to the webui. See Device preferences page.
		 Miscellaneous editorial enhancements and corrections to the user interface and the help system.

Trademarks and copyright

Digi, Digi International, and the Digi logo are trademarks or registered trademarks in the United States and other countries worldwide. All other trademarks mentioned in this document are the property of their respective owners.

© 2017 Digi International Inc. All rights reserved.

Disclaimers

Information in this document is subject to change without notice and does not represent a commitment on the part of Digi International. Digi provides this document "as is," without warranty of any kind, expressed or implied, including, but not limited to, the implied warranties of fitness or merchantability for a particular purpose. Digi may make improvements and/or changes in this manual or in the product(s) and/or the program(s) described in this manual at any time.

Warranty

To view product warranty information, go to the following website: www.digi.com/howtobuy/terms

Send comments

Documentation feedback: To provide feedback on this document, send your comments to techcomm@digi.com.

Customer support

Digi Technical Support: Digi offers multiple technical support plans and service packages to help our customers get the most out of their Digi product. For information on Technical Support plans and pricing, contact us at +1 952.912.3444 or visit us at www.digi.com/support.

Contents

Configuration and management

Using the web interface	
Log in to the web interface	12
The dashboard	13
Log out of the web interface	14
Using the command line	
Interfaces	
Ethernet interfaces	16
Cellular interfaces	20
Wi-Fi interfaces	25
Serial interface	33
Local Area Networks (LANs)	35
Configure a LAN	35
Show LAN status and statistics	
Delete a LAN	38
DHCP servers	
Wide Area Networks (WANs)	
Using Ethernet interfaces in a WAN	41
Using cellular interfaces in a WAN	
WAN priority, default routes, and metrics	
Handling WAN failures	
Configure a Wide Area Network (WAN)	
WAN failover	45
Show WAN status and statistics	
Delete a WAN	
IPv6	
Common IPv6 address types	51
Auto address assignment	
Prefix delegation	
More information on IPv6	
Configure a LAN for IPv6	
Enable IPv6 on a LAN	
Show LAN IPv6 status	
Configure a WAN for IPv6	
Enable IPv6 on a WAN	
Configure prefix delegation on a WAN	
Show WAN IPv6 status	
Security	
Local users	
Firewall management with IP filters	
Certificate and key management	69

Remote Authentication Dial-In User Service (RADIUS)	
Services and applications	
Auto-run commands	75
About Python support	
Port forwarding	
Using an SSH server	
Remote management	
Remote Manager	
Using Simple Network Management Protocol (SNMP)	87
Routing	
IP routing	
Dynamic DNS	
Web filtering (OpenDNS)	
Dynamic Mobile Network Routing (DMNR)	95
Quality of Service (QoS)	
Virtual Private Networks (VPN)	
IPsec	100
OpenVPN	109
Generic Routing Encapsulation (GRE)	128
Virtual Router Redundancy Protocol (VRRP)	131
System settings	
Configure system settings	
Show system information settings	
Set system date and time	137
Show system date and time	139
Firmware update	
Managing configuration files	
Reboot the device	146
Reset the device to factory defaults	147
Diagnostics	149
Logs	149
Analyze traffic	153
Use the "ping" command to troubleshoot network connections	
Use the "traceroute" command to diagnose IP routing problems	
Use the "show tech-support" command	158

File system

File system	161
Create a directory	161
Display directory contents	
Change the current directory	162
Delete a directory	
Display file contents	
Copy a file	
Rename a file	
Delete a file	
Upload and download files	166
•	

Diagnostics and troubleshooting

Troubleshooting tools and resources	169
Digi support site	
Digi knowledge base	
8	

Troubleshooting Ethernet interfaces	
Ethernet LED does not illuminate	
Device cannot communicate on WAN/ETH1 port	
Device cannot communicate on ETH2, ETH3, or ETH4 ports	
Troubleshooting cellular interfaces	
Verify cellular connectivity	
Check cellular signal strength	
Troubleshooting the serial interface	
Verify serial connectivity	
TransPort LR54 model-specific troubleshooting	
Check TransPort54 LEDs	
Recover a TransPort54 device	

Web reference

The dashboard	189
DMNR page	
File system page	191
Firewall page	192
GRE page	194
Cellular locked pin page	195
Device preferences page	196
Interfaces—cellular page	198
Interfaces—Ethernet page	199
Interfaces—Wi-Fi page	200
IPsec page	201
Local Networks page	203
Log configuration page	205
Log viewer page	206
New GRE tunnel page	
New Wide Area Network (WAN) page	
OpenVPN client page	
OpenVPN route management page	
OpenVPN server page	
OpenVPN user management page	
Port forwarding page	
Python autostart page	
Quality of Service (QoS) queues page	
Quality of Service (QoS) WANs page	
RADIUS page	
Digi Remote Manager page	
Syslog server configuration page	
User Management page	228
VRRP page	
Wide Area Network (WAN) page—Cellular	
Wide Area Network (WAN) page—Ethernet	
Wide Area Network (WAN) page	234

Command reference

Command-line interface basics	238
Command line interface access options	
Log in to the command line interface	
Exit the command line interface	

Execute a command from the web interface	239
Display command and parameter help using the ? character	239
Revert command settings using the ! character	240
Auto-complete commands and parameters	240
Enter configuration commands	240
Save configuration settings to a file	
Switch configuration files	241
Display status and statistics using "show" commands	242
? (Display command help)	
! (Revert command settings)	
analyzer	
autorun	
cd	
cellular	
clear	
cloud	
сору	
date	
del	
dcp-server	
dir	
dmnr	
dillini	
dynamic-dns	
eth	
exit	
firewall	
firewall6	
gre	
ip	
ip-filter	
ipsec	
lan	
mkdir	
more	
openvpn-client	
openvpn-route	281
openvpn-server	282
openvpn-user	286
ping	287
pki	288
	290
	292
ython	
python-autostart	
	295
qos-queue	
radius	
reboot	
rename	
rmdir	
route	
save	
	305
show analyzer	

show cellular	307
show cloud	310
show config	311
show dhcp	
show dmnr	
show dsl	
show eth	
show firewall	
show firewall6	
show gre	
show ip-filter	
show ipsec	
show ipstats	
show lan	
show log	
show openvpn-client	
show openvpn-server	331
show port-forward	
show python	
show route	
show serial	
show system	
show tech-support	
show vrrp	
show wan	
show web-filter	
show wifi	
show wifi5g	
snmp	
snmp-community	
snmp-user	
sntp	
ssh	
syslog	
system	
traceroute	
unlock	
update	
user	
vrrp	
wan	
web-filter	
wifi	
wifi5g	
wifi-global	
U	· · · · · ·

Advanced topics

Using firewall and firewall6 commands	
TransPort firewalls based on iptables firewall	
Tables and chains in firewall rules	
Policy rules	
Default firewall configuration	
Allow SSH access on a WAN	
Allow SSH access for only a specific source IP address	

Allow HTTPS access on a WAN	
Allow HTTPS access on a WAN from only a specific source IP address	
Add a firewall rule	
Update a firewall rule	
Delete a firewall rule	
Show firewall rules and counters	
Understanding system firewall rules	
Who should read this section	382
What are system firewall rules?	
Testing new firewall rules	
Using the autorun command to force firewall rule precedence	
System chains	384
Migration of rules from older firmware	
Future releases	

Configuration and management

Using the web interface	
Using the command line	
Interfaces	16
Local Area Networks (LANs)	
Wide Area Networks (WANs)	
IPv6	
Security	
Services and applications	
Remote management	
Routing	
Virtual Private Networks (VPN)	
System settings	
Diagnostics	

Using the web interface

The first time you power on a TransPort device, the **Getting Started Wizard** steps you through the process of initial configuration. After the wizard completes, the next time you access the device, a login prompt appears. See Log in to the web interface for login instructions.

After you log in, the TransPort **Dashboard** appears. The **Dashboard** provides a snapshot of current activity for the device. See The dashboard for details.

In this help system, task topics show how to perform tasks:

📕 Web

Shows how to perform a task using the web interface.

Command line

Shows how to perform a task using the command line interface.

Log in to the web interface

The first time you access a TransPort device, the **Getting Started Wizard** runs. This wizard steps you through the process getting your device initially configured and connected. After you run the Getting Started Wizard, the next time you access the device, a login prompt for the web interface appears.

1. On the local network for your device, the default address is **http://192.168.1.1.** Enter this address in a web browser. The Device Login prompt displays:

Device Login	
Username	
Password	
Click LOGIN to login to device	

2. Enter your username and password to log into the device. Click Login.

Use the unique password printed on the label on the bottom of the device if the password was not changed during initial setup.

Username: admin

Password: See the label on bottom of device.

If the login is successful, the Dashboard for your TransPort device appears. See The dashboard for more information about this view.

The dashboard

The dashboard shows the current state of the device.

etwork Activi	ty	Digi Remote	Manager	Device			
AAN incolved ent AN incolved ent	4465.00 KB 11445.20 KB 0 368 Bytes	Status Up Time Device Id	Connected an hour occococo- occococo-ocod/FFFF FT0F4828	Up Time Firmware Version System Time CPU Utilization Temperature Model Part Number Serial Number Hardware Version Boot Version	1 Hour, 16 Minutes, 50 Seconds 9,9,9,97 04 October 2017, 18:15:4 0% 52,00 C LR54W LR54-3W401 LR800815 50001859-03 IP 1,0,0,3		
VAN		Interface		LAN		VPN	
Ethernet(W) Ethernet(W) Cellulari Cellulari Cellulari Cellulari	✓ Up W/ETHI) X Down	A WWA/Eth 1 A Eth 2 A Eth 3 A Eth 4 S S	✓ Up X Down X Down X Down ✓ Up	↔ LAN 1 Ethernet and W-	✔ Up FiLAN network	IPsec IPsec 1 test OpenVPN Server Server not confi OpenVPN Client No tunnels confi	

Dashboard display areas

Dashboard area	Description
Network activity	Summarizes network statistics: the total number of bytes sent and received over all Wide Area Networks (WANs) and Local Area Networks (LANs), including all WANs/LANs configured and active, disabled, and/or disabled.
Digi Remote Manager	Displays the device connection status for Digi Remote Manager, the amount of time the connection has been up, and the Digi Remote Manager device ID. See Remote Manager.
Device	Displays device status, statistics, and identifying information. See the show system command for details. For Firmware Version , a green checkmark ✓ indicates the firmware is up to date and a red X indicates a firmware update is available. See Update system firmware for instructions.

Dashboard area	Description
WAN	Displays all configured Wide Area Networks (WANs), the physical interface assigned to the WAN, and the current state of the WAN. Click a WAN to display detailed configuration and status information. See Wide Area Networks (WANs) for details.
Interface	Displays all configured and available physical interfaces for the device and their current states. See Interfaces for details.
LAN	Displays all configured Local Area Networks (LANs), the physical interface(s) assigned to the LAN, and the current state of the LAN. Click a LAN to display detailed configuration and status information. See Local Area Networks (LANs) for details.
VPN	Displays all configured Virtual Private Network (VPN) tunnels. See Virtual Private Networks (VPN) for details.

Log out of the web interface

Web

• Click the **Logout** button in the upper right corner of the web interface.

Using the command line

TransPort provides a command-line interface you can use to configure the device, display status and statistics, as well as update firmware and manage device files. See <u>Command reference</u> for details on all available commands.

In this help system, task topics show how to perform tasks:

From the web

Shows how to perform a task using the web interface.

From the command line

Shows how to perform a task using the command line interface.

Interfaces

TransPort devices have several physical communications interfaces. The available interfaces vary by device model. These interfaces can be bridged in a Local Area Network (LAN) or assigned to a Wide Area Network (WAN). This section covers configuring and managing these physical communication interfaces.

Ethernet interfaces

Ethernet interfaces can be used in LAN or WAN. There is no IP configuration set on the individual Ethernet interfaces. Instead, the IP configuration is set as part of configuring the LAN or WAN. For more information on WANs, see Wide Area Networks (WANs).

For more information on LANs and their configuration, see Local Area Networks (LANs).

Configure Ethernet interfaces

To configure an Ethernet interface, you must configure the following items:

Required configuration settings

- Enable the Ethernet interface. The Ethernet interfaces are all enabled by default. You can set the Ethernet interface to **enabled or disabled**.
- Once configured, the Ethernet interface must be assigned to a LAN or a WAN. For more information, see Local Area Networks (LANs) and Configure a LAN or Wide Area Networks (WANs) and Configure a Wide Area Network (WAN).

Additional configuration settings

The following additional configuration settings are not typically configured to get an Ethernet interface working, but can be configured as needed:

- A description of the Ethernet interface.
- The duplex mode of the Ethernet interface. This defines how the Ethernet interface communicates with the device to which it is connected. The duplex mode defaults to **auto**, which means the TransPort device negotiates with the connected device on how to communicate.
- The speed of the Ethernet interface. This defines the speed at which the Ethernet interface communicates with the device to which it is connected. The Ethernet speed defaults to **auto**, which means it negotiates with the connected device as to what speed should be used.

- 1. On the menu, click **Network > Interfaces > Ethernet**.
- 2. Select the Ethernet interface to configure.

- 3. In the **Edit Selected** box, enter the configuration settings:
 - **State**: Enable or disable the Ethernet interface. By default, all of the Ethernet interfaces are enabled.
 - **Description**: Optional: Enter a description for the Ethernet interface.
 - **Speed**: Optional: Select the speed for the Ethernet interface.
 - **Duplex**: Optional: Select the duplex mode for the Ethernet interface.
- 4. Click Apply.

📟 Command line

1. Enable the Ethernet interface. By default, all of the Ethernet interfaces are enabled.

digi.router> eth 1 state on

2. Optional: Set the description for the Ethernet interface. For example:

digi.router> eth 1 description "Connected to Ethernet WAN router"

3. Optional: Set the duplex mode.

digi.router> eth 1 duplex {auto | full | half}

4. Optional: Set the speed.

digi.router> eth 1 speed {auto | 1000 | 100 | 10}

5. Save the configuration.

```
digi.router> save config
```

Show Ethernet status and statistics

From the web interface

A limited set of Ethernet status and statistics are available for the WAN to which the Ethernet interface belongs. For more complete Ethernet interface status and statistics, use the show eth command, described below.

You can view Ethernet status from the Dashboard.

Web

On the menu, click **Dashboard**. The Interface section of the dashboard shows the status of all interfaces.

📟 Command line

To show the status and statistics for the Ethernet interface, use the show eth command. For example:

```
digi.router> show eth
```

Eth Status and Statistics Port 1

_____ Description : Factory default configuration for Ethernet 1 Admin Status : Up Oper Status : Up Up Time : 1 Day, 13 Hours, 30 Minutes, 23 Seconds MAC Address : 00:50:18:21:E2:82 DHCP : off IP Address : 10.52.19.242 Netmask : 255.255.255.0 DNS Server(s) : Link : 1000Base-T Full-Duplex Received Sent _____ ____ Rx Unicast Packet: 6198Tx Unicast Packet: 651Rx Broadcast Packet: 316403Tx Broadcast Packet: 2Rx Multicast Packet: 442690Tx Multicast Packet: 6Rx CRC Error: 0Tx CRC Error: 0Rx Drop Packet: 0Tx Drop Packet: 0Rx Pause Packet: 0Tx Pause Packet: 0Rx Filtering Packet: 1Tx Collision Event: 0Rx Alignment Error: 0: 0: 0 Rx Alignment Error : 0 Rx Undersize Error : 0 Rx Fragment Error : 0 Rx Oversize Error : 0 Rx Jabber Error : 0 Eth Status and Statistics Port 2 _____ Description : Admin Status : Up Oper Status : Up Un Time : 1 1 Up Time : 1 Day, 13 Hours, 30 Minutes, 23 Seconds MAC Address : 00:50:18:21:E2:83 DHCP : off IP Address : 10.2.4.20 Netmask : 255.255.255.0 DNS Server(s) : Link : 100Base-T Full-Duplex Received Sent _____ ____ Rx Unicast Packet: 5531Tx Unicast Packet: 2Rx Broadcast Packet: 316403Tx Broadcast Packet: 2Rx Multicast Packet: 442694Tx Multicast Packet: 2Rx CRC Error: 0Tx CRC Error: 0Rx Drop Packet: 0Tx Drop Packet: 0Rx Pause Packet: 0Tx Pause Packet: 0Rx Filtering Packet: 0Tx Collision Event: 0Rx Alignment Error: 0: 0: 0 Rx Alignment Error : 0 Rx Undersize Error : 0 Rx Fragment Error : 0 Rx Oversize Error : 0 Rx Oversize Error : 0 Rx Jabber Error : 0 Eth Status and Statistics Port 3 -----

```
Description :
 Admin Status : Up
 Oper Status : Up
Up Time : 1 Day, 13 Hours, 30 Minutes, 23 Seconds
 MAC Address : 00:50:18:21:E2:84
 DHCP : on
IP Address : 82.68.87.20
Netmask : 255.255.25.0
 DNS Server(s) :
 Link : 100Base-T Full-Duplex
 Received
                                                                           Sent
  _____
                                                                           ____
 Rx Unicast Packet: 5530Tx Unicast Packet: 2Rx Broadcast Packet: 316405Tx Broadcast Packet: 2Rx Multicast Packet: 442699Tx Multicast Packet: 4Rx CRC Error: 0Tx CRC Error: 0Rx Drop Packet: 0Tx Drop Packet: 0Rx Filtering Packet: 0Tx Pause Packet: 0Rx Alignment Error: 0..
 Rx Alignment Error : 0
Rx Undersize Error : 0
 Rx Fragment Error : 0
 Rx Oversize Error
                                     : 0
 Rx Jabber Error
                                     : 0
Eth Status and Statistics Port 4
-----
 Description :
Admin Status : Up
 Oper Status : Down
Up Time : 0 Seconds
 MAC Address : 00:50:18:21:E2:85
DHCP : on
IP Address : Not Assigned
Netmask : Not Assigned
DNS Server(s) :
Link : No connection
 Received
                                                                           Sent
  _____
                                                                           ____
 Rx Unicast Packet: 0Tx Unicast Packet: 0Rx Broadcast Packet: 0Tx Broadcast Packet: 0Rx Multicast Packet: 0Tx Multicast Packet: 0Rx CRC Error: 0Tx CRC Error: 0Rx Drop Packet: 0Tx Drop Packet: 0Rx Pause Packet: 0Tx Pause Packet: 0Rx Filtering Packet: 0Tx Collision Event: 0
 Rx Alignment Error: 0Rx Undersize Error: 0Rx Fragment Error: 0Rx Oversize Error: 0
                                    : 0
 Rx Jabber Error
digi.router>
```

Cellular interfaces

The TransPort device has two cellular interfaces, named **cellular1** and **cellular2**. These cellular interfaces correspond to the physical SIM card slots **SIM1** and **SIM2**.

Only one cellular interface can be up at the same time. If both cellular interfaces are enabled to **on**, then the **cellular1** interface takes precedence.

A typical use case would be to have **cellular1** (**SIM1**) configured as the primary cellular interface and **cellular2** (**SIM2**) as a backup cellular interface. If the TransPort device cannot connect to the cellular network using **SIM1**, it will automatically failover to try to connect using **SIM2**.

To configure a default route for the cellular interface when it is up and to include the cellular interface in TransPort failover, the cellular interface must be assigned to a WAN.

For more information on WANs and their configuration, see Wide Area Networks (WANs).

Configure cellular interfaces

To configure a cellular interface, you need to configure the following:

Required configuration items

- Enable the cellular interface. The cellular interfaces are disabled by default. You can set the cellular interface to **enabled** or **disabled**.
- The Access Point Name (APN). The APN is specific to your cellular service.
- Depending on your cellular service, you may need to configure an APN username and password. This information is provided by your cellular provider.
- Once configured, if the interface is not already assigned to a WAN interface, assign it to a WAN interface. For more information, see Wide Area Networks (WANs) and Configure a Wide Area Network (WAN).

Additional configuration options

Additional configuration settings are not typically configured, but you can set them as needed:

- Preferred mode. The preferred mode locks the cellular interface to use a particular technology, for example, 4G or 3G. Depending on your cellular service and location, the cellular interface can automatically switch between the different technologies. You may want to lock the cellular interface to a particular technology to minimize disruptions.
- A description of the cellular interface.
- Connection attempts. This is the number of attempts the cellular module will attempt to connect to the cellular network before indicating a failure. It defaults to 20, but you may want to configure this so that the WAN failover can switch to another interface more quickly.
- Some mobile accounts require a particular PIN code to access a particular SIM card. When the correct PIN code is supplied, the SIM card is accessible. If the PIN code is incorrect, no access is allowed to the SIM card. If several incorrect PIN codes are entered too often, then the SIM will be locked and a PIN Unlock Key (PUK) will be required. See Unlock a SIM card.

📕 Web

- 1. Click Network > Interfaces > Cellular. The Cellular page appears.
- 2. Select an interface.

- 3. In the Edit Selected box, enter the settings:
 - Description: Optional: Provide a description of the cellular interface.
 - Enabled: Enable or disable the interface.
 - **APN**: Enter a descriptive name for the access point.
 - APN Username: Enter the user name for logging on to the access point.
 - APN Password: Enter the password for logging on to the access point.
 - **SIM PIN**: For SIMs that require a PIN, enter the PIN to activate the SIM.
 - Preferred Mode: Optional: Select the cellular technology on which the interface operates. You can select a particular technology or select Auto to have the device automatically select the technology.
 - Connection Attempts: Optional: Select the number of attempts to establish a cellular connection, after which the cellular module is power-cycled and another attempt to establish a cellular connection is made.
- 4. Click Apply.

Command line

1. Enable the cellular interface.

digi.router> cellular 1 state on

2. Configure an APN.

digi.router> cellular 1 apn your-apn

3. Optional: Set a preferred mode.

```
digi.router> cellular 1 preferred-mode 3g
```

4. Optional: Set a description for the cellular interface.

digi.router> cellular 1 description "AT&T Connection"

5. Optional: Configure the number of connection attempts. For example, to set the number of attempts to **10**, enter:

```
digi.router> cellular 1 connection-attempts 10
```

6. If necessary, enter the PIN for the SIM.

digi.router> cellular 1 pin your-sim-pin

7. If necessary, configure the APN username and password.

```
digi.router> cellular 1 apn-username your-apn-username
digi.router> cellular 1 apn-password your-apn-password
```

8. Save the configuration.

```
digi.router> save config
```

Show cellular status and statistics

Web

 On the menu, click **Dashboard**. The Interface section of the dashboard shows the status of all interfaces.

Command line

To show the status and statistics for a cellular interface, use the show cellular command. For a description of the output fields, see the show cellular command.

digi.router> show cellular

```
Cellular Status and Statistics
```

```
_____
Admin status: UpOper status: UpModule: Sierra Wireless, Incorporated MC7455Firmware version: SWI9X30C_02.08.02.00Hardware version: 1.0IMEI: 359072060053523Temperature: 35C
SIM1 PIN: PIN is OKSIM2 PIN: PIN is invalid, 2 retries leftSIM status: Using SIM1 (SIM is ready)TCCID: 89014103278253188695
Signal strength : Excellent (69dBm)
Signal quality : Excellent (10dB)
Registration status : Registered
Attachment status
                             : Attached
Network provider: AT&T, USAConnection type: 3GRadio Band: WCDMA 850
Channel
                             : 4382
APN in use
                             : Context 1: 12655.mcs
IP address
                            : 172.20.1.7
mask
Gateway
                             : 255.255.255.240
                             : 255.255.255.0
DNS servers
                          : 10.10.8.62, 10.10.8.64
```

	Received	Sent
Packets	26	25
Bytes	3379	3193

Switch the cellular carrier

Command line

You can switch the cellular carrier from the command line only.

1. To display a list of available carriers for your device, enter the **update carrier** command without parameters. For example:

digi.router> update carrier

Carrier Name	Firmware Version	Unique ID
ATT	02.08.02.00	002.009_000
GENERIC	02.08.02.00	002.007_000
VERIZON	02.05.07.00	002.008_002

```
The current firmware image is ATT.
```

2. To switch from one carrier to another, enter the **update carrier** command, specifying the carrier name. For example, to switch the carrier from **AT&T** to **Verizon**, enter:

```
digi.router> update carrier verizon
Switching carrier to verizon.
Module is rebooting. This can take up to 3 minutes ...
digi.router>
```

3. Save the configuration.

digi.router> save config

Note If your desired carrier is not displayed in the **update carrier** output as shown in step 1, you must first update the cellular module firmware using the **update** command, specifying the **update module** command variant. For more information, see Update cellular module firmware.

Unlock a SIM card

A SIM card can be locked if a user tries to set an invalid PIN for the SIM card too many times. In addition, some cellular carriers require a SIM PIN to be added before the SIM card can be used. If the SIM card is locked, the TransPort device cannot make a cellular connection. To unlock a SIM card:

1. Use the show cellular command to see the status of a SIM card. In the show cellular output, look for the fields SIM1 PIN status, SIM2 PIN status, and SIM status. For example:

```
digi.router> show cellular
Cellular Status and Statistics
 _____
Admin status
                      : Up
Oper status
                      : Down
Module
                      : Sierra Wireless, Incorporated MC7455
                      : SWI9X30C_02.08.02.00
Firmware version
Hardware version
                      : 1.0
IMEI
                      : 359072060053937
Temperature
                      : 33C
SIM1 PIN status
                      : New PIN is untested
SIM2 PIN status
                      : Never connected
SIM status
                      : Using SIM1 (SIM is locked)
ICCID
                      :
1
```

2. Use the unlock command to set a new PIN for the SIM card using the following syntax:

```
unlock <sim1 | sim2> <puk code> <new sim pin>
```

For example, to unlock a SIM card in SIM slot SIM **1** with PUK code **12345678**, and set the new SIM PIN to **1234**:

```
digi.router> unlock sim1 12345678 1234
```

3. Save the configuration.

digi.router> save config

Note If the SIM remains in a locked state after using the <u>unlock</u> command, contact your cellular carrier.

Signal strength for 3G and 2G cellular connections

For 3G and 2G cellular connections, the current **RSSI** value determines signal strength. To view this value, enter the show cellular command.

- Excellent: > -70 dBm
- Good: -70 dBm to -85 dBm
- Fair: -86 dBm to -100 dBm

- Poor: < -100 dBm to -109 dBm
- No service: -110 dBm

Signal strength for 4G cellular connections

For 4G connections, the **RSRP** value determines signal strength. To view this value, enter the show cellular command.

- Excellent: > -90 dBm
- Good: -90 dBm to -105 dBm
- **Fair: -106 dBm** to **-115 dBm**
- **Poor: -116 dBm** to **-120 dBm**:
- No service: < -120 dBm

Tips for improving cellular signal strength

If the signal strength LEDs or the signal quality for your device indicate **Poor** or **No service**, try the following things to improve signal strength:

- Move the TransPort device to another location.
- Try connecting a different set of antennas, if available.
- Purchase a Digi Antenna Extender Kit:
 - Antenna Extender Kit, 1m
 - Antenna Extender Kit, 3m

Wi-Fi interfaces

Wi-Fi-enabled TransPort devices support up to **4** Wi-Fi interfaces on each of the 2.4 GHz and 5 GHz frequency bands. You can configure each Wi-Fi interface as an independent Wi-Fi access point with its own security settings. You can either leave it up to the access point to select the channel or select a specific channel to use for Wi-Fi interfaces.

Configure a channel for Wi-Fi 2.4 GHz interfaces

The default behavior for Wi-Fi communications is to leave it up to the TransPort device to select the channel, known as **auto** channel selection. However, you can select a specific channel to use for 2.4 GHz Wi-Fi interfaces. This setting is one of the global Wi-Fi configuration settings.

For Wi-Fi 2.4 GHz, channels 1 to 11 only are allowed, and not 12, 13, or 14.

Web

- 1. On the menu, click **Network > Interfaces > Wi-Fi**.
- 2. Select a Wi-Fi interface to configure.
- 3. Edit the configuration settings as needed.
- 4. Click Apply.

Command line

To select a channel for Wi-Fi 2.4 GHz communications, the command is wifi-global and the parameter is wifi-channel. For example, to set the channel for Wi-Fi 2.4 GHz interfaces to channel 1, enter:

```
digi.router> wifi-global wifi-channel 1
digi.router> save config
```

Configure a channel for Wi-Fi 5 GHz interfaces

The default channel for Wi-Fi 5 GHz interfaces is 36.

The default behavior for Wi-Fi communications is to leave it up to the TransPort device to select the channel, known as **auto** channel selection. However, you can select a specific channel to use for 5 GHz Wi-Fi interfaces. This setting is one of the global Wi-Fi configuration settings.

For Wi-Fi 5 GHz, the following channels are allowed: **36**, **40**, **44**, **48**, **52**, **56**, **60**, **64**, **100**, **104**, **108**, **112**, **116**, **132**, **136**, **140**.

All channels but 36, 40, 44, 48 are Dynamic Frequency Selection (DFS) channels.

Note You can set the DFS channels **52**, **56**, **60**, **64**, **100**, **104**, **108**, **112**, **116**, **132**, **136**, **140**, but the device may need to use a different channel. For example, you can configure the Wi-Fi 5 GHz channel to **56**, but the device might need to use channel **108** instead.

📕 Web

- 1. On the menu, click Network > Interfaces > Wi-Fi.
- 2. Select a Wi-Fi interface to configure.
- 3. Edit the configuration settings as needed.
- 4. Click Apply.

Command line

To select a channel for Wi-Fi 5 GHz communications, the command is wifi-global and the parameter is wifi5g-channel. For example, to set the channel for Wi-Fi 5 GHz interfaces to channel 36, enter:

```
digi.router> wifi-global wifi5g-channel 36
digi.router> save config
```

Configure an access point

This section describes how to configure a Wi-Fi 2.4 GHz access point and a Wi-Fi 5 GHz access point.

Required configuration items

Configuring a Wi-Fi access point involves configuring the following items:

- Enabling the Wi-Fi access point.
- The Wi-Fi access point's Service Set Identifier (SSID).

You can configure the SSID to use the device's serial number by including **%s** in the SSID. For example, an **ssid** parameter value of **LR54_%s** resolves to **LR54_LR123456**.

- The password for the Wi-Fi interface. The password only needs to be set if WPA2-Personal or WPA-WPA2-Personal security is being used.
- Once configured, the Wi-Fi access point must be assigned to a LAN interface. For more information, see Local Area Networks (LANs) and Configure a LAN.

Additional configuration options

The following additional configuration settings are not typically configured to get an Wi-Fi access point working, but can be configured as needed:

- The type of security used on the Wi-Fi interface. The default is WPA2-Personal. Options include the following:
 - None: No security is used on the Wi-Fi network.
 - **WPA2-Personal**: A method of securing a Wi-Fi network using WPA2 with the use of the optional Pre-Shared Key (PSK) authentication. This security method was designed for home users without an enterprise authentication server.
 - **WPA/WPA2-Personal**: This security method is a mixed mode, providing WPA with Temporal Key Integrity Protocol (TKIP) encryption or WPA2 with Advanced Encryption Standard (AES) encryption supported by the access point.
 - **WPA2-Enterprise**: This security method is designed for enterprise networks and requires a RADIUS authentication server. This security method requires a more complicated setup, but provides additional security. Various kinds of the Extensible Authentication Protocol (EAP) are used for authentication.
 - WPA/WPA2-Enterprise: This security method is designed for enterprise networks and requires a RADIUS authentication server. This is a mixed mode method, providing WPA with TKIP encryption or WPA2 with AES encryption supported by the access point.
- A description of the access point.
- Disabling the broadcast of the SSID in broadcast packets. The default is to broadcast the SSID, but you can disable that broadcast to prevent clients from easily detecting the presence of this access point.
- Disabling one or both isolation modes for the Wi-Fi access point. There are 2 isolation modes.
 By default, both isolation modes are enabled, but you can disable one or both as needed.
 - **Client Isolation**: Prevents clients on the same access point from communicating with each other.
 - **AP Isolation**: Prevents clients on an access point from communicating with clients on other APs.
- Selecting a channel for Wi-Fi 2.4 GHz or 5 GHz communications. For more details, see Configure a channel for Wi-Fi 2.4 GHz interfaces and Configure a channel for Wi-Fi 5 GHz interfaces.

📕 Web

- 1. On the menu, click **Network > Interfaces > Wi-Fi**.
- 2. Select a Wi-Fi interface to configure.

- 3. In the Edit Selected box, enter the configuration settings for the access point:
 - Mode: Select Access Point.
 - **SSID**: Enter the Wi-Fi access point's Service Set Identifier (SSID).
 - Security: Select None, WPA-2 Personal, or WPA/WPA2-Mixed-Mode-Personal, depending on the security for this access point.
 - If you selected WPA-2-Personal, or WPA/WPA2-Mixed-Mode-Personal security, enter the password in the Password and Verify Password fields.
 - **Description**: Optional: Enter a description of the access point.
 - State: Enable or disable the Wi-Fi access point when configuration is complete.
 - **Broadcast SSID**: Optional: Enable or disable broadcasting the SSID in beacon packets.
 - **Isolation Client**: Optional: Enable or disable Wi-Fi client isolation mode.
 - **Isolation Access Point**: Optional: Enable or disable Wi-Fi access point isolation mode.
- 4. Click **Apply**.

Command line

To configure the global settings for Wi-Fi communications, including selecting the channel for Wi-Fi communications, the command is wifi-global.

To configure a Wi-Fi 2.4 GHz access point, the command is wifi.

To configure a Wi-Fi 5 GHz access point, the command is wifi5g.

The following steps show using the wifi command. When configuring a Wi-Fi 5 GHz access point, use the wifi5g command. The parameters are the same.

1. Enable the Wi-Fi access point.

digi.router> wifi 1 state on

2. Enter the SSID for the Wi-Fi access point.

digi.router> wifi 1 ssid LR54-AP1

3. Enter the password for the Wi-Fi access point.

digi.router> wifi 1 password your-password

4. Optional: Enter the security for the Wi-Fi access point.

digi.router> wifi 1 security wpa-wpa2-personal

5. Optional: Enter a description for the Wi-Fi access point.

digi.router> wifi 1 description "Office AP"

6. Optional: Disable broadcasting the SSID in beacon packets.

digi.router> wifi 1 broadcast-ssid off

7. Optional: Disable Wi-Fi client isolation mode.

digi.router> wifi 1 isolate-clients off

8. Optional: Disable Wi-Fi access point isolation mode.

digi.router> wifi 1 broadcast-ssid off

9. Save the configuration.

digi.router> save config

Configure an access point with enterprise security

The WPA2-Enterprise and WPA-WPA2-Enterprise security modes allow a Wi-Fi access point to authenticate connecting Wi-Fi clients using a RADIUS server.

When the Wi-Fi access point receives an connection request from a Wi-Fi client, it authenticates the client with the RADIUS server before allowing the client to connect.

Using enterprise security modes allows for each Wi-Fi client to have different username and password which are configured in the RADIUS server and not the TransPort device.

Configuring a Wi-Fi access point to use an enterprise security mode involves configuring the following items:

Required configuration items

Configuring a Wi-Fi access point to use an enterprise security mode involves configuring the following items:

- Enabling the Wi-Fi access point.
- The Wi-Fi access point's Service Set Identifier (SSID).

You can configure the SSID to use the device's serial number by including **%s** in the SSID. For example, an **ssid** parameter value of **LR54_%s** resolves to **LR54_LR123456**.

- Setting the security mode to either WPA2-enterprise or WPA-WPA2-enterprise.
- RADIUS server IP address.
- RADIUS password.

Additional configuration options

Additional configuration options include:

- RADIUS server port.
- A description of the Wi-Fi access point.
- Disabling the broadcast of the SSID in broadcast packets. The default is to broadcast the SSID, but you can disable that broadcast to prevent clients from easily detecting the presence of this access point.

- Disabling one or both isolation modes for the Wi-Fi access point. There are 2 isolation modes.
 By default, both isolation modes are enabled, but you can disable one or both as needed.
 - **Client Isolation**: Prevents clients on the same access point from communicating with each other.
 - **AP Isolation**: Prevents clients on an access point from communicating with clients on other APs.
- Selecting a channel for Wi-Fi 2.4 GHz or 5 GHz communications. For more details, see Configure a channel for Wi-Fi 2.4 GHz interfaces and Configure a channel for Wi-Fi 5 GHz interfaces.

Web

- 1. On the menu, click **Network > Interfaces > Wi-Fi**.
- 2. Select a Wi-Fi interface to configure.
- 3. In the **Edit Selected** box, enter the configuration settings for the access point:
 - Mode: Select Access Point.
 - **SSID**: Enter the SSID for the device.
 - Security: Select WPA-2-Enterprise, or WPA/WPA2-Mixed-Mode-Enterprise, depending on the security for this access point.
 - If you selected WPA-2 Personal, or WPA/WPA2-Mixed-Mode-Personal security, enter the password in the Password and Verify Password fields.
 - **Description**: Optional: Enter a description of the access point.
 - State: Enable or disable the Wi-Fi access point when configuration is complete.
 - **Broadcast SSID**: Optional: Enable or disable broadcasting the SSID in beacon packets.
 - Isolation Client: Optional: Enable or disable Wi-Fi client isolation mode.
 - **Isolation Access Point**: Optional: Enable or disable Wi-Fi access point isolation mode.
 - Radius Server: Enter the IP address of the RADIUS server.
 - **Radius Port**: Optional: Enter the RADIUS server port.
 - Radius Secret: Enter the RADIUS password.
- 4. Click Apply.

📟 Command line

To configure a Wi-Fi 2.4 GHz access point, the command-line command is wifi.

To configure a Wi-Fi 5 GHz access point, the command-line command is wifi5g.

The following steps show using the wifi command. When configuring a Wi-Fi 5 GHz access point, use the wifi5g command. The parameters are the same.

1. Enable the Wi-Fi access point.

digi.router> wifi 1 state on

2. Enter the SSID for the Wi-Fi access point.

```
digi.router> wifi 1 ssid LR54-AP1
```

3. Enter the security for the Wi-Fi access point.

digi.router> wifi 1 security wpa2-enterprise

4. Enter the RADIUS server IP address.

digi.router> wifi 1 radius-server 192.168.1.200

5. Enter the RADIUS password.

digi.router> wifi 1 radius-password your-radius-password

6. Optional: Enter the RADIUS server port.

digi.router> wifi 1 radius-server-port 3001

7. Optional: Enter a description for the Wi-Fi access point.

digi.router> wifi 1 description "Office AP"

8. Optional: Disable broadcasting the SSID in beacon packets.

digi.router> wifi 1 broadcast-ssid off

9. Optional: Disable Wi-Fi client isolation mode.

digi.router> wifi 1 isolate-clients off

10. Optional: Disable Wi-Fi access point isolation mode.

digi.router> wifi 1 broadcast-ssid off

11. Save the configuration.

digi.router> save config

Show Wi-Fi status and statistics

You can show summary statistics for all Wi-Fi 2.4 GHz and 5 GHz interfaces, and detailed statistics for an individual interface.

📕 Web

 On the menu, click **Dashboard**. The Interface section of the dashboard shows the status of all interfaces.

Command line

Show summary statistics for Wi-Fi interfaces

To show the status and statistics for Wi-Fi 2.4 GHz interfaces, use the show wifi command. For example, to show status of all Wi-Fi 2.4 GHz interfaces, enter:

digi.router>	show	wifi	
0			

Interface	Status	SSID	Security
wifi1 wifi2 wifi3 wifi4	Up Down Down Down	LR54-2.4G-LR000181 LR54-2.4G-Public-LR000181 LR54-Office	WPA2-Personal None WPA2-Enterprise WPA2-Personal

digi.router>

To show the status and statistics for a Wi-Fi 5 GHz interface, use the show wifi5g command. For example:

Interface	Status	SSID	Security
 wifi5g1	 Up	LR54-5G-LR000181	WPA2-Persona
wifi5g2	Down	LR54-5G-Public-LR000181	None
wifi5g3	Down		WPA2-Personal
wifi5g4	Down		WPA2-Personal

Show detailed status statistics for a Wi-Fi interface

To show the status and statistics for a particular Wi-Fi 2.4 GHz interface, enter **show wifi** n, where n is the Wi-Fi 2.4 GHz interface number. For example:

```
digi.router> show wifi 1
```

Admin Status Oper Status SSID	•	00181				
Security		0101				
Received			Ser	it		
Rx Bytes		7185		Bytes	•	1639
Rx Packets	-	42		Packets	•	13
Rx Compressed		0		Compressed		Θ
Rx Multicasts	-	30		Collisions		0
Rx Errors	:	0		Errors		0
Rx Dropped	:			Dropped	-	0
Rx FIFO Errors		0		FIFO Errors		0
Rx CRC Errors		Θ		Aborted Errors	:	0
Rx Frame Errors		Θ		Carrier Errors		0
Rx Length Errors	:	Θ		Heartbeat Errors	:	0
Rx Missed Errors	:	0	Тx	Window Errors	:	0
Rx Over Errors	:	Θ				
Connected Clients						
MAC Address	Connection Time	RSSI		Rate		

digi.router>

To show the status and statistics for a particular Wi-Fi 5 GHz interface, enter **show wifi5g** *n*, where *n* is the Wi-Fi 5g interface number. For example:

digi.router> show wifi5g 1									
wifi5g 1 Status	and Statistics								
Admin Status Oper Status SSID Security	: Up : Up : LR54-5G-LR000181 : WPA2-Personal								
Received		Sent							
Rx Bytes Rx Packets Rx Compressed	: 8718 : 55 : 0	Tx Bytes Tx Packets Tx Compressed	: 1686 : 14 : 0						

Rx Multicasts		41	Tx Collisions	: (
Rx Errors		0	Tx Errors	: (
Rx Dropped	:	0	Tx Dropped	: (0
Rx FIFO Errors	:	0	Tx FIFO Errors	: (0
Rx CRC Errors	:	Θ	Tx Aborted Errors	: (0
Rx Frame Errors	:	0	Tx Carrier Errors	: (0
Rx Length Errors	:	0	Tx Heartbeat Errors	: (0
Rx Missed Errors	:	0	Tx Window Errors	: (0
Rx Over Errors	:	0			
Connected Clients					
MAC Address	Connection Time	RSSI	Rate		
58:94:6B:7A:B4:6C	0h 0m 17s	-47,-52,-5	5 270Mbps		
digi.router>					

Serial interface

TransPort devices have a single serial port that provides access to the command-line interface.

Configure the serial interface

By default, the serial interface is **enabled**. To change serial configuration settings, use the serial command.

Disable the serial interface.

digi.router> serial state off
digi.router> save config

• Enter a description for the serial interface.

```
digi.router> serial description "Command line access"
digi.router> save config
```

• Set the baud rate. For example, to set the baud rate to **9600**, enter:

```
digi.router> serial baud 9600
digi.router> save config
```

• Set the data bits. For example, to set the data bits to 7, enter:

```
digi.router> serial databits 7
digi.router> save config
```

• Set the stop bits. For example, to set the stop bits to 2, enter:

```
digi.router> serial stopbits 2
digi.router> save config
```

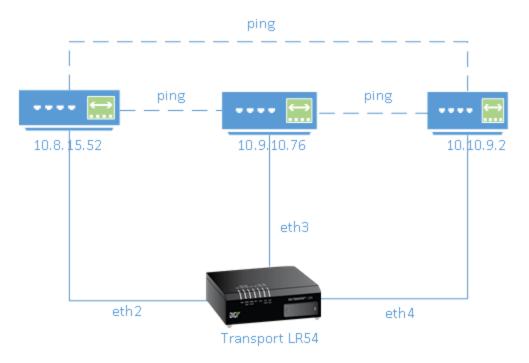
• Set the parity. For example, to set the parity to **odd**, enter:

```
digi.router> serial parity odd
digi.router> save config
```

• Set the flow control. For example, to set the flow control to **hardware**, enter:

```
digi.router> serial flowcontrol hardware
digi.router> save config
```

Show serial status and statistics


To show the status and statistics for the serial interface, use the show serial command. For example:

```
digi.router> show serial
Serial 1 Status
______
Description :
Admin Status : up
Oper Status : up
Uptime : 0:07:05
Tx Bytes : 4038
Rx Bytes : 81
Overflows : 0
Overruns : 0
Line status : RTS|CTS|DTR|DSR|CD0
digi.router>
```

Local Area Networks (LANs)

A Local Area Network (LAN) connects network interfaces together, such as Ethernet or Wi-Fi, in a logical Layer-2 network. You can configure up to **10** LANs.

The diagram shows a LAN connecting the **eth2**, **eth3**, and **eth4** interfaces for a TransPort LR54 unit. Once the LAN is configured and enabled, the devices connected to the network interfaces can communicate with each other, as demonstrated by the **ping** commands.

Configure a LAN

Configuring a Local Area Network (LAN) involves configuring the following items:

Required configuration items

- Identifying which interfaces are in the LAN.
- Enabling the LAN. LANs are disabled by default.
- Setting an IPv4 address and subnet mask for the LAN. While it is not strictly necessary for a LAN to have an IP address, if you want to send traffic from other networks to the LAN, you must configure an IP address.
- If you want to use IPv6 addressing for the LAN, you need to enable the LAN interface instance for IPv6 and configure several other settings. See Configure a LAN for IPv6.

Additional configuration options

- Setting a descriptive name for the LAN.
- Setting the Maximum Transmission Unit (MTU), or packet size, for packets sent over the LAN.
 For IPv6, the minimum MTU must be 1280.

📕 Web

To create a new LAN:

- 1. On the menu, click **Network > Networks > LANs**. The LANs page appears.
- 2. Click New Network. See Local Networks page for field descriptions.
- 3. In the IPv4 group, set the IP address and netmask:

IP address: Enter the IPv4 address for the LAN. **Netmask:** Enter the subnet mask for the LAN.

 In the DHCP Server group, configure the DHCP server. You can enable the DHCP server to assign IP addresses and other IP configurations to other hosts on the same local network. Addresses are assigned from a specified pool of IP addresses.

Note For a LAN, the device uses the DHCP server that has the IP address pool in the same IP subnet as the LAN. If you set DHCP server values and find that they are not being served to your DHCP clients, review the LAN configuration in the **Local Networks** page to make sure that the specified **IP Start** and **IP End** values match the corresponding **IPv4** and **Netmask** settings for the interface.

- 5. In the IPv6 group, configure IPv6. See Configure a LAN for IPv6.
- 6. In the **Advanced** group, enter the Maximum Transmission Unit (MTU), or packet size, for packets sent over the LAN.
- 7. Click **Apply**. The new LAN is added to the **LAN** page.

To modify an existing LAN:

- 1. On the menu, click **Network > Networks > LANs**. The LANs page appears.
- 2. Select a LAN and modify the settings as needed. See Local Networks page for field descriptions.
- 3. Click Apply.

Command line

1. Set the interfaces in the LAN. For example, to include **eth2**, **eth3**, and **eth4** interfaces in **lan1**, enter:

digi.router> lan 1 interfaces eth2,eth3,eth4

2. Enable the LAN. For example, to enable **lan1**:

digi.router> lan 1 state on

3. Optional: Set an IPv4 address for the LAN.

digi.router> lan 1 ip-address 192.10.8.8

4. Optional: Set a subnet mask for the LAN.

digi.router> lan 1 mask 255.255.255.0

5. Optional: Give a descriptive name to the LAN.

digi.router> lan 1 description ethlan

6. Optional: Set the MTU for the LAN.

digi.router> lan 1 mtu 1500

7. Save the configuration.

digi.router> save config

Show LAN status and statistics

📕 Web

- From the menu, click **Dashboard**. The **Network Activity** panel LAN section shows the total bytes received and sent over all LANs, and the **LAN** panel shows the configured LANs and their states.
- 2. Click a LAN to display or configure a LAN.

Command line

To show the status and statistics for a LAN, use the show lan command. For example, here is show lan output for a LAN on which IPv6 is enabled:

```
digi.router> show lan 1
```

```
LAN 1 Status and Statistics

Admin Status : Up

Oper Status : Up

Description : Ethernet and Wi-Fi LAN network

Interfaces : eth3

MTU : 1500

DHCP client : Off

IP Address : 192.168.1.1

Mask : 255.255.255.0

DNS Server(s) : 8.8.8.8

IPv6 Address(es) : fe80::47/64 (Link local)

2001::1234:23:47:1/64 (Global)
```

	Received	Sent
Packets	0	137
Bytes	0	15026

digi.router>

If IPv6 were disabled on this LAN, the **show lan** output looks like this:

```
digi.router> show lan 1
LAN 1 Status and Statistics
 Admin Status : Up
Oper Status : Up
Description : Ethernet and Wi-Fi LAN network
Interfaces : eth3
MTU
        : 1500
DHCP client : Off
IP Address : 192.168.1.1
Mask : 255.255.255.0
DNS Server(s) : 8.8.8.8
IPv6 is disabled on this interface
              Received
                                 Sent
              _____
                                 ____
Packets
                    0
                                  209
Bytes
                    0
                                22946
digi.router>
```

Delete a LAN

Deleting a LAN involves removing the physical interface associations from the LAN, thereby disabling the LAN. The definition for the LAN still exists in the device configuration, but it has no active physical interface.

- 1. On the menu, click **Network > Networks > LANs**. The LANs page appears.
- 2. On the LANs page, select the LAN to delete.
- 3. Click Delete.

Command line

Use the lan command and specify ! for the interfaces parameter value to set it to none:

lan <lan-number> interfaces !

DHCP servers

You can enable DHCP in a TransPort device to assign IP addresses and to other hosts on the same local network. Addresses are assigned from a specified pool of IP addresses. For a local network, the device uses the DHCP server that has the IP address pool in the same IP subnet as the local network.

Note For a LAN, the device uses the DHCP server that has the IP address pool in the same IP subnet as the LAN. If you set DHCP server values and find that they are not being served to your DHCP clients, review the LAN configuration in the **Local Networks page** to make sure that the specified **IP Start** and **IP End** values match the corresponding **IPv4** and **Netmask** settings for the interface.

You can configure up to **10** DHCP servers.

When a host receives an IP configuration, the configuration is valid for a particular amount of time, known as the lease time. After this lease time expires, the configuration must be renewed. The host renews the lease time automatically.

Configure DHCP server settings

To configure a DHCP server, you need to configure the following:

Required configuration items

- Enable the DHCP server.
- The IP address pool: the range of IP addresses issued by the DHCP server to clients.
- The IP network mask given to clients.
- The IP gateway address given to clients.
- The IP addresses of the preferred and alternate Domain Name Server (DNS) given to clients.

Additional configuration options

• Lease time: The length, in minutes, of the leases issued by the DHCP server.

📕 Web

In the web interface, the DHCP server is configured as part of configuring a LAN on the **Local Networks** page. See Configure a LAN.

Command line

1. Enable the DHCP server. By default, the DHCP server is disabled.

digi.router> dhcp-server 1 state on

2. Enter the starting address of the IP address pool:

digi.router> dhcp-server 1 ip-address-start 10.30.1.150

3. Enter the ending address of the IP address pool:

dhcp-server 1 ip-address-end 10.30.1.195

4. Enter the network mask:

digi.router> dhcp-server 1 mask 255.255.225.0

5. Enter the IP gateway address given to clients:

digi.router> dhcp-server 1 gateway 10.30.1.1

6. Enter the preferred DNS server address given to clients:

digi.router> dhcp-server 1 dns1 10.30.1.1

7. Enter the alternate DNS server address given to clients:

digi.router> dhcp-server 1 dns2 209.183.48.11

8. Enter the lease time:

digi.router> dhcp-server 1 lease-time 60

9. Save the configuration.

digi.router> save config

Show DHCP server settings

View DHCP status to monitor which devices have been given IP configuration by the TransPort device and to diagnose DHCP issues.

Web

- 1. On the menu, click **Network > Networks > LANs**. The LANs page appears.
- 2. Select a LAN.
- 3. In the **Configuration** settings, view the DHCP server settings for the LAN:
 - **DHCP Server**: Whether the DHCP server is enabled or disabled.
 - **IP Start/IP End**: These settings set the beginning and end of the IP address pool, or the range of IP addresses the DHCP server issues to clients.
 - Lease Expires: The length, in minutes, of the leases issued by the DHCP server.

Command line

To show the status of the DHCP server, use the show dhcp command. For example:

```
digi.router>
```

Wide Area Networks (WANs)

A Wide Area Network (WAN) provides connectivity to the internet or a remote network. A WAN configuration consists of the following:

- A physical interface, such as Ethernet or cellular
- Several networking parameters for the WAN, such as IP address, mask, and gateway
- Several parameters controlling failover

Using Ethernet interfaces in a WAN

Depending on model type, TransPort devices support several Ethernet interfaces. For example, a TransPort LR54 device has four Ethernet interfaces, named **eth1**, **eth2**, **eth3**, and **eth4**. Other models have fewer Ethernet interfaces, but the naming and numbering of interfaces is similar. You can use Ethernet interfaces as a WAN when connecting to the Internet, through a device such as a cable modem, as shown in the example.

By default, the **eth1** interface is configured as a WAN with both DHCP and NAT enabled. This means you should be able to connect to the Internet by connecting the **wan/eth1** interface to a device that already has an internet connection.

Conversely, the **eth2**, **eth3**, and **eth4** interfaces are by default configured as a Local Area Network (LAN). If necessary, you can assign these Ethernet interfaces to a WAN. For more information on Ethernet interfaces and their configuration, see Ethernet interfaces.

Using cellular interfaces in a WAN

TransPort devices support two cellular interfaces, named cellular1 and cellular2.

To use a cellular interface as a WAN, the cellular interface must be configured to connect to the cellular network. For more information on cellular interfaces and their configuration, see Cellular interfaces.

WAN priority, default routes, and metrics

You can configure up to 10 WANs. wan1 is the top priority, wan2 is the second priority, and so on.

The TransPort device automatically adds a default IP route for the WAN when it comes up. The metric of the default route is based on the priority of the interface. For example, because **wan1** is the highest priority WAN, the default route for **wan1** has a metric of **1**, and the default route for **wan2** has a metric of **2**.

Handling WAN failures

If a WAN fails for any reason, the TransPort device automatically fails over from one WAN to the next available WAN.

For example, if you use an Ethernet interface as your primary WAN, and have a cellular interface configured as a backup interface, if the Ethernet interface fails (for example, if the Ethernet cable is broken), the TransPort device automatically starts to use the cellular interface until the Ethernet interface becomes active again.

For more information on WAN failover, see WAN failover.

Configure a Wide Area Network (WAN)

You can configure up to **10** Wide Area Network (WANs). Configuring a WAN consists of the following:

- Associating a physical interface, such as Ethernet or cellular with the WAN
- Optionally configuring networking parameters for the WAN, such as IP address, mask, and gateway
- Optionally configuring several parameters controlling failover
- Optionally configuring the WAN for IPv6 support

Assigning priority to WANs

You can assign priority to WANs based on the behavior you want to implement for primary and backup WAN interfaces. For example, if you want Ethernet to be your primary WAN with a cellular interface as backup, assign an Ethernet interface to **wan1** and assign a cellular interface to **wan2**.

WANs have priorities associated with them, which is based on a metric parameter set for each WAN. The TransPort device automatically adds a default IP route for the WAN when it comes up. The metric of the route is based on the priority of the interface. For example, as **wan1** is the highest priority, the default route for **wan1** has a metric of **1**, and the default route for **wan2** has a metric of **2**.

Configuring a WAN for IPv6

You can enable IPv6 on a per-WAN-interface basis. See Configure a WAN for IPv6.

Required configuration items

- Assign an interface to the WAN. By default, WANs are assigned the following physical interfaces:
 - wan1: eth1
 - wan2: cellular1
 - wan3: cellular2
- If you want to use IPv6 addressing for the WAN, enable the WAN for IPv6 and configure prefix delegation. See Configure a WAN for IPv6.

Additional configuration options

These additional configuration settings are not typically configured, but you can set them as needed. For **Ethernet** interfaces:

The IP configuration. WANs typically get their IP address configuration from the network to which they connect (for example, cellular). However, you can manually set the IP configuration as needed. The following manual configuration settings are available:

- IP address and mask.
- Gateway: required for Ethernet WANs if setting IP address manually, to create a default route over the WAN. If setting the IP address via DHCP, this setting is obtained automatically and does not need to be set.
- Preferred and alternate DNS server.
- Disable the DHCP client. Ethernet interfaces use DHCP client to get an IP address from a DHCP server (for example, from a cable modem). If you are manually configuring the IP address for the Ethernet interface, disable the DHCP client.
- Network Address Translation (NAT). NAT translates IP addresses from a private LAN to a public IP address. By default, NAT is enabled. Unless your LAN has a publicly-addressable IP address range, do not disable NAT.
- The IP probe settings. These settings control elements of the WAN failover feature, including sending of probe packets over the WAN interface to a specified device to determine whether the WAN is still up, timeouts, and switching between primary and backup interfaces. For more information on these settings, see the discussion of IP probing in Wide Area Networks (WANs).

Note A WAN configured for static IP takes precedence over a configuration derived via DHCP. This allows you to configure alternative DNS servers from those given to you by your network provider.

For **Cellular** interfaces:

The IP probe settings. These settings control elements of the WAN failover feature, including sending of probe packets over the WAN interface to a specified device to determine whether the WAN is still up, timeouts, and switching between primary and backup interfaces. For more information on these settings, see the discussion of IP probing in Wide Area Networks (WANs).

To create a new WAN

- 1. On the menu, click **Network > Networks > WANs**. The WANs page appears.
- 2. Click New WAN Connection and enter the following:

Select WAN: Assign an index number to the WAN. This number sets the WAN priority for the WAN.

Select interface: Select an interface to assign to the WAN. **Enable**: Enable or disable the new WAN.

- 3. In the **IPv4** group, configure IP address settings for IPv4 if you want to manually configure an IP address for the WAN.
- 4. In the IPv6 group, enable and configure IPv6 if required for the WAN.
- 5. In the **Security** group, configure optional security settings for the WAN.
- 6. In the **Probing** group, configure optional probe host settings for the WAN.
- 7. Click **Apply**.

To modify an existing WAN

- 1. On the menu, click Network > Networks > WANs. The WANs page appears.
- Select a WAN and modify settings as needed. See Wide Area Network (WAN) page for field descriptions.
- 3. Click Apply.

Command line

Configure basic WAN settings

1. Assign an interface to the WAN interface.

digi.router> wan 1 interface eth1

- 2. If using IPv6 addressing for the WAN, see Configure a WAN for IPv6.
- 3. Optional: Disable DHCP client mode.

digi.router> wan 1 dhcp off

4. Optional: Configure the IP address, mask, gateway, and DNS servers.

```
digi.router> wan 1 ip-address 10.1.2.2
digi.router> wan 1 mask 255.255.255.252
digi.router> wan 1 gateway 10.1.2.1
digi.router> wan 1 dns1 10.1.2.1
digi.router> wan 1 dns2 8.8.8.8
```

5. Optional: Set the speed.

digi.router> eth 1 speed {auto | 1000 | 100 | 10}

Configure IP probe settings

1. Optional: Configure the time, in seconds, to wait for this interface to connect and to receive a probe response before failing over to a lower priority interface.

digi.router> wan 1 timeout 60

2. Configure the IP host to probe.

digi.router> wan 1 probe-host 192.168.47.1

3. Optional: Configure the time, in seconds, to wait for a response to a probe. This value must be smaller than the probe-interval and timeout parameter values. If not, the configuration is considered invalid, and an error message is written to the system log.

digi.router> wan 1 probe-timeout 5

4. Optional: Configure the interval, in seconds, between sending probe packets. This value must be larger than the probe-timeout value. If not, the WAN failover configuration is considered invalid, and an error message is written to the system log.

digi.router> wan 1 probe-interval 20

5. Optional: Configure the size of the IP probe packet.

```
digi.router> wan 1 probe-size 120
```

 Optional: Configure the time, in seconds, that the primary interface needs to be up before switching back to it as the active interface. If probing is active, no probes are permitted to be lost during this period. Otherwise, the timer is restarted. Accepted value is any integer from 0 to 3600. The default value is 0.

digi.router> wan 1 activate-after 30

 Optional: Configure the time, in seconds, to wait before retrying this interface after failing over to a lower priority one. Use a large retry timeout when both interfaces are cellular interfaces. Accepted value is any integer from **10** to **3600**. The default value is **180**.

```
digi.router> wan 1 retry-after 1200
```

8. Save the configuration.

digi.router> save config

WAN failover

If a WAN fails for any reason, the TransPort device automatically fails over from one WAN to use another.

For example, if you use an Ethernet interface as your main WAN and cellular interface configured as a backup, if the Ethernet interface fails (for example, if the Ethernet cable is broken), the TransPort device automatically uses the cellular interface until the Ethernet interface becomes active again.

Conditions that cause failover

Conditions that can cause a WAN to go down and the TransPort to switch to another interface include:

- On an Ethernet interface, the cable for the Ethernet interface is broken or disconnected.
- On an Ethernet interface, the Ethernet cable modem is switched off.

Detecting when a WAN goes down: active and passive detection

There are two ways to detect when a WAN goes down: active detection and passive detection.

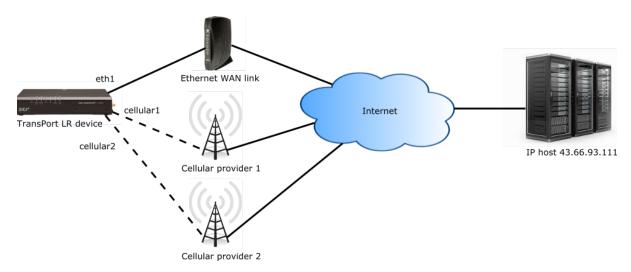
Active detection involves sending out IP probe packets (ICMP echo requests) to a particular host and waiting for a response. The WAN is considered to be down if there are no responses for a configured amount of time. The settings and behavior for active detection through IP probing are described in more detail below.

Passive detection involves detecting the WAN going down by monitoring its link status by some means other than sending IP probe packets; for example, if an Ethernet cable is disconnected or the state of a cellular interface changes from **on** to **off**.

IP probing

Problems can occur beyond the immediate WAN connection that prevent some IP traffic from reaching its destination. Normally this kind of problem does not cause the WAN to fail, as the connection continues to work while the core problem exists somewhere else in the network.

IP probing is a way to detect problems in an IP network. IP probing involves configuring the TransPort device to send out regular IP probe packets (ICMP echo requests) to a particular destination. If there are no responses to the probe packets, the TransPort device can bring down the WAN and switch to using another WAN until the IP network problem is resolved.


IP probing involves the following configuration settings:

- timeout: The time, in seconds, to wait for this interface to connect and to receive a probe response before failing over to a lower priority interface.
- probe-host: The IPv4 or fully qualified domain name (FQDN) of the address of the device itself.
 The WAN failover feature sends probe packets over the WAN to the IP address of this device.
- probe-timeout: The time, in seconds, to wait for a response to a probe. This value must be smaller than the probe-interval and timeout parameter values or the configuration is considered invalid, and an error message is written to the system log.
- probe-interval: The interval, in seconds, between sending probe packets. This value must be larger than the probe-timeout value. If not, the WAN failover configuration is considered invalid, and an error message is written to the system log.
- probe-size: The size of probe packets sent to detect WAN failures.
- activate-after: The time, in seconds, that the primary interface needs to be up before switching back to it as the active interface. If probing is active, no probes are permitted to be lost during this period. Otherwise, the timer is restarted.
- retry-after: The time, in seconds, to wait before retrying this interface after failing over to a lower priority one. Use a large retry timeout when both interfaces are cellular interfaces.

Most of the IP probing configuration parameters have default values, except for the IP address or name of the host to probe. Use of IP probes requires this IP address. For the rest of the parameters, the default values should be sufficient, but you can set them to different values as needed to suit your WAN failover requirements.

Example WAN failover: Ethernet to cellular

In this example WAN, the **eth1** interface associated with **wan1** serves as the primary WAN, while **cellular1** and **cellular2** are associated with **wan2** and **wan3**, respectively, and serve as backups.

To detect failover:

- The **eth1** interface uses IP probing to detect interface failure.
- The backup WANs, wan2 and wan3, use passive techniques to detect interface failure.

Using the IP probing configured over the **eth1** interface, the TransPort device sends a probe packet of size **256** bytes to the IP host **43.66.93.111** every **10** seconds. If no responses are received for **60** seconds, the TransPort device brings the **eth1** interface down and starts using the **wan2** (**cellular1**) interface.

If the TransPort device cannot get a connection on the **wan2** (**cellular1**) interface, it attempts to use the **wan3** (**cellular2**) interface. It attempts to switch back to the **wan2** (**cellular1**) interface after **30** minutes (**1800** seconds).

The TransPort device continues to send probes out of the **eth1** interface. If it receives probe responses for **120** seconds, it reactivates the **wan1** interface and starts using it again as the primary WAN.

To achieve this WAN failover from the **eth1** to **cellular1** and **cellular2** interfaces, the WAN failover configuration commands are:

```
digi.router> cellular 1 state on
digi.router> cellular 2 state on
digi.router> wan 1 interface eth1
digi.router> wan 1 timeout 60
digi.router> wan 1 probe-host 43.66.93.111
digi.router> wan 1 probe-interval 10
digi.router> wan 1 probe-size 256
digi.router> wan 1 activate-after 120
digi.router> wan 2 interface cellular1
digi.router> wan 2 retry-after 1800
digi.router> wan 3 interface cellular2
```

Show WAN status and statistics

📕 Web

- 1. On the menu, click **Network > Networks > WANs**. The WANs page appears.
- 2. Select a WAN.

The WAN page shows configuration parameters, as well as status and statistics for the interface assigned to the WAN.

Command line

Show WAN summary statistics

digi.router> show wan

To show the status and statistics for a WAN, use the show wan command. For example:

WAN Interface Status IP Address

1 eth1 Up 192.168.0.25
2 cellular1 Up 172.20.1.7

digi.router>

Show status and statistics for the WAN physical interface

To view status and statistics for the physical interface for the WAN, enter the **show** command for that physical interface; for example, show eth or show cellular.

Show detailed WAN status

To show detailed status for a WAN, enter the show wan command, specifying the WAN instance number. For example, for a WAN on which IPv6 is enabled:

digi.router> show wan 1

	Received	Sent
Packets	4	4
Bytes	836	796

When IP probing is enabled, the show wan output provides additional details, including how long it has been since the device received a probe response from the probe host:

digi.router> show wan 1
WAN 1 Status and Statistics
______WAN Interface : eth1

Admin Status Oper Status	: Up : Up	
IP Address Mask Gateway DNS Server(s)	: 10.52.18.120 : 255.255.255.0 : 10.52.18.1 : 8.8.8.8	
Probing Last Probe Res	: sponse received :	10.52.18.1 5 seconds ago
Packets Bytes	Received 8356 673351	Sent 640 64841

```
digi.router>
```

If IP probing is disabled because the configuration is invalid, the output is similar to the following:

```
digi.router> show wan 1
WAN 1 Status and Statistics
 ------
 WAN Interface : eth1
 Admin Status : Up
 Oper Status : Up
IP Address : 10.52.18.120
Mask : 255.255.255.0
Gateway : 10.52.18.1
 DNS Server(s) : 8.8.8.8
 Probes are not being used
            Received
                              Sent
            _____
                                 ____
             8356
                                 640
 Packets
 Bytes
              673351
                                64841
```

```
digi.router>
```

If IP probing is on, but the device has not yet received any replies, the output is similar to the following:

```
digi.router> show wan 1
WAN 1 Status and Statistics
WAN Interface : eth1
Admin Status : Up
Oper Status : Up
IP Address : 10.52.18.120
Mask : 255.255.255.0
Gateway : 10.52.18.1
DNS Server(s) : 8.8.8.8
Probing : 10.52.18.1
```

Waiting for first response

	Received	Sent
Packets	8356	640
Bytes	673351	64841

Delete a WAN

Web

- 1. On the menu, click **Network > Networks > WANs**. The WANs page appears.
- 2. On the **WAN** page, select the WAN to delete.
- 3. Click Delete.

Command line

To delete a WAN, remove the physical interface associated with the WAN. Without a physical interface, the WAN is disabled. The WAN still exists in the device configuration, but it has no active physical interface.

For example, use the wan command to set the **interface** parameter value to **none**:

wan <wan-number> interface none

IPv6

IPv6 is an updated version of the Internet Protocol (IP). Until recently, the Internet has used a previous version, IPv4.

One of the reasons for IPv6 is the shortage of IPv4 addresses. Although Network Address Translation (NAT), which allows users to use one public IPv4 address for a whole private network, has mitigated this shortage to some extent, with more and more devices being connected to the internet, there are not many IPv4 addresses left.

IPv4 addresses are 32 bits long. Over 4 billion addresses are available through IPv4, though not all the addresses are usable. IPv6 addresses are 128 bits long. Taking into account the structure of the IPv6 address, there are 4.6×10^{18} globally routable addresses available. This equates to approximately 650 million IP addresses for each person in the world.

Since every device can have a globally routable IPv6 address, there is no NAT with IPv6. This means it is very important to properly configure IP filters and firewall rules to prevent direct attacks on hosts on the LAN networks. By default, a TransPort device blocks any incoming IPv6 traffic not associated with a connection established by a host on the LAN network.

IPv4 and IPv6 can co-exist on the same device. Each application can select the IP version to use. Some services, such as web server or Simple Network Management Protocol (SNMP) can accept connections on both IPv4 and IPv6.

TransPort devices support both IPv4 and IPv6 on WAN and LAN interfaces. Using IPv6 on WAN interfaces requires an ISP that supports IPv6.

Common IPv6 address types

There are several common IPv6 address types, distinguished by their beginning characters:

Address type	Beginning characters	Description
Global routable addresses	Either 2 or 3	Each device using IPv6 on the Internet has a globally unique routable IPv6 address.
Link local addresses	fe80	Each device auto- generates a link-local address on every interface using IPv6. The interfaces use these addresses to communicate with other devices connected on the link.

Address type	Beginning characters	Description
Multicast addresses	ff	Addresses for sending packets to a group of devices. There are a number of well-known defined addresses, such as those for All nodes and All routers .
Unique local addresses (ULA)	fc or fd	Addresses for creating a site-specific network. While these addresses are globally unique, you cannot use them for routing on the Internet.

Auto address assignment

There are three modes in which a device can auto-configure itself with an IPv6 address and other network configuration. The mode the device uses is controlled by the Router Advertisement messages a router periodically sends out, or in response to a Router Solicitation message that a host sends.

Auto-configuration mode	Description
Stateless auto-configuration (SLAAC)	The device uses the prefix sent in the Router Advertisement message to generate a unique IPv6 usually by appending the interface's MAC address with EUI-64 encoding. The device can also learn gateway and DNS server information from the Router Advertisement message. The device uses Duplicate Address Detection (DAD) to ensure the auto-generated IPv6 address is unique.
DHCPv6	The device uses DHCPv6 to get an IPv6 address and other network configuration.
SLAAC + DHCPv6	The device uses a combination of SLAAC and DHCPv6. It uses SLAAC to auto- configures itself with an IPv6 address, and DHCPv6 to get other network configuration, such as DNS server information. This configuration mode is available because earlier versions of the Router Advertisement did not include any DNS server information. Therefore the device had to use DHCPv6 to get this information.

Prefix delegation

Prefix delegation is how a router asks for a prefix from the ISP that it can subnet and distribute through its LAN interfaces. Prefix delegation is an extension of the DHCPv6 protocol.

Normally, a router gets a **/64**-bit prefix using Router Advertisements, which cannot normally be subnetted. Therefore, a router uses prefix delegation to request a globally routable prefix it can distribute.

When the TransPort device receives a delegated prefix, it appends a subnet ID and assigns it to the LAN interfaces with IPv6 enabled. The subnet ID differs for each LAN. By default, the subnet ID is the LAN instance.

For example, if the delegated prefix is **2001:1234:5678:9ab0::/60**, the prefixes for LANs **1** to **4** are:

- LAN 1: 2001:1234:5678:9ab1/64
- LAN 2: 2001:1234:5678:9ab2/64
- LAN 3: 2001:1234:5678:9ab3/64
- LAN 4: 2001:1234:5678:9ab4/64

The router's LAN interfaces then advertise these prefixes using Router Advertisements and DHCPv6.

More information on IPv6

For more information, including key differences between IPv4 and IPv6, see this Digi white paper on IPv6.

Configure a LAN for IPv6

Currently, the only mode for auto-configuration of devices connected on the LAN is **DHCPv6**. Configuring a LAN for IPv6 involves Enable IPv6 on a LAN.

Enable IPv6 on a LAN

You can enable IPv6 on a per-LAN interface basis.

Enabling IPv6 on a LAN does not affect IPv4 operation. When IPv6 is enabled for a LAN, you can have IPv4 addresses on the LAN and hosts on the LAN can use IPv4 and IPv6 as required.

📕 Web

- 1. On the menu, click **Network > Networks > LANs**. The LANs page appears.
- 2. Select the LAN on which you want to enable IPv6.
- 3. Open the IPv6 group, and enable IPv6.

Command line

To enable IPv6 on a LAN, use the lan command ipv6-state parameter. For example:

```
digi.router> lan 1 ipv6-state on
digi.router> save config
```

Show LAN IPv6 status

- 1. On the menu, click **Network > Networks > LANs**. All configured LANs appear.
- 2. Select a LAN. The LAN display expands to show the configuration parameters and the status and statistics for the interface assigned to the LAN. If IPv6 is enabled for the LAN and IPv6 addresses are assigned to it, the addresses display in the **IPv6 Address** field.

Command line

To show the IPv6 status on a LAN, use the show lan command. For example:

```
digi.router> show lan 1
LAN 1 Status and Statistics
 Admin Status
Oper Status
                 : Up
                 : Up
Description : Ethernet LAN network
Interfaces
                 : eth2
MTU
                 : 1500
DHCP client : Off
IP Address : 192.168.1.1
Mask
                : 255.255.255.0
DNS Server(s)
                 : 8.8.8.8
IPv6 Address(es) : fe80::8473:dff:fe69:ab41/64
                                                 (Link Local)
                    2600:1000:b03e:7ae9:1000::1/68 (Global)
                      Received
                                        Sent
                      _____
                                        ____
 Packets
                        167018
                                       56253
                                      4608476
 Bvtes
                      13487578
```

Configure a WAN for IPv6

Configuring a WAN for IPv6 involves these tasks:

- Enable IPv6 on a WAN
- Configure prefix delegation on a WAN

Enable IPv6 on a WAN

You can enable IPv6 on a per-WAN basis.

For IPv6 to work on a WAN interface, the ISP to which the WAN interface is connected must support IPv6.

📕 Web

- 1. From the menu, click **Network > Networks > WANs**. The WANs page appears.
- 2. Select the WAN on which you want to enable IPv6.
- 3. Open the IPv6 group, and enable IPv6.

Command line

To enable IPv6 on a WAN interface, use the wan command **ipv6-state** parameter. For example:

```
digi.router> wan 1 ipv6-state on
digi.router> save config
```

Configure prefix delegation on a WAN

When the WAN interface gets an IPv6 address, the TransPort device automatically sends a prefix delegation request to the ISP. By default, the TransPort device requests a **/60** prefix, which allows the device to support up to **15** LANs. The number of LANs that can be supported is equal to **2** raised to the power of ((64 - prefix-length) - 1). You can request a different prefix length from this default.

Note The TransPort is not guaranteed to receive a prefix of the requested length. For example, the TransPort device may request a **/60** prefix, but receive a **/62** prefix. This means you might have more LANs with IPv6 enabled than can be supported by the received prefix. In this case, the TransPort sets the prefix on the first LAN interfaces as defined by the number of available LANs.

📕 Web

- 1. From the menu, click Network > Networks > WANs. The WANs page appears.
- 2. Select the WAN on which you want to configure prefix delegation.
- 3. Enter the length of the requested prefix in the Requested Prefix Length field.

🔤 Command line

To change the length of the requested prefix, use the wan command **ipv6-prefix-length** parameter. For example:

```
digi.router> wan 1 ipv6-prefix-length 56
digi.router> save config
```

Show WAN IPv6 status

📕 Web

- 1. On the menu, click Network > Networks > WANs. All configured WANs appear.
- 2. Select a WAN. The WAN display expands to show the configuration parameters and the status and statistics for the interface assigned to the WAN. If IPv6 is enabled for the WAN and IPv6 addresses assigned to the WAN, the addresses display in the **IPv6 Address** field.

📟 Command line

To show the IPv6 status on a WAN, use the show wan command. For example:

```
digi.router> show wan 2
WAN 2 Status and Statistics
WAN Interface : cellular1
Admin Status : Up
Oper Status : Up
IP Address : 100.67.98.174
Mask : 255.255.252
Gateway :
DNS Server(s) : 198.224.186.135, 198.224.187.135
```

.)			
NS Server(s) : 2001:4888:12:ff00:106:d::, 2001:4888:13:ff00:123:d::			

Security

TransPort devices have several device security features. This section covers configuring and managing these security features.

- Local users
- Firewall management with IP filters
- Remote Authentication Dial-In User Service (RADIUS)

Local users

To access a TransPort device (via the command-line interface or web interface), users must log in as a configured user of the device. This topic details the TransPort user model, as well as how to create, modify, and delete users.

Maximum number of users

TransPort allows you to configure up to **10** users for a device, **user 1** through **user 10**. Each user has a unique username, password, and access level.

Default user

As manufactured, each TransPort device comes with a default **user 1** configured as follows:

Username: admin

Password: The default password is displayed on the label on the bottom of the device. For example:

Access: super

Note The default password is a unique password for the device, and is the most critical security feature for the device. Anytime you reset the device to factory defaults, you should immediately change the password from the default to a custom password. Before deploying or mounting the TransPort device, take a photo of or otherwise record the default password, so you have the information available when you need it even if you cannot physically access the label on the bottom of the device.

You can change the default **user 1** configuration to match your site requirements.

User access levels

TransPort devices support three access levels: **super**, **read-write**, and **read-only**. These access levels determine the level of control users have over device features and settings.

Access level	Permissions allowed		
super	The user can manage all features on TransPort devices. Devices can have multiple users with super access level.		
	At least one user on each device must have a super access level to allow editing user access levels. If you or any other user deletes the only user with super access level, you must restore the default user configuration by resetting the device to factory defaults.		
read-write The user can manage all device features except security-related such as configuring user access, configuring firewalls, clearing log so on.			
read-only	The user can view device configuration and status, but cannot change the configuration or status.		

Configure a user

To add, modify, or delete a user, you must be assigned the **super** access level. See User access levels for descriptions of user access levels.

To configure a user, you need to configure the following:

Required configuration items

- A username, up to **32** characters long.
- A password, from **1-128** characters long. For security reasons, passwords are stored in hash form. There is no way to get or display passwords in clear-text form.

Additional configuration options

 Setting user access level. The default access level for users is super. To restrict access for a user, assign either read-write or read-only. See User access levels for descriptions of user access levels.

📕 Web

- 1. Click Security > Authentication > Local Users. The User Management page appears.
- 2. Click New User.

Note When you add a new user using the web interface, TransPort creates a new user with the next available index number. When you create a new user using the command line, you cannot set or change the user index number assigned to a user.

- 3. Enter user account information:
 - Username: The username for the user. Usernames can be up to 32 characters long and are case-insensitive. They:
 - Must start with a letter (lowercase or uppercase) or underscore.
 - Can contain letters (lowercase and uppercase), digits, underscore (_), or hyphen (-).
 - Can end with a dollar sign (\$).
 - No other characters are allowed.

Examples of valid usernames: _Username1234\$ and userName-1234.

Examples of invalid usernames: -Username, user/name, userName\$1234

- Access: The user access permission for the user: super, read-write, or read-only. For descriptions of these access permissions, see User access levels.
- Password/Confirm Password: Password for the user.
- 4. Click Apply.

Command line

The user command configures users.

- 1. Configure the username. Usernames can be up to **32** characters long and are case-insensitive.
 - They:
 - Must start with a letter (lowercase or uppercase) or underscore.
 - Can contain letters (lowercase and uppercase), digits, underscore (_), or hyphen (-).
 - Can end with a dollar sign (\$).
 - No other characters are allowed.

Examples of valid usernames: _Username1234\$ and userName-1234.

Examples of invalid usernames: -Username, user/name, userName\$1234

For example:

digi.router> user 1 name joeuser

2. Configure the password. For example:

digi.router> user 1 password omnivers1031

3. Optional: Configure the access level. For example:

digi.router> user 1 access read-write

4. Save the configuration.

digi.router> save config

Delete a user

You can delete user definitions when they are no longer needed.

To add, modify, or delete a user, you must be assigned the **super** access level. See User access levels for descriptions of user access levels.

📕 Web

- 1. Click Security > Authentication > Local Users. The User Management page appears.
- 2. Select the user to delete.
- 3. Click **Delete** and respond to the confirmation prompt.

Command line

Enter the following command:

digi.router> user n name !

For example, to delete the user **joeuser** that was previously assigned to **user 1**, enter:

digi.router> user 1 name !
digi.router> save config

Change a user's password

To add, modify, or delete a user, you must be assigned the **super** access level. See User access levels for descriptions of user access levels.

Web

- 1. Click **Security > Authentication > Local Users**. The User Management page appears.
- 2. Select the user.
- 3. Enter the new password.
- 4. Confirm the new password.
- 5. Click Apply.

Command line

Enter the user command, specifying the new password value:

user <user number> password <password-value>

For example:

user 6 password tester

Firewall management with IP filters

TransPort secures your network by controlling network traffic using a variety of mechanisms, such as Port forwarding (see Port forwarding) and **allow-https-access/allow-ssh-access** (see Wide Area Networks (WANs)).

IP filter rules allow you to further control network traffic by allowing and restricting access based on filter criteria.

For example, you can use an IP filter rule to:

- IP filter example: Allow additional traffic into the device
- IP filter example: Restrict access by rejecting traffic from a LAN to a WAN
- IP filter example: Restrict access to an open service
- IP filter example: Restrict access to a router service from LAN devices
- IP filter example: Restrict LAN-to-LAN for all but one service

IP filter source and destination options

Network traffic managed by IP filter rules can be categorized into three groups:

- Incoming traffic: Traffic destined to a service or application on the router.
- Forwarded traffic: Traffic flowing through the router from one network host to another.
- **Outgoing traffic:** Traffic originating from a service or application on the router.

If you want to create an IP filter rule that applies only to incoming traffic received using the source LAN or WAN, specify only the source option. In this case, incoming network traffic refers only to inbound traffic that is destined for a service on the router, not all traffic flowing through the router destined for another host.

If you want to create an IP filter rule that applies only to traffic flowing through the router received using a source LAN or WAN, specify both the source and destination options. The source and destination values must be different from each other or the rule is not applied.

Infrequently, you may need to create an IP filter rule that applies only to outgoing network traffic sent using the destination LAN or WAN. To do so, specify only the destination option. In this case, outgoing network traffic refers only to outbound traffic sent from a service on the router, not all traffic flowing through the router from another host.

Note Invalid IP filter rules are not applied. To be valid, a rule must include the **Source**, **Destination**, or both the **Source** and **Destination** options. The **Source** and **Destination** options must be different from each other.

Example: Incoming traffic rule

The following rule applies only to incoming traffic received from any configured WAN, regardless of other specified parameters.

Note The destination None value is the default and need not be specified.

```
ip-filter 1 src any-wan
ip-filter 1 dst none
```

IP filter criteria options

An IP filter rule applies only to network traffic (packets) matching the following set of filter criteria options:

- Protocol
- Source IP address
- Source IP port
- Destination IP address
- Destination IP port

After determining if the network traffic is incoming, outgoing, or forwarded traffic, the filter criteria are used to examine the network packet. If the packet matches the criteria, the rule action is applied and the packet is accepted, dropped, or rejected.

Example: SSH criteria

The following rule applies only to packets coming from a host with a 10.20.x.y IP address that are for the SSH server. SSH typically uses TCP protocol on port 22. The default values for source IP port and destination IP address are not used because they are not relevant for this filter criteria.

```
ip-filter 1 protocol tcp
ip-filter 1 src-ip-address 10.20.0.0/16
ip-filter 1 dst-ip-port 22
```

IP filter rule priority

IP filter rules are higher priority than port forward rules, the WAN command allowing HTTPS or SSH access, or rules that allow LAN access by default. Therefore, use IP filter rules to further filter traffic by port, IP address, or protocol.

IP filter rules are applied in order from 1 to the maximum number of rules. Use multiple rules to build a more secure environment where some services are allowed, while others are rejected. See IP filter examples.

Add an IP filter rule

To add one or more IP filter rules:

- 1. On the menu, click **Security > Firewall**:
 - Select Input IP Filters to add an input IP filter.
 - Select Routing IP Filters to add a routing IP filter.
- 3. When you have finished adding rules, click Apply.

📟 Command line

To add an IP filter rule, use the ip-filter command.

For example, to create IP filter rule 3:

```
ip-filter 3 description Allow WAN SNMP only from 10.20 network
ip-filter 3 action accept
ip-filter 3 src any-wan
ip-filter 3 protocol tcp,udp
ip-filter 3 src-ip-address 10.20.0.0/16
```

```
ip-filter 3 dst-ip-port 161,162
ip-filter 3 state on
save config
```

Delete an IP filter rule

To delete one or more IP filter rules:

- 1. On the menu, click **Security > Firewall**:
 - Select Input IP Filters to delete an input IP filter.
 - Select **Routing IP Filters** to delete a routing IP filter.
- 2. Select the rule you want to remove, and click $\hat{\mathbf{m}}$.
- 3. Click Apply.

Command line

You cannot delete an IP filter rule using the command line, but you can disable a rule using the ip-filter command.

For example:

```
digi.router> ip-filter 4 state off
digi.router> save config
```

Edit an IP filter rule

📕 Web

To edit an IP filter rule:

- 1. On the menu, click **Security > Firewall**:
 - Select Input IP Filters to edit an input IP filter.
 - Select **Routing IP Filters** to edit a routing IP filter.
- 2. Select the rule you want to edit and click *G* Edit Rule.
- 3. When you have finished editing the rule, click Apply.

Command line

To edit an IP filter rule, use the ip-filter command.

For example, to edit the description for IP filter rule 3:

ip-filter 3 description Allow WAN SNMP only from 10.20 network save config

Enable or disable an IP filter rule

📕 Web

To enable or disable an IP filter rule:

- 1. On the menu, click **Security > Firewall**:
 - Select Input IP Filters to edit an input IP filter.
 - Select Routing IP Filters to edit a routing IP filter.
- 2. Select the rule you want to change, and enable or disable the rule.
- 3. When you have finished, click **Apply**.

Command line

To enable or disable an IP filter rule, use the ip-filter command state option.

For example, to enable IP filter 1:

```
digi.router> ip-filter 1 state on
digi.router> save config
```

To disable IP filter 1:

```
digi.router> ip-filter 1 state off
digi.router> save config
```

Show IP filter rules

To show IP filter rules:

- On the menu, click Security > Firewall. The Firewall page appears, displaying all configured IP filter rules.
- Select Input IP Filters to view input IP filters and select Routing IP Filters to view routing IP filters.
- Command line

To show IP filter rules, use the show ip-filter or ip-filter commands. For example, to show a specific IP filter:

```
digi.router> show ip-filter 1
IP Filter 1
 _____
                       : Allow WAN SSH only from 10.20 network
Description
Action
                        : Accept
 State
                        : On
Source
                       : any-wan
Destination
                        : none
Filter Criteria
 _____
Source IP Address : 10.20.0.0/16
Source IP Port : 0
Protocol
                      : tcp udp
Destination IP Address :
Destination IP Port : 22
```

digi.router> ip-filter 1	
action	accept
description	Allow WAN SSH only from 10.20 network
dst	none
dst-ip-address dst-ip-port protocol	22 tcp,udp
src	any-wan
src-ip-address	10.20.0.0/16
src-ip-port	0
state	on

To show all IP filters:

```
digi.router> show ip-filter
```

#	State	Action	Source	Destination	Protocol	Description
1	0n	Accept	any-wan	none	tcp udp	Allow WAN SSH only from 10.20 network
2	0n	Drop	any-lan	none	tcp udp	Restrict LAN from HTTP, HTTPS, SSH, SNMP
3	0n	Accept	any-wan	none	tcp udp	Allow WAN SNMP only from 10.20 network
4	0n	Reject	any-lan	any-wan	tcp udp	Restrict LAN to WAN for various email services
5	0n	Accept	lan1	any-lan	tcp	Allow LAN1 SSH to Other LANs
6	0n	Reject	lan1	any-lan	any	Restrict LAN1 from Accessing Other LANs

IP filter examples

The following examples show typical ways to use IP filters to control network traffic:

- IP filter example: Allow additional traffic into the device
- IP filter example: Restrict access by rejecting traffic from a LAN to a WAN
- IP filter example: Restrict access to an open service
- IP filter example: Restrict access to a router service from LAN devices
- IP filter example: Restrict LAN-to-LAN for all but one service

IP filter example: Allow additional traffic into the device

The following example shows how to allow SNMP access from a particular subnet on the WAN. Note that by default WAN access does not allow SNMP access.

WARNING! The commands in the following example open up SNMP access to your device. SNMP can be used to configure your device. Before allowing SNMP access, make sure you first secure your SNMP configuration using the snmp, snmp-user and snmp-community commands.

The example demonstrates that IP filter rules can override the default behavior for the firewall. By default, WAN traffic into the TransPort router is dropped if no other configuration or rules explicitly allow traffic in. That is, the default policy for the input chain in the firewall is to **DROP** traffic.

- Adds an IP filter Accept rule (the default) to allow incoming traffic on any WAN network additional access.
- Restricts the accepted network traffic so that only traffic from hosts on the 10.20 network to SNMP (ports 161 and 162) is allowed.
- Allows access to multiple protocols (the default). It allows both TCP and UDP access for the SNMP service.

```
digi.router> ip-filter 3 description Allow WAN SNMP only from 10.20 network
digi.router> ip-filter 3 action accept
digi.router> ip-filter 3 src any-wan
digi.router> ip-filter 3 protocol tcp,udp
digi.router> ip-filter 3 src-ip-address 10.20.0.0/16
digi.router> ip-filter 3 dst-ip-port 161,162
digi.router> ip-filter 3 state on
digi.router> save config
```

IP filter example: Restrict access by rejecting traffic from a LAN to a WAN

The following example shows how to restrict LAN devices from accessing services on the WAN (possibly the internet).

WARNING! The commands in the following example could remove your access to the Internet. If you or your users are connected through the LAN to the WAN, using email, the example rule prevents access.

The example demonstrates blocking access from a LAN device to a WAN network. By default, LAN devices are allowed access via the WAN and traffic is forwarded through the router. The example blocks direct mail access to servers on the WAN from LAN devices. Examples like this might be used to prevent access to common services that use a lot of bandwidth or are security risks to the LAN:

- Adds an IP filter **Reject** rule to reject traffic forwarded from any LAN host to any WAN host. The reject rule immediately fails the connection.
- Restricts the rejected traffic to a set of commonly used mail ports.
- Rejects access using multiple protocols (the default). It rejects both TCP and UDP access.

```
digi.router> ip-filter 4 description Restrict LAN to WAN for various email
services
digi.router> ip-filter 4 action reject
digi.router> ip-filter 4 src any-lan
digi.router> ip-filter 4 dst any-wan
digi.router> ip-filter 4 protocol tcp,udp
digi.router> ip-filter 4 dst-ip-port 25,2525,265,587,110,995,143,993
digi.router> ip-filter 4 state on
digi.router> save config
```

IP filter example: Restrict access to an open service

The following example shows how to turn on SSH access for a WAN and restrict SSH access to only a particular subnet of authorized hosts.

WARNING! The commands in the following example could prevent access to your device if connected from the WAN. To safely modify and test ip filter rules, use a scheduled reboot strategy.

The example demonstrates the following:

- Uses the reboot command to schedule a reboot of the device in case of accidental lockout. A scheduled reboot discards any changes that have not been saved and restores access.
- Adds an ip filter Accept rule (the default) to allow incoming traffic on any WAN network additional access.

- Restricts the accepted network traffic so that only traffic from hosts on the 10.20 network to SSH (port 22) is allowed.
- Turns off the allow-ssh-access option for the two currently configured WAN networks. The allow-ssh-access allows SSH access unrestricted by host or network.

```
# Schedule a reboot in 10 minutes in case we lock ourselves out of the device
reboot in 10
# Add the ip filter rule. Be sure to include src-ip-address of at least your
current session (if connected with ssh)
ip-filter 1 description Allow WAN SSH only from 10.20 network
ip-filter 1 action accept
ip-filter 1 src any-wan
ip-filter 1 src-ip-address 10.20.0.0/16
ip-filter 1 dst-ip-port 22
ip-filter 1 state on
# Now turn off allow all ssh access on any WAN where it was turned on previously
wan 1 allow-ssh-access off
wan 2 allow-ssh-access off
# Test the configuration. If all is good, save the configuration and cancel the
reboot before 10 minutes
save config
reboot cancel
```

IP filter example: Restrict access to a router service from LAN devices

The following example shows how to remove HTTP, HTTPS, SSH, SNMP access from a LAN. Note that by default, LAN traffic is allowed.

WARNING! The commands in the following example could prevent access to your device if connected from the LAN. To safely modify and test ip filter rules, use a scheduled reboot strategy.

The example demonstrates the following:

- IP filter rules have a higher precedence (priority) than many system firewall rules. By default for LANs, traffic is allowed into the TransPort router by built-in system firewall rules. This example changes the default allowed access, restricting LAN devices from access.
- Uses the reboot command to schedule a reboot of the device in case of accidental lockout. A scheduled reboot discards any changes that have not been saved and restores access.
- Adds an IP filter **Drop** rule to drop incoming traffic on any LAN network, thereby restricting
 additional access. A drop rule silently drops traffic, giving no indication to the connecting host.
- Restricts access to multiple protocols (the default) and multiple services (ports) to simplify creation of rules. It blocks both TCP and UDP access for all services even though only the SNMP service (ports 161 or 162) uses UDP.

Schedule a reboot in 10 minutes in case we lock ourselves out of the device reboot in 10

```
# Add the ip filter rule. If you are connected from the LAN using SSH this will
remove your access.
ip-filter 2 description Restrict LAN from HTTP, HTTPS, SSH, SNMP
ip-filter 2 action drop
ip-filter 2 src any-lan
ip-filter 2 protocol tcp, udp
ip-filter 2 dst-ip-port 80,443,22,161,162
ip-filter 2 state on
# Test the configuration. If all is good, save the configuration and cancel the
reboot before 10 minutes
save config
reboot cancel
```

IP filter example: Restrict LAN-to-LAN for all but one service

The following example shows how to restrict devices on LAN 1 (perhaps a public LAN) from communicating with devices on any other LAN (perhaps internal LANs) except for certain services. By default, LAN devices can communicate with other LANs.

On a Wi-Fi LAN, you can also configure client and access point isolation. These rules might typically be used when partial isolation is desirable.

WARNING! The commands in the following example could remove access to services for LAN devices. If you or your users are connected through the LAN, this example may prevent access.

The example demonstrates that multiple IP filter rules have an order precedence. Use multiple IP filter rules to build more complex access control than a single rule could provide:

- Creates two IP filter rules, one at index 5, the other at index 6.
- Rule 5 is an Accept rule that allows LAN 1 to access any LAN for the SSH service (port 22). It is
 executed before rule 6.
- Rule 6 is a **Reject** rule that restricts LAN 1 from accessing any protocol and any port on other LANs. It is executed after rule 5.

```
digi.router> ip-filter 5 description Allow LAN1 SSH to Other LANs
digi.router> ip-filter 5 action accept
digi.router> ip-filter 5 src lan1
digi.router> ip-filter 5 dst any-lan
digi.router> ip-filter 5 protocol tcp
digi.router> ip-filter 5 dst-ip-port 22
digi.router> ip-filter 5 state on
digi.router> ip-filter 6 description Restrict LAN1 from Accessing Other LANs
digi.router> ip-filter 6 action Reject
digi.router> ip-filter 6 src lan1
digi.router> ip-filter 6 dst any-lan
digi.router> ip-filter 6 protocol any
digi.router> ip-filter 6 state on
digi.router> save config
```

Certificate and key management

This section covers concepts and tasks for managing certificates and private keys.

- Create a private key file
- Create a Diffie Hellman key file
- List private key files
- Create a certificate signing request (CSR)
- Upload a private key file
- Delete a private key file

Create a private key file

Command line

To create a private key file, use the pki command. For example:

digi.router> pki privkey testpriv.key 204

You can optionally encrypt the file using either the aes128 or aes256 options. If you choose to encrypt the file, you must provide a password that must be at least four characters in length. For example:

digi.router> pki privkey testpriv.key 2048 aes128 hello

Create a Diffie Hellman key file

📟 Command line

To create a Diffie Hellman key file, use the pki command. For example:

```
digi.router> pki dh-file openvpndh.pem 2048
```

```
Creating Diffie Hellman file openvpndh.pem, 2048 bits
```

Note Generating a Diffie Hellman file can take up to 40 minutes. Make sure the default for command line timeout allows enough time to generate the file or the command will terminate. See the system **timeout** parameter for details on changing the command line timeout default.

List private key files

Command line

To list private key files, use the pki command. For example:

```
digi.router> pki list
```

Private key files

tespriv.key anotherpriv.key

Upload a private key file

📟 Command line

To upload an externally-generated private key file from the upload folder to the list of private key files, use the pki command. For example:

digi.router> pki addkey mykeyfile.key

Delete a private key file

Command line

To delete a private key file, use the pki command. For example:

digi.router> pki list

Private key files ------testpriv.key

anotherpriv.key

digi.router> del testpriv.key

Create a certificate signing request (CSR)

Command line

To create a private key file, use the pki command. For example:

Note To show all **pki csr** command option settings within the page margin, the example shows the settings on multiple lines. However, TransPort does not allow you to continue a command line—the example is for display only.

```
digi.router> pki csr country GB state "North Yorkshire" locality Richmond
organization Digi organizational-unit "Digi Engineering" common-name www.example.com
testpriv.key testpriv.csr sha256
Country Name (letter code): GB
State or Province Name: North Yorkshire
Locality Name: Richmond
Organization Name: Digi
Organization Unit Name: Digi Engineering
Common Name: www.example.com
Email address:
```

testpriv.csr has been created

Remote Authentication Dial-In User Service (RADIUS)

TransPort supports Remote Authentication Dial-In User Service (RADIUS), a networking protocol that provides centralized authentication and authorization management for users who connect to the device.

With RADIUS support, the TransPort acts as a RADIUS client, which sends user credentials and connection parameters to a RADIUS server over UDP. The RADIUS server then authenticates the RADIUS client requests and sends back a response message to the TransPort.

When you are using RADIUS authentication, you can have both local users and RADIUS users able to log in to the device.

Note All TransPort usernames—RADIUS usernames and local usernames—must be unique. If a RADIUS user has the same username as a local user, the RADIUS user cannot log in.

Set up a RADIUS server

To use RADIUS authentication, you must set up a RADIUS server accessible by the TransPort prior to configuration. The process of setting up a RADIUS server varies by the server environment. An example of a RADIUS server is freeRADIUS and a quick-start guide for setting up a freeRADIUS server is here: http://wiki.freeradius.org/guide/Getting%20Started.

Set up a RADIUS backup server

TransPort also supports the use of a backup RADIUS server to which authentication requests are automatically sent when the primary RADIUS server is unavailable.

If both the primary and backup RADIUS servers are unavailable, the **local-auth** configuration can be used to fall back to local TransPort authentication. If the RADIUS servers are unavailable and the TransPort falls back to local authentication, only local device users are able to log in. In other words, after a fall-back event, RADIUS users cannot log in until the RADIUS servers are brought back up.

Use the local-auth parameter

The **local-auth** parameter configures how the TransPort behaves when all configured RADIUS servers are unavailable. In most situations, Digi recommends you enable **local-auth**. In this way, when the RADIUS servers are unavailable for any reason, local users can log in to the TransPort and configure other available servers.

If the RADIUS servers become unavailable and **local-auth** is disabled, no users can log in to the TransPort. Also, even if **local-auth** is disabled, no RADIUS user may have the same username as a user defined locally. If a RADIUS user has the same username as a local user, the RADIUS user cannot log in.

The table below shows how the primary RADIUS server, the backup RADIUS server, and local authorization work together.

Primary server available	Backup server available	Local authorization	Who can log in?
Yes	No	N/A	RADIUS and local users can log in.
No	Yes	N/A	RADIUS and local users can log in.

Primary server available	Backup server available	Local authorization	Who can log in?
No	No	Enabled	Only local users can log in. RADIUS users cannot log in until the RADIUS servers are brought back up.
No	No	Disabled	No users can log in.

Configure a RADIUS server

This section describes how to configure a RADIUS server for authentication and authorization.

Required configuration items

- Enable the RADIUS server. It is disabled by default.
- Define the primary server IP address or domain name.
- Define the primary server port. It is configured to 1812 by default.
- Define the primary server shared secret.
- Determine whether local authentication is used if a RADIUS server is unavailable. It is enabled by default.

Additional configuration options

- The server NAS ID. If left blank, the default value of **sshd** is sent out.
- Time in seconds before the request to the server times out. The default is 3 seconds and the maximum possible value is 10 seconds.
- Enable debug logging. It is disabled by default.
- Add a backup server in case the primary RADIUS server is unavailable. Configuration items similar to the primary RADIUS server are also available for the backup RADIUS server.

- 1. On the menu, click **Security > RADIUS**. The RADIUS page appears.
- 2. Under the **Settings** section, enable the RADIUS-based authentication feature and configure the basic settings:
 - a. Click Enable to turn RADIUS based authentication on.
 - b. In the **NAS ID** field, enter a NAS ID for the TransPort. This attribute contains a string identifying the NAS originating the request to the RADIUS server. If the field is left blank, the default value of **sshd** is sent out.
 - c. Click **Local Auth Fallback** to enable authentication of local TransPort users when the primary and backup RADIUS servers are unavailable.
 - d. Click **Debug** to log RADIUS debug messages to the TransPort log. This is optional.
- 3. Under the **Primary Server Settings** section, configure the primary RADIUS server. See RADIUS page for detailed information.

- If using a backup server, under the Backup Server Settings section, configure the backup RADIUS server. Configuring a backup server is optional. See RADIUS page for detailed information.
- 5. Click **Apply** to save the changes.
- Command line
 - 1. Set the RADIUS server IP address or FQDN:

digi.router> radius server 192.168.10.1

2. Set the RADIUS server port:

digi.router> radius server-port 1812

3. Set the RADIUS server secret:

digi.router> radius server-secret thisisasecret

4. (Optional) Set the RADIUS server nas-id:

digi.router> radius nas-id 123

5. (Optional) Establish whether using the local authentication fallback feature is desired:

digi.router> radius local-auth on

6. (Optional) Set the RADIUS server timeout:

digi.router> radius server-timeout 10

7. (Optional) Turn on debug logging:

digi.router> radius debug on

8. (Optional) Set a backup server IP address or domain name:

digi.router> radius backup-server radius.ny.domain

9. (Optional) Set a backup server port:

digi.router> radius backup-server-port 1813

10. (Optional) Set a backup server secret:

digi.router> radius backup-server-secret thisisthebackupsecret

11. (Optional) Set a backup server timeout:

digi.router> radius backup-server-timeout 10

12. Turn on the RADIUS server authentication:

digi.router> radius state on

13. Save the configuration:

digi.router> save config

Services and applications

These topics describe the network services and configurable aspects of running application programs on TransPort devices.

- Auto-run commands
- About Python support
- Port forwarding
- Using an SSH server

Auto-run commands

Auto-run commands are commands that are automatically run at boot-up. You can use auto-run commands for such tasks as:

- Starting a Python program
- Switching between configuration files
- Scheduling a reboot

The TransPort supports up to **10** auto-run commands. See autorun for details.

Required configuration items

Configure the command that is to be automatically run at boot up. See Use multiple configuration files to test configurations on remote devices for an example of using autorun commands to safely test configurations on a remote device.

Example: Update the configuration from file config.da0

autorun 1 command "update config config.da0"

Example: Run a timed reboot

autorun 2 command "reboot in 5"

About Python support

TransPort supports Python 3.6 and provides you with the ability to run Python applications on the device interactively or from a file. You can also specify Python programs to be run each time the TransPort starts up.

The following commands provide Python support:

- python
- python-autostart
- show python

Python version

Python 3.6

Uploading Python application files

To upload Python application files to your TransPort, use the File system page. See File system for details.

WARNING! If your Python application repeatedly writes to files or logs, it can cause excessive wear on the LR54 flash memory. Digi recommends keeping frequentlymodified data in memory and writing to files only when required.

Run a Python application interactively

Command line

Use the python command to run a Python application interactively in the current CLI session. The Python application runs until it exits, displaying output and prompting for additional user input if needed. If you want to interrupt the application, enter CTRL-C or use the python stop command.

For example, the following command:

python health.py 120 ports storage

Runs the **health.py** application and passes three parameters to the application: **120**, **ports**, and storage.

Run an interactive Python session

Command line

Use the python command without specifying any parameters to start an interactive Python session. The Python session operates interactively using REPL (Read Evaluate Print Loop) to allow you to write Python code on the command line.

Configure Python application to autostart

Command line

Use the python-autostart command to specify a Python application to be run each time the TransPort starts up.

Here are some examples of the python-autostart command:

```
python-autostart 3 filepath "health.py"
python-autostart 3 args "120 ports storage"
python-autostart 3 on-exit "reboot"
python-autostart 3 state "on"

python-autostart 4 filepath "scripts/python/traffic.py"
python-autostart 4 args "300 --quiet"
python-autostart 4 on-exit "restart"
python-autostart 4 state "on"
```

Show running Python applications

Command line

Use the show python to list Python applications currently running on your TransPort. For example:

```
digi.router> show python
ID File Name Arguments
4990 health.py 120 ports storage
4993 scripts/python/traffic.py 300 --quiet
6322 (interactive)
```

Stop a Python application

📟 Command line

Use the python command **stop** parameter to stop a running Python application.

To stop an application:

- 1. Determine the Python application ID using the show python command.
- 2. Enter python stop command and provide the Python application ID.

For example:

```
digi.router > show pythonArgumentsIDFile NameArguments4990health.py120 ports storage4993scripts/python/traffic.py300 --quiet
```

```
digi.router > python stop 4990
```

If you stop a Python application initiated by the <u>python-autostart</u> application, the application ends without executing the application **on-exit** action. That is, the application ends without causing a device reboot or application restart.

Get help for Python programming

You can use the following Digi tools to assist in Python programming for a TransPort:

- digidevice.cli module
- Help for executing CLI commands
- digidevice.datapoint module
- Help for uploading datapoints

digidevice.cli module

Command line

Use the digidevice.cli module to execute CLI commands and retrieve command output.

digi.router> python Python 3.6.1 >>> from digidevice import cli >>> print(cli.execute("show python")) ID File Name Arguments _____ 3141 scripts/python/traffic.py 300 --quiet 4990 health.py 120 ports storage 5451 (interactive)

Help for executing CLI commands

Command line

Get help executing a CLI command by accessing help for cli.execute. For example:

```
digi.router> python
Python 3.6.1
>>> from digidevice import datapoint
>>> from digidevice import cli
>>> help(cli.execute)
Help on function execute in module digidevice.cli:
.
```

•

digidevice.datapoint module

Command line

Use the **digidevice.datapoint** module to upload data points to Digi Remote Manager. The Remote Manager connection must be enabled and connected. See Remote management and the cloud command for details.

```
digi.router> python
```

```
Python 3.6.1
>>> from digidevice import datapoint
>>> datapoint.upload('test/stream/one', 42)
>>>
```

Help for uploading datapoints

Command line

Get help for uploading datapoints to your TransPort by accessing help for **datapoint.upload**. For example:

digi.router> python
Python 3.6.1
>>> from digidevice import datapoint
>>> from digidevice import cli

>>> help(datapoint.upload)
Help on function upload in module digidevice.datapoint:

Port forwarding

Most computers connected to a router are protected by a firewall that prevents users on a public network from accessing servers on the private network. To allow a computer on the Internet to connect to a specific server on a private network, set up one or more port forwarding rules. Each port forwarding rule automatically maps and forwards an external request for a port on a WAN to an IP address and port on an internal LAN.

For a port forwarding rule to be applied, you must configure **From Port** and **To IP Address**, and set the rule to **Enabled**. Incomplete and incorrect port forwarding rules are not applied. You can configure a maximum of 30 port forwarding rules.

Add a port forwarding rule

Web

To add one or more port forwarding rules:

- On the menu, click Network > Services > Port Forwarding. The Port Forwarding page appears.
- Click + (Add Rule) to create a new rule. See Port forwarding page for field descriptions.
 For a port forwarding rule to be applied, you must configure From Port and To IP Address, and set the rule to Enabled. Incomplete and incorrect port forwarding rules are not applied.
- 3. When you have finished adding rules, click **Apply**.

Here's a sample of port forwarding rules:

DIGI TRANSPORT [®] LRS4W	Dashboard	WAN Interfaces	⟨··⟩ Local Networks	VPN System		LOGOUT
		System - Port Fo	rwarding			
					CANCEL APPLY	0
	port forwarding rules. These rules enable external requests for	a port on a liuwi to be-	cansparently mapped (ind forwarded to an IP add	+ > a	
Enables	d Description	From Port(s)	Protocol	To IP Address	To Port	
	Forward HTTP	80	▼ TCP ▼	192.168.1.4	Use from port(s) 👻	
	Forward HTTPS	8443	▼ TCP ▼	192.168.1.4	443 *	
	Forward Teinet (23 and 2300)	23,2300	▼ TCP ▼	192.168.1.8	Use from port(s) 🗢	
C	Forward TFTP Ports (6500 - 6909)	6900:6909	▼ TCP ▼	129.168.1.22	69	
					Usefn Enterj	om port(s) port #

Command line

To add a port forwarding rule, use the port-forward command.

For a port forwarding rule to be applied, you must configure **port** and **to-ip-address**, and set the **state** of the rule to **on** (the default state). Incomplete and incorrect port forwarding rules are not applied. For example:

```
digi.router> port-forward 4 port 80
digi.router> port-forward 4 to-ip-address 192.168.47.1
digi.router> port-forward 4 state on
digi.router> save config
```

Delete a port forwarding rule

To delete one or more port forwarding rules:

- On the menu, click Network > Services > Port Forwarding. The Port Forwarding page appears.
- 2. Select the rule you want to remove, and click $\hat{\mathbf{m}}$.
- 3. Click Apply.

Command line

You cannot delete a port forwarding rule using the command line, but you can disable a port forwarding rule using the port-forward command.

For example:

```
digi.router> port-forward 4 state off
digi.router> save config
```

Enable or disable a port forwarding rule

📕 Web

To enable or disable a port forwarding rule:

- On the menu, click Network > Services > Port Forwarding. The Port Forwarding page appears.
- 2. For each rule, use the slider on the **Enabled** field to enable or disable the rule as needed.
- 3. Click Apply.

Command line

To enable or disable a port forwarding rule, use the port-forward state parameter.

For example, to enable port forwarding rule 4:

digi.router> port-forward 4 state on digi.router> save config

To disable port forwarding rule 4:

```
digi.router> port-forward 4 state off
digi.router> save config
```

Show port forwarding rules

📕 Web

To show port forwarding rules:

On the menu, click Network > Services > Port Forwarding. The Port Forwarding page appears. See Port forwarding page for field descriptions.

Command line

To show port forwarding rules, use the show port-forward command. For example:

digi.router> show port-forward

Using an SSH server

TransPort devices have a Secure Shell (SSH) server for managing the device through the commandline interface over a SSH connection. Only the SSHv2 protocol is supported; earlier versions of SSH protocol are no longer considered secure.

Configure a Secure Shell (SSH) server

Command line

1. Enable the SSH server.

digi.router> ssh state on

2. Optional: Configure the port number for the SSH server.

digi.router> ssh port 50684

3. Save the configuration.

digi.router> save config

Use SSH to connect to the TransPort command-line interface

You can make SSH connections using utilities such as PuTTY, TeraTerm, or the Linux ssh command.

Command line

The following example shows how to use the Linux **ssh** command to connect to IP address **192.168.1.1** for the first time using the **admin** user account.

```
$ ssh admin@192.168.1.1
The authenticity of host '192.168.1.1 (192.168.1.1)' can't be established.
RSA key fingerprint is 2c:db:01:65:2f:bb:a3:4f:c0:5e:dd:2d:e7:9f:7d:01.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '192.168.1.1' (RSA) to the list of known hosts.
Password: *********
```

Welcome admin Access Level: super Timeout : 180 seconds digi.router>

Terminate an SSH connection

Command line

To terminate an SSH connection:

• Exit the command-line interface using the exit command.

Remote management

These topics cover using remote management facilities to manage TransPort devices.

- Remote Manager
- Using Simple Network Management Protocol (SNMP)

Remote Manager

Digi Remote Manager[®] is a hosted remote configuration and management system that allows you to remotely manage a large number of devices. Digi Remote Manager has a web-based interface from which you can perform device operations, such as viewing and changing device configurations and perform firmware updates.

The Digi Remote Manager servers also provide a data storage facility.

Using Digi Remote Manager requires setting up a Digi Remote Manager account. To set up a Digi Remote Manager account and learn more about Digi Remote Manager, go to www.digi.com/products/cloud/digi-remote-manager.

To learn more about Digi Remote Manager features and functions, see the Digi Remote Manager User Guide.

Configure Digi Remote Manager

Digi Remote Manager is enabled by default. Once the TransPort device has a WAN connection, it automatically connects to Digi Remote Manager.

Additional configuration options

These additional configuration settings are not typically configured, but you can set them as needed:

- You can disable the Digi Remote Manager connection if it is not required.
- You can change the reconnection timer. By default, the device attempts to connect to Digi Remote Manager every **30** seconds.
- The non-cellular keepalive timeout. By default, the device will send a keepalive message to Digi Remote Manager and expect a keepalive message every 60 seconds when using a non-cellular WAN interface. You can change the non-cellular keepalive timeout value depending on your WAN characteristics.
- The cellular keepalive timeout. By default, the device will send a keepalive message to Digi Remote Manager and expect a keepalive message every 290 seconds when using a cellular WAN interface. You can change the cellular keepalive timeout length depending on your cellular interface characteristics.
- The keepalive count before the Remote Manager connection is dropped. By default, the device disconnects and attempts to reconnect to Remote Manager after 3 missed keepalive messages.

📕 Web

Register device in Digi Remote Manager

• If you have already registered your device:

If you have registered your device with Digi Remote Manager when you went through the

Getting Started Wizard:

- 1. Enter your credentials to log in to your Remote Manager account and click Log In.
- 2. A message appears showing the group into which your device has been registered in the **Remote Manager Status** section of the Digi Remote Manager page.
- If you have not already registered the device:
 - On the menu, click System > Administration > Remote Manager. The Digi Remote Manager page appears.
 - 2. Enter your credentials to log in to your Digi Remote Manager account and click Log In.
 - Select a group for you device in your Digi Remote Manager account, then click **Register** Device.
 - 4. If the registration succeeds, a message appears indicating that your device has been registered in your Digi Remote Manager account; for example:

This device is registered in your Digi Remote Manager account Group location: Group C

Optional: Modify Digi Remote Manager settings

- 1. On the menu, click System > Administration > Remote Manager.
- 2. Enter the settings.
 - Enable or disable the TransPort device connection to Digi Remote Manager.
 - Ethernet Keepalive: The interval between sending keepalives to Digi Remote Manager over Ethernet interfaces.
 - Cellular Keepalive: The interval between sending keepalives to Digi Remote Manager over cellular interfaces.
 - Reconnect Delay: The reconnection timer for reconnecting to Digi Remote Manager after a disconnect. By default, the device attempts to connect to Digi Remote Manager every 30 seconds.
- 3. Click Apply.

🔤 Command line

Disable the Digi Remote Manager connection.

```
digi.router> cloud state off
digi.router> save config
```

• Set the reconnect timer. For example, to set it to **60** seconds:

```
digi.router> cloud reconnect 60
digi.router> save config
```

Set the non-cellular keepalive time. For example, to set it to 180 seconds:

```
digi.router> cloud keepalive 180
digi.router> save config
```

• Set the cellular keepalive time. For example, to set it to 600 seconds:

```
digi.router> cloud keepalive-cellular 600
digi.router> save config
```

Set the keepalive count. For example, to set it to 5:

```
digi.router> cloud keepalive-count 5
digi.router> save config
```

Show Digi Remote Manager connection status

• On the menu, click System > Administration > Remote Manager.

The **Digi Remote Manager** page shows whether your device is connected to Digi Remote Manager, as well as device connection statistics.

Command line

To show the status of the Digi Remote Manager connection, use the show cloud command.

In the show cloud command output, the device ID is the unique identifier for the device on the Digi Remote Manager.

For example:

digi.router> show cloud

```
Device Cloud Status
 _____
Status : Connected
 Server : my.devicecloud.com
Device ID : 00000000-0000000-0040FFF-FF0F4594
         : 1 Minute, 9 Seconds
 Uptime
          Received
                                     Sent
          _____
                                      ____
 Packets
                                      14
           13
                                      218
 Bytes
               37
digi.router>
```

Enable health reporting

You can enable the gathering of health metrics information for your device. Before enabling health reporting, make sure you first register your device with Digi Remote Manager. For instructions, see Configure Digi Remote Manager.

- 1. From the menu, click **System > Remote Manager**.
- 2. Click Open Remote Manager.
- 3. Go to **Configuration > Remote Manager** page.
- 4. For the Enable or disable health reporting option, select On.
- 5. Click **Save** to save the configuration.

Command line

• Turn on health reporting for Digi Remote Manager:

```
digi.router> cloud health on
digi.router> save config
```

Using Simple Network Management Protocol (SNMP)

Simple Network Management Protocol (SNMP) is a protocol for remotely managing and monitoring network devices. Network administrators can use the SNMP architecture to manage nodes, including servers, workstations, routers, switches, hubs, and other equipment on an IP network, manage network performance, find and solve network problems, and plan for network growth.

Supported SNMP versions

TransPort devices support the SNMP versions SNMPv1, SNMPv2c, and SNMPv3.

The device supports up to **10** SNMPv1/SNMPv2c communities. Each community can have read-only or read-write access.

The device supports up to **10** SNMPv3 users. You can configure each user's access level as read-only or read-write, and configure security settings on an individual-user basis.

Supported Management Information Bases (MIBs)

TransPort devices support the following SNMP MIBs for managing the entities in a communication network:

- Standard SNMP MIBs
- An enterprise-specific MIB for the LR54, named transport-lr54.mib. This MIB is available for download from Digi Support.

Note You cannot use SNMPv1 with the Enterprise MIB because of the **COUNTER64** types used in the Enterprise MIB.

Configure SNMPv1 and SNMPv2

📟 Command line

1. All SNMP versions are disabled by default. To enable support for SNMPv1 or SNMPv2c, enter:

digi.router> snmp v1 on

OR

digi.router> snmp v2c on

2. If using SNMPv1/v2c communities, configure a name for each community. For example:

digi.router> snmp-community 1 community public

3. The community access level defaults to read-only. To set the access level to read-write, enter:

digi.router> snmp-community 1 access read-write

4. Save the configuration.

digi.router> save config

Configure SNMPv3

Command line

1. All SNMP versions are disabled by default. To enable support for SNMPv3, enter:

digi.router> snmp v3 on

2. For each SNMPv3 user, give the user a name of up to 32 characters:

digi.router> snmp-user 1 user joe

3. Set the authentication type for the SNMPv3 user (**none**, **md5**, or **sha1**). To use privacy (DES or AES), the authentication type be either **md5** or **sha1**.

digi.router> snmp-user 1 authentication sha1

4. Set the authentication password for the SNMPv3 user. The password length can be between **8** and **64** characters.

digi.router> snmp-user 1 authentication-password authpassword

5. Set the privacy type for the SNMPv3 user (none, aes, or des):

digi.router> snmp-user 1 privacy des

6. Set the privacy password for the SNMPv3 user. The password length can be between **8** and **64** characters.

digi.router> snmp-user 1 privacy-password privpassword

7. Configure the access level for the SNMPv3 user.

digi.router> snmp-user 1 access read-write

8. Save the configuration.

digi.router> save config

Routing

This topic area covers configuring and managing routes for TransPort devices.

- IP routing
- Dynamic Mobile Network Routing (DMNR)
- Quality of Service (QoS)

IP routing

The TransPort device uses IP routes to decide where to send a packet it receives for a remote network. The process for deciding on a route to send the packet is as follows:

- 1. The device examines the destination IP address in the IP packet, and looks through the IP routing table to find a match for it.
- 2. If it finds a route for the destination, it forwards the IP packet to the configured IP gateway or interface.
- 3. If it cannot find a route for the destination, it uses a default route.
- 4. If there are two or more routes to a destination, the device uses the route with the longest mask.
- 5. If there are two or more routes to a destination with the same mask, the device uses the route with the lowest metric.

Configure general IP settings

Configuring general IP settings is one of the building blocks of setting up IP routing.

Optional configuration settings

- The IP hostname. This hostname identifies the TLR device on IP networks. It is an unqualified hostname. The default setting for the device is LR54-%s which expands to LR54-<serial number>.
- The administrative distance settings for connected and static routes. Administrative distance settings rank the type of routes, from the most to least preferred. When there are two or more routes to the same destination and mask, the route with the lowest metric is used. By default, routes to connected networks are preferred, with static routes being next. The administrative distance for each route type is added to the route's metric when it is added to the routing table. Configuring the administrative distance of a particular route type can alter the order of use for the routes. The two administrative distance settings are:
 - Administrative distance for connected network routes. The default value is **0**.
 - Administrative distance for static routes. The default value is 1.

📕 Web

In the web interface, general IP settings are configured as part of configuring a LAN or WAN. See Configure a LAN and Configure a Wide Area Network (WAN).

📟 Command line

1. Set the hostname.

digi.router> ip hostname LR54-NewYork

2. Set the administrative distance for connected routes.

digi.router> ip admin-conn 3

3. Set the administrative distance for static routes.

digi.router> ip admin-static 5

4. Save the configuration.

digi.router> save config

Configure a static route

A static route is a manually configured routing entry. Information about the route is manually entered rather than obtained from dynamic routing traffic. TransPort devices supports up to **32** static routes.

Required configuration settings

- Setting the destination network and mask.
- Setting the gateway IP address for routes using LAN and WAN Ethernet interfaces. The gateway IP address should be on the same subnet as the IP address of the LAN or WAN Ethernet interface in use.
- Setting the interface name for routes using cellular interfaces.

Optional configuration settings

• Setting the metric for the route. The metric defines the order in which routes should be used if there are two routes to the same destination. In such a case, the smaller metric is used.

Command line

Use the route command to configure IP routes.

Example 1

To configure a static route to the **192.168.47.0/24** network using the **lan1** interface, which has an IP address of **192.168.1.1** and a gateway at IP address of **192.168.1.254**:

1. Set the destination network and mask.

```
digi.router> route 1 destination 192.168.47.0
digi.router> route 1 mask 255.255.255.0
```

2. Set the gateway IP address.

digi.router> route 1 gateway 192.168.1.254

3. Save the configuration.

```
digi.router> save config
```

Example 2

To configure a static route to the **44.1.0.0/16** network using the **cellular1** interface:

1. Set the destination network and mask.

digi.router> route 4 destination 44.1.0.0
digi.router> route 4 mask 255.255.0.0

2. Set the interface.

digi.router> route 4 interface cellular1

3. Optional: Set the metric.

digi.router> route 4 metric 5

4. Save the configuration.

digi.router> save config

Once the static route is configured, it should appear in the IPv4 routing table, which you can display using the show route command.

Show the IPv4 routing table

Command line

To display the IPv4 routing table, use the show route command.

digi.router> show route

Destination	Gateway	Metric	Protocol	Idx	Interface	Status
10.1.2.0/24	192.168.1.254	1	Static	1	lan1	UP
192.168.1.0/24	0.0.0.0	Θ	Connected		lan1	UP
default	0.0.0.0	1	Connected		eth1	UP
default	0.0.0.0	2	Connected		cellular1	UP

digi.router>

Delete a static route

Command line

To remove a static route from the routing table, clear the destination network configuration.

To revert the settings for the route destination, enter the route command, specifying the interface number, the destination parameter, and the exclamation mark (!) character. For example:

```
digi.router> route 1 destination !
digi.router> save config
```

Dynamic DNS

The Domain Name System (DNS) uses name servers to provide a mapping between computerreadable IP addresses and human-readable hostnames. This allows users to access websites and personal networks with easy-to-remember URLs. Unfortunately, IP addresses change frequently, invalidating these mappings when they do. Dynamic DNS has become the standard method of addressing this problem, allowing devices to update name servers with their new IP addresses.

By providing the TransPort LR devices with the hostname, service, and credentials obtained from a dynamic DNS provider, the router can automatically update the remote nameserver whenever your WAN or public IP address changes.

The TransPort LR supports the following Dynamic DNS providers:

- DynDNS https://dyn.com/
- No-IP https://www.noip.com/
- DNS-O-Matic https://www.dnsomatic.com/
- ChangelP https://www.changeip.com/

Configure dynamic DNS

This section describes how to cofigure dynamic DNS on a TransPort LR device. For details on dynamic DNS, see Dynamic DNS

Required configuration items

Enable Dynamic DNS

- Service: Provide the name of a Dynamic DNS provider (for example, dyndns, dnsomatic, noip, changeip).
- Username: Provide username to be used to authenticate with your Dynamic DNS provider.
- Password: Provide the password corresponding to the username provided above.
- Hostname: Provide the URL for your Dynamic DNS provider, which will be linked to your IP address.

Additional configuration items

ip-monitoring: Use this option to determine which IP address to monitor for changes. If you select WAN, the TransPort monitors the IP address of WAN interfaces. If you select Public, the TransPort monitors the public-facing IP address, regardless of the IP address of the WAN interface.

Command line

1. Set the dynamic DNS service:

digi.router> dynamic-dns service dyndns

2. Set the username and password for the dynamic DNS service:

digi.router> dynamic-dns username yourusername
digi.router> dynamic-dns password yourpassword

3. Set the hostname to update when your IP address changes:

digi.router> dynamic-dns hostname your.dynamicdns.hostname

4. Optional: Set ip-monitoring type for dynamic DNS:

digi.router> dynamic-dns ip-monitoring public

5. Enable Dynamic DNS:

digi.router> dynamic-dns state on

6. Save the configuration.

digi.router> save config

Web filtering (OpenDNS)

Web filtering allows you to control access to services that can be accessed through the TransPort device.

It does this by forwarding all Domain Name System (DNS) traffic to a web filtering service. This allows the network security administrator to configure a set of policies with the web filtering service that are applied to all routers with web filtering enabled. For example, a policy may allow or deny access to a specific service or type of service such as social media, gaming, and so on.

TransPort supports Cisco Umbrella (formally known as OpenDNS). For more information, see https://umbrella.cisco.com.

Configure web filtering using Cisco Umbrella

This section describes how to configure the web filter on a TransPort device using the Cisco Umbrella service.

To use Cisco Umbrella with your device, you must obtain an API token. For instructions on how to do this, see Cisco-Umbrella-Network-Device-Integrations.

CAUTION! Due to recent changes in Cisco Umbrella, if you have a legacy token generated prior to December 7, 2017, you cannot use the token with a TransPort device. Regenerate a token from your Umbrella console.

Once you have completed your Cisco Umbrella configuration, you can verify that your setup is working by following the steps outlined in How-to-test-for-successful-OpenDNS-configuration.

Required configuration items

- Set web filter customer-specific token.
- Enable web filter.

Command line

1. Set the web filter token:

digi.router> web-filter token <your_client_token>

2. Enable the web filter:

digi.router> web-filter state on

3. Save the configuration.

digi.router> save config

Clear device ID

If the device ID on your TransPort appears to be invalid, you can clear the device ID by using the clear **web-filter-id** command.

Command line

Clear the web filter ID:

digi.router> clear web-filter-id

Dynamic Mobile Network Routing (DMNR)

The Verizon Dynamic Mobile Network Routing (DMNR), based on the Network Mobility (NEMO) protocol, provides dynamic routing support for mobile or stationary routers using IPv4 addressing.

- Configure Verizon DMNR
- Show DMNR status

Configure Verizon DMNR

- 1. On the menu, click Network > Services > DMNR. The DMNR page appears.
- 2. Provide DMNR configuration options. See DMNR page for field descriptions.
- 3. Click Apply.

Command line

To configure DMNR, use the dmnr command. For example:

```
digi.router> dmnr home-agent 10.20.70.64
digi.router> dmnr local-networks lan2
digi.router> dmnr state on
digi.router> save config
digi.router>
```

Show DMNR status

📕 Web

• On the menu, click **Network > Services > DMNR**. The **DMNR** page appears.

DMNR status appears in the right side of the display.

DMNR Status				
Admin Status	Up			
Operational Status	Up			
Registration Status	Registered			
Home Agent	66.174.161.1	60		
Care of Address	10.251.193.	245		
Interface	cellular1			
Lifetime (actual)	570			
Networks	LAN 1	10.251.80.140/30	Registered	
	LAN 2	10.251.80.128/30	Registered	

Command line

To show DMNR status, use the show dmnr command. For example:

```
digi.router> show dmnr
DMNR Status
------
Admin Status : Up
```

Operational Status Registration Status Home Agent Care of Address Interface Lifetime (actual)	: Up : Registered : 66.174.161.160 : 10.251.193.245 : cellular1 : 570	
Local Network	Subnet	Status
lan1 lan2	10.251.80.140/30 10.251.80.128/30	Registered Registered

digi.router>

Quality of Service (QoS)

TransPort Quality of Service (QoS) queues and filters allow you to identify and prioritize traffic, as well as restrict bandwidth for a given queue.

You can categorize and prioritize traffic using QoS queues. Traffic associated with lower-numbered queues is given higher priority than traffic associated with higher-numbered queues, although there are exceptions depending on how you have configured bandwidth restrictions for the queues.

Each queue has one or more QoS filters used to identify traffic associated with the queue. As traffic flows through the router destined for a QoS-enabled WAN, it is associated with a queue based on QoS filter criteria. Once traffic is associated with a queue, it is prioritized and delivered according to the configured queue parameters.

This section describes how to enable QoS on one or more configured WANs and configure QoS queues and filters.

Configure QoS

Configuring QoS consists of the following:

- Enabling a configured WAN for QoS.
- Configuring from one to eight QoS queues using the eight tabs in the Queues panel. Queue 1
 has the highest priority; queue 2 has second-highest priority, queue 3 has third-highest priority,
 and so on up to queue 8 which has the lowest priority.
- Configuring filters for each configured queue to force traffic to the queue. You can configure up to 32 filters.

📕 Web

- 1. On the menu, click **Network > Services > QoS**. The **QoS** page appears.
- 2. Enable QoS on a configured WAN:
 - a. In the WANs configuration panel, enable or disable one or more configured WANs. See Quality of Service (QoS) WANs page for field descriptions.
 - b. Click Apply.

- 3. Create QoS queues:
 - a. In the **Queues configuration** panel, configure from one to eight QoS queues. See Quality of Service (QoS) queues page for field descriptions.
 - b. When you have finished configuring queues, click **Apply**.
- 4. Create filters for each configured queue:
 - a. In the **Queues configuration** panel, scroll to the **Filters** section. See Quality of Service (QoS) queues page for field descriptions.
 - b. Add one or more filters for each configured queue. You can configure a total of 32 filters for all queues.
 - c. When you have finished configuring filters, click **Apply**.

Command line

 To enable QoS on a configured WAN, use the wan command. For example, to enable QoS on WAN 3 and set the bandwidth upstream to 8000 kbps:

```
digi.router> wan 3 qos on
digi.router> wan 3 bandwidth-upstream 8000
digi.router> save config
```

• To configure one or more QoS queues use the qos-queue command. For example:

```
digi.router> qos-queue 1 description myhighqosqueue
digi.router> qos-queue 1 borrow-upstream on
digi.router> qos-queue 1 dscp-class be
digi.router> qos-queue 1 state on
digi.router> save config
digi.router> qos-queue 2 description mymediumqosqueue
digi.router> qos-queue 2 borrow-upstream off
digi.router> qos-queue 2 state on
digi.router> save config
digi.router> qos-queue 3 description mylowqosqueue
digi.router> qos-queue 3 borrow-upstream off
digi.router> qos-queue 3 state on
digi.router> qos-queue 3 state on
```

• To configure filters for a configured QoS queue, use the qos-filter command. For example:

```
digi.router> qos-filter 1 queue 1
qos-queue 1:
digi.router> qos-queue
qos-queue 1:
bandwidth-upstream 2000
```

borrow-upstream	on
description	VoIP Queue
dscp-class	do-not-set
state	on
qos-queue 2:	
bandwidth-upstream	500
borrow-upstream	on
description	Video Streaming
dscp-class	be
state	on
digi.router> qos-filter	
qos-filter 1:	
description	VoIP traffic
dscp	ef
dst-ip-address	
dst-ip-port	Θ
protocol	any
queue	1
src	any-lan
src-ip-address	
src-ip-port	Θ
state	on
qos-filter 2:	
description	YouTube traffic
dscp	cs0
dst-ip-address	
dst-ip-port	Θ
protocol	any
queue	2
src	lan1
src-ip-address	
src-ip-port	Θ
state	on
qos-filter 3:	
description	Netflix traffic
dscp	cs0,cs1,cs2,cs3,cs4

dst-ip-address	
dst-ip-port	0
protocol	tcp,udp
queue	2
src	lan2
<pre>src-ip-address</pre>	192.168.2.1
src-ip-port	9000
state	on

Show QoS configuration and status

Web

On the menu, click **Network > Services > QoS**. The **QoS** page appears.

Command line

To show the current QoS configuration use the qos-queue command and the qos-filter command with no parameters. For example:

digi.router> qos-queue

digi.router> qos-filter

Virtual Private Networks (VPN)

Virtual Private Networks (VPNs) are used to securely connect two private networks together so that devices can connect from one network to the other network using secure channels. These topics cover the various network protocols involved in VPNs, and configuring VPNs.

- IPsec
- OpenVPN
- Generic Routing Encapsulation (GRE)
- Virtual Router Redundancy Protocol (VRRP)

IPsec

IPsec is a suite of protocols for creating a secure communication link—an IPsec tunnel—between a host and a remote IP network or between two IP networks across a public network such as the Internet.

TransPort devices support to up **32** IPsec tunnels.

IPsec data protection

IPsec protects the data being sent across a public network by providing the following:

Data origin authentication

Authentication of data to validate the origin of data when it is received.

Data integrity

Authentication of data to ensure it has not been modified during transmission.

Data confidentiality

Encryption of data sent across the IPsec tunnel to ensure that an unauthorized device cannot read the data.

Anti-Replay

Authentication of data to ensure an unauthorized device has not injected it into the IPsec tunnel.

IPsec modes

IPsec can run in two different modes: Tunnel and Transport.

Currently, TransPort devices support tunnel mode only.

Tunnel

The entire IP packet is encrypted and/or authenticated and then encapsulated as the payload in a new IP packet.

Transport

Only the payload of the IP packet is encrypted and/or authenticated. The IP header is left untouched. This mode has limitations when using an authentication header, because the IP addresses in the IP header cannot be translated (for example, with Network Address Translation (NAT), as it would invalidate the authentication hash value.

Internet Key Exchange (IKE) settings

IKE is a key management protocol that allows IPsec to negotiate the security associations (SAs) that are used to create the secure IPsec tunnel.

SA negotiations are performed in two phases, known as **phase 1** and **phase 2**.

Phase 1

In phase 1, IKE creates a secure authenticated communication channel between the device and the peer (the remote device which is at the other end of the IPsec tunnel) using the configured pre-shared key and the Diffie-Hellman key exchange. This creates the IKE SAs that are used to encrypt further IKE communications.

There are two modes for the phase 1 negotiation: Main mode and Aggressive mode.

Main mode

Main mode is the default mode. It is slower than aggressive mode, but more secure, in that all sensitive information sent between the device and its peer is encrypted.

Aggressive mode

Aggressive mode is faster than main mode, but is not as secure as main mode, because the device and its peer exchange their IDs and hash information in clear text instead of being encrypted. Aggressive mode is usually used when one or both of the devices have a dynamic external IP address.

Phase 2

In phase 2, IKE negotiates the SAs for IPsec. This creates two unidirectional SAs, one for each direction. Once the phase 2 negotiation is complete, the IPsec tunnel should be fully functional. There are two versions of IKE: **IKEv1** and **IKEv2**. Currently the LR54 only supports **IKEv1**.

IPsec and IKE renegotiation

To reduce the chances of an IPsec tunnel being compromised, the IPsec SAs and IKE SA are renegotiated at a regular interval. This results in different encryption keys being used in the IPsec tunnel.

Configure an IPsec tunnel

Configuring an IPsec tunnel with a remote device involves configuring the following items:

Required configuration items

IPsec tunnel configuration settings

- Enabling the IPsec tunnel. The IPsec tunnels are disabled by default. You can also set the IPsec tunnel state to **off** or **on**.
- The IP address or name of the remote device, also known as the **peer**, at the other end of the IPsec tunnel.
- The local and remote IDs at either end of the IPsec tunnel. The setting for the local ID must match the setting for the remote ID on the remote device, and the setting for the remote ID must match the setting for the local ID on the remote device.
- The local and remote IP networks at either end of the IPsec tunnel.
- The authentication protocol to use. This setting must match the authentication protocol configured on the remote device. The authentication options are:
 - SHA1
 - SHA256

The default value is **SHA1**.

- The encryption protocol to use. This has to match the encryption protocol configured on the remote device. The encryption options are:
 - AES 128 bits
 - AES 192 bits
 - AES 256 bits
 - The default value is **AES 128 bits**.
- The Encapsulating Security Payload (ESP) Diffie-Hellman group for the IPsec tunnel. This setting must match the Diffie-Hellman group configured on the remote device. The Diffie-Hellman group options are:
 - None
 - **Group 5** (1536 bits)
 - Group 14 (2048 bits)
 - Group 15 (3072 bits)
 - Group 16 (4096 bits)
 - The default value is **Group14**.

The larger the number of bits, the more secure the IPsec tunnel. However, a larger bit length requires more computing power, which can slow down the tunnel negotiation and performance.

• The shared key the device and the remote device use to authenticate each other.

IKE configuration settings

- The IKE mode.
 - Main
 - Aggressive

The default option is **Main**.

- The IKE authentication protocols to use for the IPsec tunnel negotiation. The authentication options are:
 - SHA1
 - SHA256

The default is **SHA1**.

You can select more than one authentication protocol. IKE negotiates with the remote device which to use. This setting does not need to match the IKE authentication protocols configured on the remote device, but at least one of the authentication protocols must be configured on the remote device.

- The IKE encryption protocols to use for the IPsec tunnel negotiation. The encryption options are:
 - AES 128 bits
 - AES 192 bits
 - AES 256 bits

The default is **AES – 128 bits**.

You can select more than one encryption protocol. IKE negotiates with the remote device which encryption protocol to use. This setting does not need to match the IKE encryption

protocols configured on the remote device, but at least one of the encryption protocols must be configured on the remote device.

- The IKE Diffie-Hellman groups to use for the IPsec tunnel negotiation. The Diffie-Hellman group
 options supported on TransPort devices are:
 - Group 5 (1536 bits)
 - Group 14 (2048 bits)
 - Group 15 (3072 bits)
 - Group 16 (4096 bits)

The default value is **Group14**.

You can select more than one Diffie-Hellman group. IKE negotiates with the remote device which group to use. This setting does not need to match the IKE Diffie-Hellman groups configured on the remote device, but at least of the Diffie-Hellman groups must be configured on the remote device.

Additional configuration items

The following additional configuration settings are not typically configured to get an IPsec tunnel working, but can be configured as needed:

Tunnel and key renegotiating

- The lifetime of the IPsec tunnel before it is renegotiated. This defaults to 1 hour (3600 seconds), and does not need to match the setting on the remote device.
- The number of bytes, also known as lifebytes, sent on the IPsec tunnel before it is renegotiated. By default, this setting is disabled, but can be configured up to 4 GB. This setting does not need to match the setting on the remote device.
- The IKE lifetime before the keys are renegotiated. This defaults to 4800 seconds and does not need to match the IKE lifetime configured on the remote device.
- The amount of time before the IPsec lifetime expires, the renegotiation should start. This defaults to **540** seconds and does not need to match the setting on the remote device.
- The number of bytes before the IPsec lifebytes limit is reached before the key is renegotiated.
 By default, this is set to 0 and does not need to match the setting on the remote device.
- A randomizing factor for the number of seconds or bytes margin before the IPsec tunnel is renegotiated. This defaults to 100% and does not need to match the setting on the remote device. This setting would be used if the device has a number of IPsec tunnels configured to ensure that the IPsec tunnels are not renegotiated at the same time which could put excessive load on the device.

Other configuration items

- A description for the IPsec tunnel.
- The number of tries IKE will attempt to negotiate the IPsec tunnel with the remote device before giving up.

 The metric for the IPsec route. The metric defines the order in which the device uses routes if there are two routes to the same destination. In such a case, the device uses the route with the smaller metric. The default is 10 but you can configure the metric differently to increase or decrease the route's priority.

Example IPsec tunnel

Suppose you are configuring the following IPsec tunnel:

Configure a new IPsec tunnel

- 1. **Prerequisite**: A configured LAN must be available for use in the IPsec tunnel. See Configure a LAN.
- 2. On the menu, click **Network > Networks > IPsec**. The **IPsec** page appears.
- Click New IPsec Tunnel. The IPsec page displays the settings for a new IPsec tunnel. The settings are displayed in four groups: Network, Encryption, Negotiation, and Lifetime. Most of these settings groups have defaults which you can review and use or modify as needed. The Network settings involve settings you must supply.
- 4. In the Select IPsec setting, select a number to assign to the IPsec tunnel.
- 5. Enter the **Network** settings:
 - **State**: Enables or disables the IPsec tunnel when configuration is completed and the IPsec tunnel is available for use.
 - **IPSec Pre-Shared Key**: Enter the shared key the device and the remote device use to authenticate each other.
 - Local IP Network: The network used for the IPsec tunnel on the local side of the tunnel. Select a LAN from the list.
 - Local Identifier: Enter the local identifier for the IPsec tunnel. The value for the Local Identifier must match the value for the Remote Identifier on the remote device at the other end of the tunnel.
 - Remote Peer IP Address or Name: Enter the IP address or name of the remote device, also known as the peer, at the other end of the IPsec tunnel.
 - Remote IP Network: Enter the IP address of the network used for the IPsec tunnel on the remote side of the tunnel.

- Remote IP Network Mask: Enter the IP network mask of the network used for the IPsec tunnel on the remote side of the tunnel.
- Remote Identifier: Enter the remote identifier for the IPsec tunnel. The value for the Remote Identifier must match the value for the Local Identifier on the remote device at the other end of the tunnel.
- 6. Review the **Encryption** settings and modify as needed. These settings configure the encryption protocols to use for the IPsec tunnel negotiation.
- 7. Review the **Negotiation** settings and modify as needed. These settings configure detailed negotiation protocols and other options to use for the IPsec tunnel negotiation.
- 8. Review the **Lifetime** settings and modify as needed. These settings configure the duration of the IPsec tunnel before it is renegotiated, and the lifetime of the Internet Key Exchange (IKE) before the keys are renegotiated.
- 9. Click Apply.

Modify an existing IPsec tunnel

- 1. On the menu, click **Network > Networks > IPsec**. The IPsec page appears.
- 2. Select an IPsec tunnel and click Edit.
- 3. Modify the Network, Encryption, Negotiation, and Lifetime settings as needed.
- 4. Click Apply.

Command line

1. Enable the IPsec tunnel.

digi.router> ipsec 1 state on

2. Enter the IP address or name of the remote device.

```
digi.router> ipsec 1 peer 47.23.78.32
```

3. Enter the local and remote IDs.

```
digi.router> ipsec 1 local-id LR54-LA
digi.router> ipsec 1 remote-id LR54-NY
```

4. Enter the local and remote IP networks.

```
digi.router> ipsec 1 local-network 192.168.1.0
digi.router> ipsec 1 local-mask 255.255.255.0
digi.router> ipsec 1 remote-network 10.1.2.0
digi.router> ipsec 1 remote-mask 255.255.255.0
```

5. Enter the pre-shared key.

digi.router> ipsec 1 psk "secret-psk"

6. Enter the IPsec authentication, encryption, and Diffie-Hellman settings.

```
digi.router> ipsec 1 esp-authentication sha256
digi.router> ipsec 1 esp-encryption aes256
digi.router> ipsec 1 esp-diffie-hellman none
```

7. Enter the IKE authentication, encryption, and Diffie-Hellman settings.

```
digi.router> ipsec 1 ike-authentication sha1,sha256
digi.router> ipsec 1 ike-encryption aes128,aes192,aes256
digi.router> ipsec 1 ike-diffie-hellman group14,group15
```

8. Save the configuration.

```
digi.router> save config
```

Example: IPsec tunnel between a TransPort LR54 and TransPort WR44

The following figure shows a sample IPsec configuration between a TransPort LR54 and a TransPort WR44.

The configuration settings for both devices are as follows:

TransPort LR54 configuration

igi.router> lan 1	
state	on
description	IPsec local net
mtu	1500
interfaces	eth2,eth3,eth4
ip-address	192.168.54.1
mask	255.255.255.0
dns1	
dns2	
dhcp-client	off
digi.router> lan 2	
state	on
description	Link to WR44
mtu	1500
interfaces	eth1
ip-address	10.0.0.54

mask	255.255.255.0
dns1	
dns2	
dhcp-client	off
digi.router> ipsec 1	
state	on
description	Tunnel to WR44
peer	10.0.044
local-network	192.168.54.0
local-mask	255.255.255.0
remote-network	192.168.44.0
remote-mask	255.255.255.0
esp-authentication	sha1
esp-encryption	aes128
esp-diffie-hellman	none
auth-by	psk
psk	<configured></configured>
local-id	10.0.0.54
remote-id	10.0.44
lifetime	3600
lifebytes	Θ
margintime	540
marginbytes	Θ
random	100
ike	1
ike-mode	aggressive
ike-encryption	aes128
ike-authentication	sha1
ike-diffie-hellman	group5
ike-lifetime	3600
ike-tries	3
dpddelay	30
dpdtimeout	150
dpd	off

TransPort WR44 configuration

```
# Link to TransPort LR54
eth 0 IPaddr "10.0.0.44"
eth 0 ipsec 1
# IPsec local network
eth 1 IPaddr "192.168.44.1"
# Route to remote network
route 0 IPaddr "192.168.54.0"
route 0 ll_ent "eth"
# IPsec tunnel configuration
eroute 0 peerip "10.0.0.54"
eroute 0 peerid "10.0.0.54"
eroute 0 ourid "10.0.0.44"
eroute 0 ouridtype 3
eroute 0 locip "192.168.44.0"
eroute 0 locmsk "255.255.255.0"
eroute 0 remip "192.168.54.0"
eroute 0 remmsk "255.255.255.0"
```

```
eroute 0 ESPauth "sha1"
eroute 0 ESPenc "aes"
eroute 0 authmeth "preshared"
eroute 0 autosa 2
# IKE configuration
ike 0 encalg "aes"
ike 0 keybits 128
ike 0 authalg "sha1"
ike 0 ltime 30000
ike 0 aggressive ON
ike 0 ikegroup 5
# Remote ID / Password
user 1 name "10.0.0.54"
user 1 epassword "MDp6Vko=
```

Debug an IPsec configuration

If you experience issues with an IPsec tunnel not being successfully negotiated with the remote end of the tunnel, you can enable IPsec debug messages to be written to a file. Once enabled, the debug messages are displayed in the file **ipsec.debug**.

To enable IPsec debugging, use the system command **ipsec-debug** parameter. This command creates a file named **ipsec.debug** to which low-level IPsec debugging messages are written.

```
digi.router> system ipsec-debug on
```

Show IPsec status and statistics

📕 Web

• On the menu, click **Network > Networks > IPsec**. The **IPsec** page appears.

Command line

The show ipsec displays the status of the IPsec tunnels and statistics regarding their use.

Display summary status for IPsec tunnels

To display summary status and statistics of all configured IPsec tunnels, enter the show ipsec command without parameters.

```
digi.router> show ipsec
```

#	Status	Peer	Local	Remote	Uptime
1	Up	192.170.1.100	192.168.0.0/16	192.169.1.0/24	3 minutes

digi.router>

Display detailed status and statistics for an IPsec tunnel

To display detailed status and statistics of all configured IPsec tunnels, enter the show ipsec command, specifying the tunnel number.

```
digi.router> show ipsec 1
```

```
IPsec 1 Status and Statistics

Description :

Admin Status : Up

Oper Status : Up
```

```
Uptime
                          : 2 minutes

        Peer
        : 192.170.1.100

        Local Network
        : 192.168.0.0/16

        Remote Network
        : 192.169.1.0/24

 IKE Information
 Key Negotiation : IKEv1, aes128, sha1, modp2048
                           : 5078e20a02eb1e9c_i* 6b2cfcdf33b4125c_r
 SPTS
 Tunnel Information
                  -----
 Rekeying In : 68 minutes
AH Cipher Suite : Not Used
 ESP Cipher Suite : aes128, sha1
 Renegotiating In : 42 minutes
 Outbound ESP SAs : d2fad10b, 9bcc91db
Inbound ESP SAs : 2af8bb94, 3be64703
 Dead Peer Detection is off
                          : 0
 Bvtes In
 Bytes Out
                          • 0
digi.router>
```

OpenVPN

OpenVPN is an open-source Virtual Private Network (VPN) technology that creates secure point-topoint or site-to-site connections in routed or bridged configurations.

OpenVPN uses a custom security protocol that is Secure Socket Layer (SSL) / Transport Layer Security (TLS) for key exchange. It uses standard encryption and authentication algorithms for data privacy and authentication over TCP or UDP.

TransPort devices support **OpenVPN 2.4** in both client and server mode with the **net30**, **p2p**, and **subnet** OpenVPN topologies.

TransPort devices support 1 OpenVPN server and up to 10 OpenVPN clients.

The OpenVPN server supports the use of either an internal user list or an external RADIUS server for authentication using a username and password.

The OpenVPN server can push the network configuration, such as the topology and IP routes, to OpenVPN clients. This makes OpenVPN simpler to configure as it reduces the chances of a configuration mismatch between the client and server.

OpenVPN also supports cipher negotiation between the client and server. This means you can configure the OpenVPN server and clients with a range of different cipher options and the server will negotiate with the client on the cipher to use for the connection.

TransPort devices are compatible with OpenVPN running on Windows, Linux, and Mac OS X.

For more information on OpenVPN, see www.openvpn.net.

OpenVPN network interfaces

TransPort routers support several named interfaces for OpenVPN. The interface for OpenVPN server is named **ovpns**. For OpenVPN clients, there are multiple interfaces named **ovpnx**, where **x** is the index number for a particular OpenVPN client.

Routing (TUN) mode

There are two modes for running OpenVPN: routing mode, also known as TUN, and bridging mode, also known as TAP.

In routing mode, each OpenVPN client is assigned a different IP subnet from the OpenVPN server and other OpenVPN clients. OpenVPN clients use Network Address Translation (NAT) to route traffic from devices connected on its LAN interfaces to the OpenVPN server.

OpenVPN Topology	Subnet definition method
net30	Each OpenVPN client is assigned a /30 subnet within the IP subnet specified in the OpenVPN server configuration.
p2p	Each OpenVPN client uses a point to point link. This is not available for Windows clients.
subnet	Each OpenVPN client connected to the OpenVPN server is assigned an IP address within the IP subnet specified in the OpenVPN server configuration.

The manner in which the IP subnets are defined depends on the OpenVPN topology in use:

For more information on OpenVPN topologies, see this Wiki article on OpenVPN topology.

Bridging (TAP) mode

In bridging mode, a LAN interface on the OpenVPN server is assigned to OpenVPN. The LAN interfaces of the OpenVPN clients are on the same IP subnet as the OpenVPN server's LAN interface. This means that devices connected to the OpenVPN client's LAN interface are on the same IP subnet as devices.

Additional OpenVPN information

For more information on OpenVPN, see these resources: Bridging vs. routing OpenVPN/Routing

Configure an OpenVPN server for routing mode and certificate authentication

Required configuration settings

- Enable the OpenVPN server. The OpenVPN server is disabled by default.
- The IP network of the OpenVPN server (only needed when using routing mode).

- The server certificate and private key parameters should be loaded onto the TransPort device prior to using them. For more information on how to create private key files and certificates, see Certificate and key management. The process for loading this information onto the device varies by certificate and key type:
 - **Certificate authority (CA) certificate**: Copy the CA certificate and the CRL onto the TransPort device from the CA prior to using it.
 - **Private key and certificate**: There are two options to install a private key and certificate on the TransPort device:
 - Use the pki commands pki privkey and pki csr to generate the private key and certificate, copy the CRS to an external system to get it signed, then copy the signed certificate back onto the TransPort device.
 - Generate the private key and certificate, fully signed, on an external system and copy them onto the TransPort device. Use **pki addkey** command to import the private key into the private key store.
 - If using a Diffie-Hellman (DH) file: There are two options to install a DH file on the TransPort device:
 - Generate the DH file using the **pki dh-file** command on the TransPort device.
 - Generate a DH file on an external system and copy it onto the TransPort device.

Optional configuration settings

A description of the OpenVPN server.

- The OpenVPN topology. By default, **net30** is used.
- A subnet mask for the network when in routing mode.
- A primary and secondary DNS server.
- The ciphers and digest used by the OpenVPN server. For more information, see Configure ciphers and digests for use on the OpenVPN tunnel.
- The IP protocol (TCP or UDP) to use. By default, the TransPort device uses UDP. This must match the IP protocol configured on the OpenVPN client.
- The TCP/UDP Port to use. By default, the TransPort device uses port **1194**.
- You can enable compression con the OpenVPN tunnel. The compression options are LZO and LZ4.

📕 Web

- On the menu, click Network > Networks > OpenVPN and select OpenVPN Server. The OpenVPN Server page appears.
- 2. Click Edit. The OpenVPN server page displays the settings for the OpenVPN server.

- 3. Enter the **Connection** settings:
 - **Enable**: Enables or disables the OpenVPN server when configuration is completed.
 - Logging Level: The detail level of output that the OpenVPN server records in the system log. See Debug an OpenVPN tunnel for more information on logging levels.
- 4. Enter the **Network** settings:
 - Network: Enter the IP network to be used with the OpenVPN clients.
 - Mask: Enter the subnet mask for the IP subnet.
- 5. Review the **Encryption** settings and modify as needed. These settings configure the encryption protocols used with the OpenVPN tunnel.
 - **Digest**: Enter the digest to be used with the OpenVPN tunnel.
- 6. Enter the **Authentication** settings:
 - Certificate authority (CA) certificate: Enter the name of the Certificate Authority certificate to authenticate OpenVPN client certificates.
 - **Diffie-Hellman file**: Enter the name of the Diffie-Hellman file.
 - **Certificate**: Enter the name of the certificate to be used by the OpenVPN server.
 - Private Key File: Enter the private key file to be used by the OpenVPN server.
- 7. Review the **Lifetime** settings and modify as needed. These settings configure the OpenVPN tunnel keepalive and renegotiation.
- 8. Click Apply.

```
Command line
```

1. Enable the OpenVPN server.

digi.router> openvpn-server state on

2. Configure the IP network of the OpenVPN server.

digi.router> openvpn-server network 192.168.54.0

3. (Optional) Configure the IP subnet mask of the OpenVPN server.

digi.router> openvpn-server mask 255.255.255.128

4. (Optional) Configure a primary and secondary DNS server to be used with this OpenVPN tunnel. The DNS server configuration will be pushed to the OpenVPN client. The OpenVPN client can decide how to use these values. A TransPort OpenVPN client will ignore them.

```
digi.router> openvpn-server dns1 192.168.10.1
digi.router> openvpn-server dns2 192.168.10.2
```

5. Configure the CA certificate.

digi.router> openvpn-server ca cacert.pem

6. Configure the server certificate.

digi.router> openvpn-server cert ovpns.pem

7. Configure the server key.

digi.router> openvpn-server key ovpns.key

8. Configure the Diffie Hellman file.

digi.router> openvpn-server dh ovpns-dh.pem

9. (Optional) Configure the OpenVPN topology

digi.router> openvpn-server topology subnet

10. (Optional) Configure the IP protocol.

digi.router> openvpn-server protocol tcp

11. (Optional) Configure the TCP/UDP port.

digi.router> openvpn-server port 8894

12. (Optional) Enable compression.

digi.router> openvpn-server compression lzo

13. (Optional) Configure a description.

digi.router> openvpn-server description "LA OpenVPN server"

14. Save the configuration.

digi.router> save config

Configure an OpenVPN server to use username and password authentication

The OpenVPN server is able to authenticate clients using username and passwords. You can configure up to **10** usernames and passwords. If you need more than **10** usernames and passwords, use RADIUS authentication instead. See Configure an OpenVPN server to use RADIUS authentication for more information.

📕 Web

- On the menu, click Network > Networks > OpenVPN and select OpenVPN Server. The OpenVPN Server page appears.
- 2. Click Edit. The OpenVPN server page displays the settings for the OpenVPN Server.

- 3. Enter the Authentication settings:
 - **Certificate:** Enter the name of the certificate to be used by the OpenVPN server.
 - Private Key File: Enter the name of the private key file to be used by the OpenVPN server.
 - Authenticate By: Select User name and password.
- 4. Click Apply.
- 5. On the menu, click VPN and select OpenVPN User Management.
- 6. Click New OpenVPN User.
- 7. Enter user information:
 - **Username**: The name of the OpenVPN client.
 - Usernames can be up to **32** characters long and are case-sensitive.
 - Usernames cannot start with a number.
 - **Password/Confirm Password**: Password for the user.
- 8. Click Apply.

Command line

1. Configure the authentication mode to use username and password authentication.

digi.router> openvpn-server auth-by user-pass

2. Configure a user name and password. For example, to configure a username ny-office and password abcdefgh, the commands would be.

digi.router> openvpn-user 1 username ny-office
digi.router> openvpn-user 1 password abcdefgh

3. Save the configuration.

digi.router> save config

Configure an OpenVPN server to use RADIUS authentication

The OpenVPN server can authenticate clients using RADIUS instead of configuring usernames and passwords on the device.

To use RADIUS, set the OpenVPN authentication mode to username and password, and configure and enable the RADIUS server and secret.

📕 Web

- On the menu, click Network > Networks > OpenVPN and select OpenVPN Server. The OpenVPN Server page appears.
- 2. Click Edit. The OpenVPN server page displays the settings for the OpenVPN server.

- 3. Enter the Authentication settings:
 - Auth-By: Select Username and password.
 - Radius Server State: Enable the RADIUS server.
 - Radius Server: Configure the IP address or domain name of the RADIUS server.
 - Radius Server Secret: Configure the secret of the RADIUS server.
- 4. Click Apply.

```
Command line
```

1. Configure the authentication mode to use username and password authentication.

digi.router> openvpn-server auth-by user-pass

2. Configure OpenVPN to use RADIUS to authenticate users.

digi.router> openvpn-server radius-server-state on

3. Configure the RADIUS server address.

digi.router> openvpn-server radius-server 10.12.33.200

4. Configure the RADIUS server secret.

digi.router> openvpn-server radius-server-secret mysecret

5. (Optional) Configure the RADIUS server port. For example, to change the port to **8812**, the command is:

digi.router> openvpn-server radius-server-port 8812

6. Save the configuration.

digi.router> save config

Configure an OpenVPN client for routing mode and certificate authentication

As OpenVPN is designed to allow the OpenVPN server to push up a lot of the OpenVPN configuration to the OpenVPN client, it means that the client configuration is simplified.

Required configuration

- Enable the OpenVPN client. The OpenVPN client is disabled by default.
- The IP address or domain name of the OpenVPN server.

- The client certificate and private key parameters. For more information on how to create private key files and certificates, see Certificate and key management. The server certificate and private key parameters should be loaded onto the TransPort device prior to using them. For more information on how to create private key files and certificates, see Certificate and key management. The process for loading this information onto the device varies by certificate and key type:
 - **Certificate authority (CA) certificate**: Copy the CA certificate and the CRL onto the TransPort device from the CA prior to using it.
 - **Private key and certificate**: There are two options to install a private key and certificate on the TransPort device:
 - Use the pki commands **pki privkey** and **pki csr** to generate the private key and certificate, copy the CRS to an external system to get it signed, then copy the signed certificate back onto the TransPort device.
 - Generate the private key and certificate, fully signed, on an external system and copy them onto the TransPort device. Use **pki addkey** command to import the private key into the private key store.

Optional configuration

- A description of the OpenVPN client.
- The ciphers and digest used by the OpenVPN client. For more information, see Configuring ciphers and digests to be used on the OpenVPN tunnel.
- The IP protocol (TCP or UDP) to use. The default is to use UDP. This value must match the IP protocol configured on the OpenVPN server.
- The TCP/UDP Port to use. By default, port **1194** is used. This must match the TCP/UDP port configured on the OpenVPN server.
- The connection retry attempt period. By default, the OpenVPN client waits 5 seconds before retrying to connect to the OpenVPN server. After 5 unsuccessful attempts, the period doubles to a maximum of 300 seconds.

📕 Web

- On the menu, click Network > Networks > OpenVPN and select OpenVPN Client. The OpenVPN Client page appears.
- 2. Click **New OpenVPN Client**. The **OpenVPN client** page displays the settings for a new OpenVPN tunnel.
- 3. In the **Select OpenVPN Client** setting, select a number to assign to the OpenVPN client.
- 4. Enter **Connection** settings:
 - **State**: Enables or disables the OpenVPN client when configuration is completed.
- 5. Enter Network settings:
 - Server: Configure the IP address or domain name of the OpenVPN server.

- 6. Review **Encryption** settings and modify as needed. These settings configure the encryption protocols used with the OpenVPN tunnel.
 - Digest: Enter the digest to be used with the OpenVPN tunnel.
- 7. Enter Authentication settings:
 - **Certificate authority (CA) certificate**: Enter the name of the Certificate Authority certificate to authenticate OpenVPN server certificate.
 - **Certificate**: Enter the name of the certificate to be used by the OpenVPN client.
 - Private Key File: Enter the name of the private key file to be used by the OpenVPN client.
- 8. Click **Apply**.

Command line

1. Enable the OpenVPN client.

digi.router> openvpn-client 1 state on

2. Configure the IP address or the domain name of the OpenVPN server.

digi.router> openvpn-client 1 server 209.98.33.1

3. Configure the CA certificate.

digi.router> openvpn-client 1 ca cacert.pem

4. Configure the server certificate.

digi.router> openvpn-client 1 cert ovpnc1.pem

5. Configure the server key.

digi.router> openvpn-client 1 key ovpnc1.key

6. (Optional) Configure the IP protocol.

digi.router> openvpn-server protocol tcp

7. (Optional) Configure the TCP/UDP port.

digi.router> openvpn-client 1 port 8894

8. (Optional) Configure the connection retry interval.

digi.router> openvpn-client 1 connect-retry 10

9. (Optional) Configure a description.

digi.router> openvpn-server description "OpenVPN to LA office"

10. Save the configuration.

digi.router> save config

Configure an OpenVPN client to use username and password authentication

The configuration for an OpenVPN client to username and password is similar to that of the certificate authentication but instead of configuring a certificate and key, a username and password is configured.

Note that a CA certificate is still required to validate the OpenVPN server's certificate to prevent an attacker from replacing or spoofing the server.

- On the menu, click Network > Networks > OpenVPN and select OpenVPN Client. The OpenVPN Client page appears.
- 2. Click **New OpenVPN Client**. The **OpenVPN client** page displays the settings for a new OpenVPN tunnel.
- 3. In the **Select OpenVPN Client** setting, select a number to assign to the OpenVPN client.
- 4. Enter the **Connection** settings:
 - **State**: Enables or disables the OpenVPN client when configuration is completed.
- 5. Enter the **Network** settings:
 - Server: Configure the IP address or domain name of the OpenVPN server.
- 6. Review the **Encryption** settings and modify as needed. These settings configure the encryption protocols used with the OpenVPN tunnel.
 - **Digest**: Enter the digest to be used with the OpenVPN tunnel.
- 7. Enter the **Authentication** settings:
 - **Certificate authority (CA) certificate**: Enter the name of the Certificate Authority certificate to authenticate OpenVPN server certificate.
 - **Username**: Enter the username of the OpenVPN client. This must match the username configured on the OpenVPN server.
 - **Password**: Password of the OpenVPN client.
- 8. Click **Apply**.

📟 Command line

 Configure the username and password. For example, to configure the username ny-office and password abcdefgh, the commands are:

```
digi.router> openvpn-client 1 username ny_office
digi.router> openvpn-client 1 password abcdefgh
```

Configure ciphers and digests for use on the OpenVPN tunnel

By default, the OpenVPN server negotiates with the OpenVPN client the cipher that will be used to encrypt data being sent over the OpenVPN tunnel. The ciphers that will be used for the negotiation can be configured as a list. In order for the negotiation to be successful, the OpenVPN client's cipher

list must include the first cipher in the OpenVPN server's cipher list. OpenVPN clients that do not support cipher negotiation can use any cipher in the OpenVPN server's cipher list to connect.

To force the OpenVPN client or server to use a specific cipher, then only the desired cipher should be configured in the list.

By default, the OpenVPN client and server support the following ciphers for negotiation:

- AES 128 CBC
- AES 192 CBC
- AES 256 CBC
- AES 128 GCM
- AES 192 GCM
- AES 256 GCM

When using CBC encryption algorithms, the OpenVPN client and server will also use a digest to authenticate the data sent over the OpenVPN tunnel. The digest configured on the OpenVPN client must match the digest configured on the OpenVPN server.

By default, the OpenVPN client and server will use SHA1 for authentication.

The digest is not used when a **GCM** encryption algorithm is in use, since GCM encryption includes builtin digest functionality.

📕 Web

For OpenVPN Server

- On the menu, click Network > Networks > OpenVPN and select OpenVPN Server. The OpenVPN Server page appears.
- 2. Click Edit. The OpenVPN server page displays the settings for the OpenVPN Server.
- 3. Enter the Encryption settings:
 - Cipher: Select the desired ciphers that the OpenVPN can use for an OpenVPN tunnel.

Note The order of the ciphers is important for cipher negotiation. The first cipher in the list will be used if both the OpenVPN client and server support cipher negotiation.

4. Click **Apply**.

For OpenVPN Clients

- On the menu, click Network > Networks > OpenVPN and select OpenVPN Client. The OpenVPN Client page appears.
- 2. Select the required OpenVPN client.
- 3. Click Edit. The OpenVPN client page displays the settings for the OpenVPN client.
- 4. Enter the **Encryption** settings:
 - Cipher: Select the desired ciphers that the OpenVPN can use for an OpenVPN tunnel.
- 5. Click Apply.

Command line

 For the OpenVPN server, the command to configure the list of ciphers is openvpn-server cipher. For example, to configure the OpenVPN server to use either AES 128 GCM for cipher negotiation or allow AES 256 GCM cipher for OpenVPN clients that don't support cipher negotiation, the command is:

digi.router> openvpn-server cipher aes-128-gcm,aes-256-gcm

2. For the OpenVPN server, the command to configure the digest is **openvpn-server digest**. For example, the command to configure the OpenVPN server to use **SHA256**, the command would be:

digi.router> openvpn-server digest sha256

3. For the OpenVPN client, the command to configure the list of ciphers is **openvpn-client** *x* **cipher**. For example, to configure the OpenVPN client 1 to use AES 256 GCM cipher only, the command would be:

digi.router> openvpn-client 1 cipher aes-256-gcm

For the OpenVPN client, the command to configure the digest is **openvpn-client** *x* **digest**. For example, the command to configure the OpenVPN client 1 to use SHA256, the command would be:

digi.router> openvpn-client 1 digest sha256

5. Save the configuration on the OpenVPN client and/or server.

digi.router> save config

Configure keepalives on the OpenVPN tunnels

You can configure keepalive message to be sent periodically to detect whether the OpenVPN tunnel is operational.

If there are no keepalive messages received for a configurable amount of time, the OpenVPN tunnel is be brought down and then renegotiated.

The keepalive interval and timeout is only configured on the OpenVPN server and is pushed up to the OpenVPN client during the tunnel negotiation. The OpenVPN server automatically doubles the configured keepalive timeout to ensure that the OpenVPN client times out first.

By default, a keepalive message will be sent by the OpenVPN client every **30** seconds and by the OpenVPN server every **60** seconds. The OpenVPN client will drop and renegotiate the tunnel if it does not receive a keepalive message for **150** seconds. The OpenVPN server will drop and renegotiate after **300** seconds.

📕 Web

- On the menu, click Network > Networks > OpenVPN and select OpenVPN Server. The OpenVPN Server page appears.
- 2. Click Edit. The OpenVPN server page displays the settings for the OpenVPN server.

- 3. Enter the Lifetime configuration:
 - Keepalive Interval (Seconds): The interval at which keepalive messages are sent by the OpenVPN client. Keepalive messages are sent by the OpenVPN server at twice the interval.
 - **Keepalive Timeout (Seconds)**: The OpenVPN tunnel will be brought down and renegotiated if no messages have been received for the configured timeout.
- 4. Click Apply.

Command line

1. Configure the keepalive interval.

digi.router> openvpn-server keepalive-interval 10

2. Configure the keepalive timeout.

digi.router> openvpn-server keepalive-timeout 60

3. Save the configuration.

digi.router> save config

Configure renegotiation on the OpenVPN tunnels

The OpenVPN server to be configured to automatically renegotiate the OpenVPN tunnel after a specific amount of time or after a specific amount of data has been sent over the OpenVPN tunnel. The purpose of this renegotiation is to reduce the risk of the negotiated keys from becoming compromised from overuse.

📕 Web

- On the menu, click Network > Networks > OpenVPN and select OpenVPN Server. The OpenVPN Server page appears.
- 2. Click Edit. The OpenVPN server page displays the settings for the OpenVPN server.
- 3. Enter the Lifetime configuration:
 - Time Until Tunnel Renegotiation (Seconds): OpenVPN tunnels are renegotiated after the tunnel has been up for the configured amount of time.
 - Bytes Until Tunnel Renegotiation: OpenVPN tunnels are renegotiated after the tunnel has had the configured amount of traffic sent over it.
- 4. Click **Apply**.

```
Command line
```

To configure the amount of data to be sent before renegotiating, the command is **openvpn-server reneg-bytes**. For example, the renegotiate the OpenVPN tunnel after **32 MB** of data has been sent, the command is:

digi.router> openvpn-server reneg-bytes 33554432

 To configure the amount of time before renegotiating, the command is **openvpn-server** reneg-sec. For example, to renegotiate the OpenVPN tunnel after 2 hours have passed, the command is:

digi.router> openvpn-server reneg-sec 7200

3. Save the configuration.

digi.router> save config

Configure pushing routes to OpenVPN clients

The OpenVPN server can push route information to the OpenVPN client so that the client automatically learns routes to networks on the OpenVPN server LAN interfaces.

Configuring the routes on the OpenVPN server involves configuring the destination network and mask for each route.

- On the menu, click Network > Networks > OpenVPN and select OpenVPN Route Management. The OpenVNP Route Management page appears.
- 2. Click + (Add Rule) to create a new route.
- 3. Enter the route **Destination** and **Mask**.
- 4. Click Apply.

Command line

1. OpenVPN routes are configured using the **openvpn-route** command. For example to configure routes for **10.123.1.0/24** and **10.222.33.0/24** networks, the commands are:

```
digi.router> openvpn-route 1 destination 10.123.1.0
digi.router> openvpn-route 1 mask 255.255.255.0
digi.router> openvpn-route 2 destination 10.222.33.0
digi.router> openvpn-route 2 mask 255.255.255.0
```

2. Save the configuration.

digi.router> save config

Configure an OpenVPN client and server for bridge mode

The configuration for the bridge mode is the same as with routing mode except for the following differences:

- The OpenVPN server is not configured with an IP network or mask.
- A LAN interface is assigned to the OpenVPN server.
- A LAN interface is assigned to the OpenVPN client.

Web

For OpenVPN server

- 1. On the menu, click Network > Networks > OpenVPN and select OpenVPN Server. The **OpenVPN Server** page appears.
- 2. Click Edit. The OpenVPN server page displays the settings for the OpenVPN server.
- 3. Enter the Network settings:
 - Bridge Mode: Select the LAN interface to be bridged with the OpenVPN clients.
- 4. Click Apply.

For OpenVPN clients

- 1. On the menu, click Network > Networks > OpenVPN and select OpenVPN Client. The **OpenVPN Client** page appears.
- 2. Select the required OpenVPN client.
- 3. Click Edit. The OpenVPN client page displays the settings for the OpenVPN client.
- 4. Enter the Network settings:
 - Bridge Mode: Select the LAN interface to be bridged with the OpenVPN server.
- 5. Click Apply.

🔤 Command line

1. Configure the LAN interface to be assigned with the OpenVPN server.

digi.router> openvpn-server bridge-mode lan1

2. Configure the LAN interface to be assigned with the OpenVPN client.

digi.router> openvpn-client 1 bridge-mode lan1

3. Save the configuration on the OpenVPN client and/or server.

digi.router> save config

Show OpenVPN server status and statistics

• On the menu, click Network > Networks > OpenVPN and select OpenVPN Server.

4

288

Command line

Enter the show openvpn-server command. For example:

digi.router> show openvpn-server

```
OpenVPN Server Status
Description
                : VPN server for remote employees
Admin Status
                : Up
              : Up
: ovpns
Oper Status
Interface
IP Address
                : 10.8.0.1
Mask
                : 255.255.255.0
мти
                : 1500
                                 Received
                                                           Sent
Interface Packets :
                                        Λ
Interface Bytes
                                       288
```

Connected Client Sent Connected Since	Real Address	Virtual Address	Bytes Received	Bytes
 client 4189 Thu Aug 3 17:12:21 2017	203.0.113.3	10.8.0.2	23550	
digi.router>				

Show OpenVPN client status and statistics

Web

- 1. On the menu, click Network > Networks > OpenVPN and select OpenVPN Client.
- 2. Select the required OpenVPN client.

Command line

Display all enabled OpenVPN clients

The **show openvpn-client** command displays a summary of the OpenVPN clients configured on the device.

```
digi.router> show openvpn-client
```

digi.router>

Display detailed status information for an OpenVPN client

Enter the show open vpn-client \boldsymbol{x} command, where \boldsymbol{x} is the index number of the client, from the first column of summary show open vpn-client command output. For example:

```
digi.router> show openvpn-client 1
 OpenVPN Client Status
 _____
Description : VPN connection to main office
Admin Status : Up
Oper Status : Up
Remote Server : 203.0.113.3

        Interface
        : ovpn1

        IP Address
        : 10.8.0.2

        Mask
        : 255.255.255.0

        MTU
        : 1500

                                                    Received
                                                                                          Sent
                                                   _____
                                                                                           ____
 Interface Packets :
                                                                                              9
                                                            13
 Interface Bytes :
                                                          940
                                                                                            684
                                                   5201
 Socket Bytes
                                                                                          4908
                           :
digi.router>
```

Debug an OpenVPN tunnel

You can enable debugging on an OpenVPN server or on a specific OpenVPN client. When enabled, debugging messages display in the system log.

Enabling debugging is done by changing the logging level for messages on the OpenVPN server and the OpenVPN client. There are four logging levels, from **0** to **3**. Set this parameter to **0** to record only errors and warnings, and set it to **3** to record fairly complete log activity to help debug an OpenVPN tunnel.

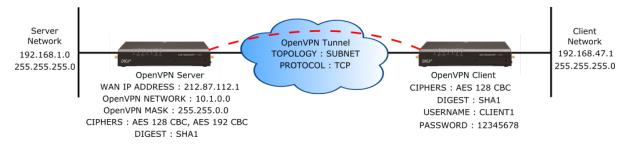
- On the menu, click Network > Networks > OpenVPN and select OpenVPN Server. The OpenVPN Server page appears.
- 2. Set the Logging Level to 3.
- 3. Click Apply.
- 4. On the menu, click VPN and select OpenVPN Client.
- 5. Select the OpenVPN client to configure.
- 6. Set the Logging Level to 3.
- 7. Click Apply.

📟 Command line

Enable display and logging of debugging messages on an OpenVPN server

To enable display and logging of debugging messages on an OpenVPN server, the command is **openvpn-server verb** *n*, where *n* is the verbosity level for debugging messages. This value can range from **0**, which disables debugging messages, to **4**, the most detail. For example to set the verbosity level to 3:

openvpn-server verb 3


Enable display and logging of debugging messages on an OpenVPN client

To enable display and logging of debugging messages on an OpenVPN client, the command is **openvpn-client x verb** *n*, where **n** is the verbosity level for debugging messages, again ranging from **0** to **4**. For example:

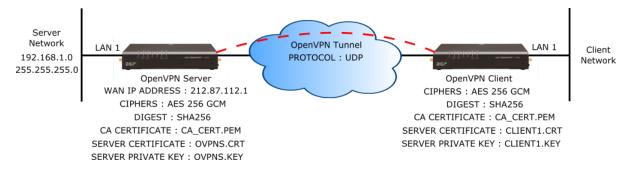
openvpn-client 1 verb 3

Example: OpenVPN tunnel in routing mode with username and password authentication

The following figure shows a sample OpenVPN tunnel in routing mode with username and password authentication:

The configuration settings for the OpenVPN client and server are as follows:

OpenVPN server configuration


```
openvpn-server state on
openvpn-server topology subnet
openvpn-server protocol tcp
openvpn-server network 10.1.0.0
openvpn-server mask 255.255.0.0
openvpn-server cipher aes-128-cbc,aes-192-cbc
openvpn-server digest shal
openvpn-server auth-by user-pass
openvpn-server cert ovpns.crt
openvpn-server key ovpns.key
# Client's username and password
openvpn-user 1 username client1
openvpn-user 1 password 12345678
# Route to server's LAN to be pushed to client
openvpn-route 1 destination 192.168.1.0
openvpn-route 1 mask 255.255.255.0
```

OpenVPN client configuration

```
openvpn-client 1 state on
openvpn-client 1 server 212.87.112.1
openvpn-client 1 protocol tcp
openvpn-client 1 cipher aes-128-cbc
openvpn-client 1 digest sha1
openvpn-client 1 ca ca.crt
openvpn-client 1 username client1
openvpn-client 1 password 12345678
```

Example: OpenVPN tunnel in bridging mode using certificate authentication

The following figure shows a sample OpenVPN tunnel in bridging mode using certificate authentication:

The configuration settings for the OpenVPN client and server are as follows:

OpenVPN server configuration

```
openvpn-server state on
openvpn-server bridge-mode lan1
openvpn-server protocol udp
```

```
openvpn-server cipher aes-256-gcm
openvpn-server auth-by certificate
openvpn-server ca ca_cert.pem
openvpn-server cert ovpns.crt
openvpn-server key ovpns.key
openvpn-server dh ovpns-dh.pem
```

OpenVPN client configuration

```
openvpn-client 1 state on
openvpn-client 1 server 212.87.112.1
openvpn-client 1 bridge-mode lan1
openvpn-client 1 protocol udp
openvpn-client 1 cipher aes-256-gcm
openvpn-client 1 ca ca.crt
openvpn-client 1 cert client1.crt
openvpn-client 1 key client1.key
```

Generic Routing Encapsulation (GRE)

Generic Routing Encapsulation (GRE) is an IP packet encapsulation protocol. You can use GRE to encapsulate a wide variety of network layer protocols inside virtual point-to-point links over an IP network.

Create a GRE tunnel

- 1. On the menu, click Network > Services > GRE. The GRE page appears.
- 2. Click New GRE tunnel.
- 3. Provide parameters for the new GRE tunnel. See New GRE tunnel page for field descriptions.
- 4. Click Apply.

Command line

To create a GRE tunnel, use the gre command. For example:

```
digi.router> gre 1 ip-address 172.16.1.1
digi.router> gre 1 mask 255.255.255.252
digi.router> gre 1 key 1
digi.router> gre 1 peer 172.16.0.2
digi.router> gre 1 state on
digi.router> save config
```

Delete a GRE tunnel

Web

- 1. On the menu, click Network > Services > GRE. The GRE page appears.
- 2. Select the tunnel you want to delete and click **Delete**.
- 3. Click Apply.

Command line

To delete a GRE tunnel, use the gre command to turn off the state for the tunnel and clear the peer. For example, to turn off GRE tunnel 1:

```
digi.router> gre 1 state off
digi.router> gre 1 peer !
digi.router> save config
```

Edit a GRE tunnel

📕 Web

- 1. On the menu, click Network > Services > GRE. The GRE page appears.
- 2. Open the GRE tunnel you want to edit, and modify parameters as needed. See GRE page for field descriptions.
- 3. Click Apply.

Command line

To modify a GRE tunnel, use the gre command. For example, to change the key for GRE tunnel 2:

```
digi.router> gre 2 key 1234
digi.router> save config
```

Show GRE tunnels

Web

• On the menu, click **Network > Services > GRE**. The **GRE** page appears.

Command line

To show configured GRE tunnels, use the show gre command. For example:

digi.router> show gre

Example: GRE tunnel over an IPSec tunnel

This example show how to set up a GRE tunnel to run over an IPSec tunnel. This example configures the tunnels between two TransPorts. This setup can be configured using the command line interface (CLI) or the web interface.

1. Create a LAN on both TransPorts with no interfaces and assign each a private IP address with a mask of 255.255.255.255.

TransPort 1

```
digi.router> lan 10 ip-address 172.16.0.1
digi.router> lan 10 mask 255.255.255.255
digi.router> lan 10 interfaces !
digi.router> lan 10 state on
digi.router> save config
```

TransPort 2

```
digi.router> lan 10 ip-address 172.16.0.2
digi.router> lan 10 mask 255.255.255.255
digi.router> lan 10 interfaces !
digi.router> lan 10 state on
digi.router> save config
```

 Create an IPSec tunnel between the LR54s using the LANs defined in step 1 as the local and remote networks.

TransPort 1 (WAN IP address 1.1.1.1)

```
digi.router> ipsec 1 local-network 172.16.0.1
digi.router> ipsec 1 local-mask 255.255.255
digi.router> ipsec 1 remote-network 172.16.0.2
digi.router> ipsec 1 remote-mask 255.255.255.255
digi.router> ipsec 1 peer 2.2.2.2
digi.router> ipsec 1 psk key
digi.router> ipsec 1 local-id tlr1
digi.router> ipsec 1 remote-id tlr2
digi.router> ipsec 1 state on
digi.router> save config
```

TransPort 2 (WAN IP address 2.2.2.2)

```
digi.router> ipsec 1 local-network 172.16.0.2
digi.router> ipsec 1 local-mask 255.255.255
digi.router> ipsec 1 remote-network 172.16.0.1
digi.router> ipsec 1 remote-mask 255.255.255
```

```
digi.router> ipsec 1 peer 1.1.1.1
digi.router> ipsec 1 psk key
digi.router> ipsec 1 local-id tlr2
digi.router> ipsec 1 remote-id tlr1
digi.router> ipsec 1 state on
digi.router> save config
```

3. Create a GRE tunnel between the two LANS you defined in step 1.

TransPort 1

```
digi.router> gre 1 ip-address 172.16.1.1
digi.router> gre 1 mask 255.255.255.252
digi.router> gre 1 key 1
digi.router> gre 1 peer 172.16.0.2
digi.router> gre 1 state on
digi.router> save config
```

TransPort 2

```
digi.router> gre 1 ip-address 172.16.1.2
digi.router> gre 1 mask 255.255.255.252
digi.router> gre 1 key 1
digi.router> gre 1 peer 172.16.0.1
digi.router> gre 1 state on
digi.router> save config
```

The GRE tunnel is created inside the IPsec tunnel defined in step 2.

Virtual Router Redundancy Protocol (VRRP)

TransPort devices support Virtual Router Redundancy Protocol (VRRP). VRRP is a standards-based protocol for managing a network redundancy problem, where a single default gateway on a network may result in a single point of failure. VRRP enables two or more routers to act as a single group called a Virtual Router, with one or more routers acting as backup routers in case the master router fails.

Using VRRP, a virtual IP address is shared among the routers in the same group and mapped to the master router. In the event the master router fails, the backup router with the highest priority takes over and the virtual IP address is mapped to it. The routers within a group use an election protocol to dynamically assign the virtual IP address to the router with the highest priority.

For further reading on VRRP, see https://en.wikipedia.org/wiki/Virtual_Router_Redundancy_Protocol.

Configure VRRP protocol

This section describes how to configure VRRP on a TransPort device.

Required configuration items

- Enable VRRP. It is disabled by default.
- Configure the interface that used by VRRP. It is configured to LAN1 by default.

- Configure the unique Router ID integer between 1 and 255 that identifies this router. It is configured to 1 by default.
- Configure the initial state for VRRP that this router will start with. It is configured to "backup" by default.
- Configure the virtual, shared IP address that clients on the LAN will use to connect to this router.
- Configure the VRRP Priority of this router. It is configured to 100 by default.
- Configure the interval in seconds between 1 and 60 at which this router will broadcast advertisement packets to other routers in the same group. It is set to 100 by default.

Additional configuration options

None.

📕 Web

- 1. If you upgraded the TransPort from a pre-3.1 TransPort system, you need to update some of the DHCP server settings to allow VRRP to work properly. See Configure the default gateway and DNS server addresses for VRRP.
- 2. On the menu, click **Network > Services> VRRP**. The VRRP page appears.
- 3. Click the State toggle switch to "on" to turn on the VRRP instance.
- 4. From the Interface drop down, select the LAN interface on which VRRP should run.
- 5. In the **Router ID** field, enter the unique identifier for this router.
- 6. In the **Interval** field, enter the broadcast interval.
- 7. In the **Initial State** drop down, select the initial state at which the VRRP will start on this router.
- 8. In the **IP Address** field, enter the virtual IP address that is used by clients to connect to this router.
- 9. In the **Priority** field, enter the priority for this route in the group. Note that a router with higher priority gets preference when transitioning to the master router.
- 10. Click **Apply** to save the changes.

📖 Command line

- 1. If you upgraded the TransPort from a pre-3.1 TransPort system, you need to update some of the DHCP server settings to allow VRRP to work properly. See for more information.
- 2. Set the VRRP interface:

digi.router> vrrp 1 interface lan2

3. Set this router's ID for VRRP:

digi.router> vrrp 1 router-id 157

4. Set the interval at which this router will send out broadcast packets:

digi.router> vrrp 1 interval 25

5. Set the initial state at which VRRP will start on this router:

digi.router> vrrp 1 initial-state master

6. Set the virtual IP address that clients on the LAN will use to connect to this router:

digi.router> vrrp 1 ip-address 172.16.32.101

7. Turn on VRRP:

digi.router> vrrp 1 state on

8. Save the configuration:

digi.router> save config

Configure the default gateway and DNS server addresses for VRRP

If you upgraded the TransPort from a pre-3.1 TransPort system, you need to update some of the DHCP server settings to allow VRRP to work properly. Specifically, the default gateway address and primary DNS server address must point to the VRRP virtual IP address. Set both addresses to **0.0.0.0**. The value 0.0.0.0 allows the LR54 to automatically use the VRRP virtual IP address when VRRP is enabled for that LAN or the IP address of the LR54 if VRRP is not enabled for that LAN.

You can use one of the following methods to reconfigure the DHCP server:

📕 Web

Edit the settings for the LAN and click **Apply**. This updates the DHCP server settings to the correct default of **0.0.0.** If you are accessing the LR54 via this LAN interface, you need to reconnect to it using the new IP address. If desired, you may then change the IP address setting back to the original value.

Command line

Run the following commands, replacing **x** with the index of the LAN interface used for VRRP.

dhcp-server x gateway 0.0.0.0 dhcp-server x dns1 0.0.0.0

Show VRRP status and statistics

This section describes how to display VRRP status and statistics for a TransPort device.

📕 Web

• On the menu, click **Network > Services> VRRP**. The VRRP page appears.

RRP Status		
State	Disabled	
Interface	lan1	
Current VRRP State	Unknown	
Current VRRP Priority	0	
Last Transition	Not Available	
Became Master	0	
Released Master	0	
Adverts Sent	0	
Adverts Received	0	
Priority Zero Sent	0	
Priority Zero Received	0	

Command line

Enter the following command:

digi.router> show vrrp

VRRP Status and Statist	ti	cs		
State Interface		Enabled lan1		
Current State Current Priority		Master 144		
Last Transition	:	01 Jan 00:34		
Became Master Released Master Adverts Sent Adverts Received Priority Zero Sent Priority Zero Received		1 0 414 0 0		

System settings

These topics cover administration and management tasks that need to be performed on TransPort devices periodically.

- Configure system settings
- Show system information settings
- Set system date and time
- Show system date and time
- Managing configuration files
- Reboot the device
- Reset the device to factory defaults

Configure system settings

The TransPort device has several system settings that control the general behavior of the device and information displayed about the device.

📕 Web

On the menu, click System > Administration. System options include the following:

- **Remote Manager**: Configures the connection to Digi Remote Manager. See Remote Manager.
- File System: Displays the local file system for the TransPort device and allows you to perform file management operations. See File system.
- Device Console: Opens the Device Console, from which you can execute commands. See Execute a command from the web interface.
- Logs: Displays the event and system logs. See Logs.
- **Firmware Update**: Updates operating system firmware and other device firmware. See Firmware update.
- **Reboot**: Reboots the device. See Reboot the device.

Command line

Use the system command to configure the following system options:

- System prompt for CLI: The default system prompt is digi.router>. You can configure the system prompt to be any value of up to 16 characters. To use the device's serial number in the system prompt, include %s in the prompt parameter value. For example, a prompt parameter value of LR54_%s resolves to LR54_LR123456.
- CLI timeout: This is the time, in seconds, after which the command-line interface times out if there is no activity. The default is 180 seconds. You can specify any value between 60 and 3600 seconds.

- Minimum event level to log: The minimum event level that is logged in the event log. The default value is info, but you can also set the event level to the following levels: emergency, alert, critical, error, warning, notice, or debug. For more information on the event log, see Logs, Event log levels, and Configure options for event and system logs.
- Name: The name of this device.
- Location: The location of this device.
- **Contact:** Contact information for this device.
- Default page size: The page size for command-line interface output; that is, the number of lines of output displayed. The default value is 40. You can set the page size to any value between 0 and 100.
- Device-specific passwords: Encrypted passwords can be device-specific or not. When encrypted passwords are device-specific, they are more secure, but cannot be copied onto another device. By default, device-specific passwords are disabled, but you can enable them if required.
- **Description:** A description of this device.
- TCP passthrough port: By default, passthrough mode is disabled, but you can enable it by setting a TCP port of any value but 0. A reboot is required for changes to this setting to take effect.
- Getting Started Wizard: By default, the Getting Started Wizard is enabled to start up at system startup, to perform initial device configuration. You can disable the wizard so it is skipped at system startup.
- IPsec debugging messages: These messages help diagnose issues with IPsec configuration and interoperability. The default setting for IPsec debugging messages is off, but you can enable them as needed. For more information on IPsec debugging, see Debug an IPsec configuration.

Command-line examples

Change the system prompt.

```
digi.router> system prompt "LR54_%s"
digi.router> save config
```

Set the command-line interface timeout. For example, to set the timeout to 60 seconds, enter:

```
digi.router> system timeout 60
digi.router> save config
```

• Configure the event log level. For example, to set the event log level to warning, enter:

```
digi.router> system log-level warning
digi.router> save config
```

• Set the page size for command-line interface output. For example, to set the output to 30 lines:

digi.router> system page 30
digi.router> save config

Disable the Getting Started Wizard.

```
digi.router> system wizard off
digi.router> save config
```

Show system information settings

- 1. On the menu, click **Dashboard**.
- 2. In the **Device** section of the dashboard, view the system information settings. For descriptions of these fields, see the show system command description.

Command line

To show system settings, use the show system command. For example:

```
digi.router> show system
```

```
Model
                   : LR54W
Part Number : LR54W
Serial Number : LR54-AW401
Serial Number : LR000130
 Hardware Version : 50001899-03 A
 Using Bank
                   : 0
 Firmware Version : 1.0.0.3-90c4383 06/19/16 20:31:29
 Bootloader Version: v1.0.0.2
 Using Config File : config.da0
                    : 4 Hours, 59 Minutes, 4 Seconds
 Uptime
 System Time
                   : 20 June 2016, 13:01:04
                    : 3% (min 1%, max 60%, avg 2%)
 CPU
 Temperature
                   : 33C
 Description
                    :
 Location
                    :
 Contact
                    :
digi.router>
```

Set system date and time

Having an accurate date and time set on your device is important for a number of reasons, including validating certificates and having accurate timestamps on events in the event log. There are two methods for setting system date and time:

- Using the Simple Network Time Protocol (SNTP). SNTP continually polls an external NTP time server on either a private company network or the Internet at a configured interval rate. SNTP usually provides an accuracy of less than a second.
- Setting the date and time manually.

Set the date and time using SNTP

Configuration options

- The SNTP server. By default, SNTP is configured to use the Digi SNTP server, time.devicecloud.com.
- The SNTP update interval. This is the interval at which TransPort checks the SNTP server for date and time. By default, SNTP is checked **once a day**. At bootup, the device attempts to send an update message to the configured SNTP server every **15** seconds until it receives a response. Once it receives a response, it reverts to the configured update interval.

Command line

To set the date and time using SNTP, use the sntp command.

1. Optional: Set the SNTP server. For example, to set the server to time.digi.com:

digi.router> sntp server time.digi.com

2. Optional: Set the SNTP update interval.

digi.router> sntp update-interval 10

3. Save the configuration.

digi.router> save config

Set the date and time manually

To set the date and time manually, use the date command. The date command specifies the time in **HH:MM:SS** format, where seconds are optional, followed by the date, in **DD:MM:YYYY** format. For example, to manually set the time and date to **14:55:00** on **May 3, 2016**, enter:

digi.router> date 14:55:00 03:05:2016

Set the time zone and daylight saving time

When the date and time is set using SNTP, the system time is set to Universal Coordinated Time (UTC) and not to your local time. In addition, the date and time, whether it is set manually or using SNTP, does not automatically change to reflect Daylight Saving Time (DST). By setting the time zone, the device displays the local time for that time zone and automatically adjusts for daylight saving time.

You can set the time zone to any of the following values:

canada-atlantic, canada-central, canada-eastern, canada-mountain, canada-newfoundland, canada-pacific, europe-central, europe-eastern, europe-western, none, uk-ireland, us-alaska, us-arizona, us-central, us-eastern, us-hawaii, us-indiana, us-mountain, us-pacific. The default is none. Optional: Set the time zone. For example, to set the time zone to US Eastern:

digi.router> system timezone us-eastern

Show system date and time

- 1. On the menu, click **Dashboard**.
- 2. In the **Device** panel, view the **System Time** field.

Command line

To display the current system date and time, use the date command.

digi.router> date

system time: 14:55:06, 03 May 2016

digi.router>

Firmware update

Maintaining your TransPort device requires periodic updates to firmware for the main operating system and subsystems.

- Update system firmware
- Update cellular module firmware

Update system firmware

This topic shows how to update the TransPort operating system firmware.

System firmware files

The TransPort operating system firmware images consist of a single file with the following naming convention:

<platform>-<version>.bin.

For example, **lr54-1.2.3.4.bin**.

Certificate management for firmware images

The system firmware files are signed to ensure that only Digi-approved firmware load onto the device. The TransPort device validates the system firmware image as part of the update process and only successfully updates if the system firmware image can be authenticated.

Multiple system firmware images

The TransPort device can store up to **2** system firmware images in its flash memory. The system firmware update operation overwrites the system firmware image not used with the new system firmware image. The TransPort device automatically switches to boot the new system firmware image when it is next rebooted. This means that the TransPort device should always have at least one good system firmware image. If a newly loaded firmware image is corrupted, the device automatically falls back to run the system firmware image it was running before the system firmware update.

Manage firmware updates using Digi Remote Manager

If you have a network of many devices, you can use Digi Remote Manager **Profiles** to manage firmware updates. Profiles ensures all your devices are running the correct firmware version and that all newly installed devices are updated to that same version. For more information, see the **Profiles** section of the Digi Remote Manager User Guide.

📕 Web

Digi maintains a repository of available TransPort firmware versions. You can update system firmware to one of these versions, or upload a previously downloaded firmware file.

Update firmware from available versions in the Digi repository

- 1. On the menu, click **System > Administration > Firmware Update**.
- 2. Select a version from the Available Versions list. The system firmware file downloads.
- 3. Click Update Firmware.

Download and upload firmware

1. Download the TransPort operating system firmware from the Digi Support FTP site. Locations for the latest firmware are listed below.

Model	Latest firmware file location
TransPort LR54	http://ftp1.digi.com/support/firmware/transport/LR54/latest

- 2. Select Upload firmware from the Available Versions list.
- 3. Click Choose File.
- 4. Browse to the system firmware file location and select the file.
- 5. Click Update Firmware.

Command line

1. Download the TransPort operating system firmware from the Digi Support FTP site; locations for the latest firmware for each model are listed below.

Model	Latest firmware file location
TransPort LR54	http://ftp1.digi.com/support/firmware/transport/LR54/latest

 Load the firmware image onto the device. To do so, use a Windows SFTP client, such as FileZilla, or use the Linux applications scp and sftp. For example, to use scp:

3. Check that the firmware file has been successfully uploaded to the device.

Remaining User Space: 79,015,936 bytes

digi.router>

4. Update the firmware by entering the update command, specifying the **firmware** keyword and the firmware file name.

```
digi.router> update firmware lr54-1.1.0.6.bin
Verifying lr54-1.1.0.6.bin, please wait ...
Verified lr54-1.1.0.6.bin
Updating firmware using lr54-1.1.0.6.bin, please wait ...
Firmware update complete. Please reboot to run new firmware.
digi.router>
```

5. Reboot the device to run the new firmware image using the reboot command.

digi.router> reboot

6. Once the device has rebooted, verify the running firmware version by entering the show system command.

```
digi.router> show system
Model
                 : LR54W
Part Number
                 : LR54-AW401
Serial Number
                : LR000038
Hardware Version : Not available
Using Bank
                 : 1
Firmware Version : 1.1.0.6 06/17/16 13:37:58
Bootloader Version: 1003
Using Config File : config.da0
Uptime
                 : 14 Minutes, 29 Seconds
                 : 23 July 2016, 13:08:09
System Time
CPU
                 : 3% (min 1%, max 70%, avg 3%)
Temperature
                 : Not available
Description
                  :
Location
                  :
Contact
                  :
digi.router>
```

Update cellular module firmware

Digi provides the cellular module files for all certified cellular carriers for TransPort devices on the Digi repository of cellular module firmware files.

Enter the **update modem** command, specifying your carrier name: **att**, **verizon**, or **generic**. For example:

```
Firmware Download Completed
```

PRI Upgrade successful Firmware Upgrade successful Firmware download completed

Managing configuration files

The TransPort configuration file contains all of the configuration for a device and the configuration is applied each time the device boots up.

Default configuration file

The default configuration file is named **config.da0**. If needed, you can change the default configuration file. See Switch configuration files for details.

Factory default configuration file

The configuration file named **config.fac** contains the factory default configuration. When you reset a device back to factory defaults, the **config.fac** is applied when the device boots up.

You can customize the **config.fac** file if you want to create a custom factory-default configuration.

Saving configuration changes

When you make a change to the TransPort configuration, the changes are not automatically saved to the configuration file. You must explicitly save configuration changes; otherwise, the configuration changes are discarded when the device next boots up. See <u>Save configuration settings to a file</u> for details.

Configuration file sections

There are several sections of note in the configuration file.

Timestamp section

The first section of the configuration file is a **timestamp** that identifies the date and time when the configuration file was saved and the user who updated the file.

digi.router> more config.da0

Last updated by admin on Mon May 23 12:32:22 2016

Main configuration section

Next is the **main configuration section** of the configuration file. This section contains the commands and parameters required to configure features.

- Passwords in the file are stored in encrypted form. You cannot display passwords in clear-text form.
- Comment lines in the file begin with a pound sign # character.

lan 1 description "Ethernet and Wi-Fi LAN network"

lan 1 state "on"

lan 1 interfaces "eth2,eth3,eth4,wifi1,wifi5g"
lan 1 ip-address "192.168.1.1"

lan 1 ip-address "192.168.1.1" lan 2 description "Guest Wi-Fi network"

```
lan 2 interfaces "wifi2,wifi5g2"
lan 2 ip-address "192.168.2.1"
wifi 1 state on
wifi 1 ssid LR54-2.4G-%s
wifi 1 password "$00$U2FsdGVkX1++WEpeSUigEAS11pE+aU+uGGAqPgOF8iU="
wifi5g 1 state on
wifi5g 1 ssid LR54-2.4G-%s
wifi5g 1 password "$00$U2FsdGVkX1/aQwCR/VgIcG0r/Un/Px9a3XBRkPI9euQ="
user 1 name "admin"
user 1 password
"$6$nbHC46Qo.TQfT/r$61hWHSy071CYMrIOdUMUSB9vq7powrwcMftGAL912MLQutR9LHhW2k1LQrsZxETCz3sAw4DL4vZU20b1ZxxC."
i
```

Firewall configuration section

The next section is the **firewall configuration section**, containing rules for controlling which packets are allowed into and out of the device. For more information, see Using firewall and firewall6 commands.

```
[FIREWALL]
*nat
-A POSTROUTING -o eth1 -j MASQUERADE
COMMIT
[FIREWALL_END]
```

digi.router>

Shared configuration files and device-specific passwords

TransPortpasswords are stored in the configuration file in an encrypted form and the passwords are not device-specific. Another TransPort can read the configuration file and decipher the encrypted form of the password. Because passwords are encrypted and cannot be displayed in clear text, you can safely share configuration files across multiple devices.

However, if you do not intend to share configuration files, you can enable the **device-specific passwords** option. When the **device-specific passwords** option is enabled, only the device on which the password was configured can decipher the password. See the <u>system</u> command **device-specific-passwords** parameter for details.

Save configuration settings to a file

Configuration changes are **not** automatically saved. This means that the device discards any unsaved changes when the device reboots.

📕 Web

• On configuration pages, click **Apply** to save changes to the configuration file immediately.

📟 Command line

Enter the save config command.

digi.router> save config

Switch configuration files

Command line

You can store multiple configuration files on a device, but the device uses only one configuration file when it reboots. The default configuration file is named **config.da0**.

To switch to another configuration file:

- 1. If needed, identify the current configuration file using the show system command.
- 2. Change the current configuration file using the update command.
- If needed, create the configuration file you specified in the update command using the save command.

Step 1: Identify the current configuration file

To identify the current configuration file, use the show system command. For example:

digi.router> show system

```
Model
                  : LR54W
Part Number : LR54-AW401
Serial Number : LR000038
Hardware Version : Not available
Using Bank
              : 1
Firmware Version : 1.1.0.6 06/17/16 13:37:58
Bootloader Version: 201602051801
Using Config File : config.da0
Uptime
                  : 14 Minutes, 29 Seconds
.
System Time
                  : 23 July 2016, 13:08:09
CPU
                  : 3% (min 1%, max 70%, avg 3%)
Temperature
                  : Not available
Description
                  :
Location
                  :
Contact
                  :
digi.router>
```

Step 2: Change the configuration file name

To change the name of the current configuration file, use the update command. For example:

digi.router> update config <filename>

The file you specified is used the next time the device reboots.

Step 3: Save the current configuration to the configuration file

If the configuration file name you specified on the update command does not exist, use the save command **config** parameter to create the new configuration file by saving the current configuration. To save the current configuration, use the save command **config** parameter. For example:

digi.router> save config

Use multiple configuration files to test configurations on remote devices

You can use multiple configuration files and the <u>autorun</u> command to safely test a new configuration on a remote device that might result in the remote device going offline, in which case the device cannot be remotely accessed.

To test the configuration on a remote device, create a new configuration file with the configuration you want to test. In addition to the configuration, include two autorun commands:

- The first autorun command automatically reverts the device to use the original configuration file.
- The second autorun command schedules a reboot after a period of time.

Example: Test configuration file

For example, suppose you creates a test configuration file named test.cfg.

The **test.cfg** file changes the **cellular 1 apn** parameter and executes two **autorun** commands to automatically revert the device back to use the **config.da0** configuration file and to reboot in **5** minutes. It then saves the configuration to **test.cfg** and reboots the device.

```
update config test.cfg
cellular 1 apn new-apn-to-test
autorun 1 command "update config config.da0"
autorun 2 command "reboot in 5"
save config
reboot
```

If the TransPort device does not come back online, the device automatically reverts to the old (working) configuration file, **config.da0**, and reboots after **5** minutes.

If the device comes back online after being rebooted with the configuration—that is, the device connected with the new cellular Access Point Name (APN)— you can cancel the scheduled reboot using the **reboot cancel** command.

digi.router> reboot cancel

Using the copy and update commands, you can copy the configuration file to the final configuration file, and change the configuration file name.

```
digi.router> copy test.cfg config.da0
digi.router> update config config.da0
```

Reboot the device

You can reboot the TransPort device immediately, or schedule a reboot after a period of time or at a specific time.

You can cancel a scheduled reboot, if required.

Note Any unsaved configuration is lost during the reboot. You may want to save your configuration settings to a file before rebooting. See Save configuration settings to a file.

📕 Web

Click System > Administration > Reboot.

A message displays the maximum time expected for the reboot operation. When the reboot completes, the device reconnects and the **Device Login** page displays.

📟 Command line

Reboot the device immediately

To reboot the device immediately, enter:

digi.router> reboot

Reboot the device after a period of time

To reboot the device after a period of time, enter the following command, where **MM** represents the number of minutes to wait before rebooting.

digi.router> reboot in MM

For example, to reboot in 5 minutes:

digi.router> reboot in 5

Reboot the device at a specific time

To reboot the device at a specific time, enter the following command, where **HH:MM** is the time at which to reboot. The time is in 24-hour format.

digi.router> reboot at HH:MM

For example, to reboot at 6:30 PM (18:30 hours):

digi.router> reboot at 18:30

Cancel a scheduled reboot

To cancel a scheduled reboot, enter:

digi.router> reboot cancel

Reset the device to factory defaults

Resetting the device to factory defaults performs the following actions:

- Clears all configuration settings. When the device boots up again, it uses the configuration in file **config.fac**. If the **config.fac** file has been deleted, the device will regenerate it with the default Digi configuration.
- Deletes all user files including Python scripts.
- Regenerates SSH keys.
- Clears event and system log files.
- Creates a new event in the event log indicating a factory reset.

To reset the device to factory defaults:

 Locate the reset button on your device. For the TransPort LR54, the Reset button is located beneath the SIM card slot cover on the front panel, to the right of SIM slot 2. Remove the SIM cover to access the Reset button.

Reset button

 Press and hold the **Reset** button for **15** seconds. The device reboots automatically. The device reset to factory defaults. Follow the instructions in the *TransPort Quick Start Guide* to reconfigure the device.

Diagnostics

These topics cover the diagnostics capabilities available for TransPort devices.

- Logs
- Analyze traffic
- Use the "ping" command to troubleshoot network connections
- Use the "traceroute" command to diagnose IP routing problems
- Use the "show tech-support" command

Logs

The **event log** contains events related to the functionality of the TransPort device. These events include information about configuration changes, interface state changes, user access, and so on.

The **system log** contains events related to the low-level system. While these events are typically not useful to end users, they are useful to Digi support and engineering when diagnosing device issues. You can view logs from either the web interface or the command line.

Log entry format

Event and system log entries have the following format:

<timestamp> <level> <application> <event message>

For example, here is an event log entry showing a configuration change by the user **admin** to the **system timeout** parameter which has been logged by the command-line interface (CLI) application at the **info** log level:

2016-05-03 12:05:29.653107 user.info CLI[admin]: system timeout 3600

In the web interface Log viewer page, here is an event log entry showing the login to the command line interface by the user **admin**:

Date	Level	Source 🔺	Message
- 2017-01-26 01:27:18.332389	user.notice	CLI[admin@web]:	Login by admin.

Configure options for event and system logs

You can configure options for event and system logs.

- For event logs, you can set the level of events you want to log, enable logging to a file, and enable logging to a syslog server.
- For system logs, you can enable logging to a file and enable logging to a syslog server.

📕 Web

- 1. On the menu, click System > Administration > Logs.
- 2. Click Log Configuration.
- 3. Under Event Log:

Log level: Select the log level. See Event log levels. Log to file: Enable or disable logging to a file. **Log to syslog:** If you want to log to a syslog server, select a syslog server for the event log.

4. Under System Log:

Log to file: Enable or disable logging to a file.

Log to syslog: If you want to log to a syslog server, select a syslog server for the system log.

5. Click **Apply**.

Command line

Enter the system log-level command, specifying the event log level.

system log-level <level>

For example:

system log-level warning

Configure syslog servers

You can configure up to two syslog servers for storing event and system logs.

- 1. On the menu, click **System > Administration > Logs**.
- 2. Click Syslog Server Configuration.
- 3. For each syslog you want to configure, provide the following:

Server: Specify the IPv4 IP address for the server.

Port: Specify the listening port for the server. The default is port **514**.

Mode: Specify the mode for syslog traffic: UDP or TCP. The default is UDP.

4. Click Apply.

Command line

To configure syslog server 1:

```
syslog 1 server my_syslog1.company.com
syslog 1 server-port 516
syslog 1 mode udp
```

To configure syslog server 2:

```
syslog 2 server my_syslog2.company.com
syslog 2 server-port 517
syslog 2 mode udp
```

Display logs

- 1. On the menu, click System > Administration > Logs.
- 2. Click Log viewer. See Log viewer page for details on all page fields.
- 3. To stream the event log, click **O** under **Event Log.** To stream the system log, click **O** under

System Log. For more information on the controls in the Log Viewer, see Log viewer page.

Command line

To display the event log, use the show log command.

Note If the logs are stored in flash, the show log command displays the logs stored in flash.

For example:

digi.router> show log

```
2016-06-03 16:54:50.643501 user.notice CLI[admin]: Login by admin.
2016-06-03 16:54:47.245107 user.notice CLI[]: Login failure by .
2016-06-03 16:54:39.831107 user.info cellular_monitor[1245]: modem support =
HE910 4G support = 0
2016-06-03 16:54:39.653107 user.info cellular_monitor[1245]: Model = HE910
```

To display the system log, use the **show log system** command variant. For example:

```
digi.router> show log system
```

```
2017-01-26 00:22:36.157657 kern.warning kernel:ESW: Link Status Changed - Port2
Link Down
2017-01-26 00:22:36.157263 kern.info kernel:device wifi5g1 entered promiscuous mode
2017-01-26 00:22:36.042680 kern.info kernel:device wifi1 entered promiscuous mode
2017-01-26 00:22:36.042680 kern.info kernel:lan1: port 3(eth4) entering
forwarding state
2017-01-26 00:22:36.042576 kern.info kernel:lan1: port 3(eth4) entering
forwarding state
2017-01-26 00:22:36.042255 kern.info kernel:device eth4 entered promiscuous mode
2017-01-26 00:22:33.312014 kern.info kernel:lan1: port 2(eth3) entering
forwarding state
2017-01-26 00:22:33.311843 kern.info kernel:lan1: port 2(eth3) entering
forwarding state
```

digi.router>

Find and filter log file entries

You can find and filter log file entries based on search criteria entered in the Log Viewer Search bar. The find operation searches every field of a log file entry, including the date.

- 1. On the menu, click System > Administration > Logs.
- 2. Click Log viewer.
- 3. In the **Find** field, enter the text to search for in messages.
- 4. To clear the filter, delete the text in the Find field.

Save logs to a file

By default, the event and system logs are stored in RAM. This means the event and system logs are lost when the device is rebooted. You can configure the device to store the event and system logs in a file to help diagnose issues if the device is being rebooted. When enabled, the event log is stored in the file **event.log** and the system log is stored in the file **system.log**.

The maximum size of a log file is **2 MB**. When the event and system log files reach this size, they are backed up to **event.log.0** and **system.log.0** respectively, and the log file is cleared out.

WARNING! Saving event and system logs to files and keeping them resident for some time is not recommended for normal operations, as this practice can lead to additional wear to the LR54 flash memory.

Web

- 1. On the menu, click System > Administration > Logs.
- 2. Click Log Configuration.
- 3. To write event log entries to a file: Under Event Log in the Log to File setting, click On.
 - To write system log entries to a file: Under System Log, in the Log to File setting, click
 On.
- 4. Click **Apply**.

📟 Command line

To log events to the file **event.log** and **system.log**, use the system command, specifying the **log-to-file** parameter:

system log-to-file on

To log system events to the file **system.log**, use the **system** command, specifying the **log-system-to-file** parameter:

system log-system-to-file on

Download log files

The download operation downloads the entire event or system log, not just those entries currently displayed in the Log Viewer. For the event log, file **event.log** is downloaded. For the system log, file **system.log** is downloaded.

When your device is configured to save logs to a file, only the active log file can be downloaded through this procedure. If you need to download a backup log file (for example, **event.log.0**), you can download that backup log file using the **File System** download function. See Upload and download files.

- 1. On the menu, click **System > Administration > Logs**.
- 2. Click Log viewer. See Log viewer page for details on all page fields.
- 3. Under **Event Log** or **System Log**, click the subtron. The file download proceeds according to download procedures of the browser you are using, and stores the file in your browser's default download directory.

Clear logs

As needed, you can clear the event or system log. This results a single new entry in the event or system log after the previous events are cleared. This clear function is useful when you want to start all logs fresh from a certain point in time.

This operation is available from the command line only.

Command line

To clear the event log, use the **clear log** command. For example:

digi.router> clear log

To clear the system log, use the **clear log system** command. For example:

digi.router> clear log system

Event log levels

Events can be logged at various levels of severity. The log levels, from highest to lowest level of severity, are as follows:

Log level Conditions indicated	
Emergency Device is unusable.	
Alert Events that should be resolved immediately.	
Critical A feature may not be working correctly.	
Error An error has occurred with a particular feature.	
Warning An error will occur if no action is taken.	
Notification	Events that are unusual, but are not error conditions.
Informational Normal operational messages that require no action.	
Debugging	Useful information for Digi Technical Support and Engineering to use in debugging the device.

The default level at which events are logged is **info**, which means that any event of a level **info** or higher is logged. To change the event logging level, see Configure options for event and system logs.

Analyze traffic

The traffic analyzer captures data traffic on any of the WAN and LAN interfaces and decodes the captured data traffic for diagnosis.

You can capture data traffic on multiple interfaces at the same time, and define capture filters to reduce the amount of data traffic captured.

You can capture up to 10 MB of data traffic, in two 5 MB files.

To perform more detailed analysis, you can upload the captured data traffic from the device and view it using a third-party application, such as Wireshark (www.wireshark.org).

WARNING! Enabling data traffic capture significantly affects device performance.

Capture data traffic

You can capture up to 10 MB of data traffic, in 2 files of up to 5 MB each.

WARNING! Enabling data traffic capture significantly affects device performance.

To capture data traffic, use the analyzer command.

The analyzer command has the following parameters:

state

Enables or disables the capturing of data traffic. As this configuration can be saved, it means that the device can be configured to start capturing data as soon as it boots up.

interfaces

Defines the interfaces on which data is captured.

filter

Defines the capture filter to reduce the amount of data traffic being captured. The filters use the BPF syntax for defining filters, described at http://www.tcpdump.org/manpages/pcap-filter.7.html. See Example filters for capturing data traffic for examples of using the syntax to define filters.

Note Captured data traffic is captured into RAM and is lost when the device reboots, unless you save the traffic to a file. See Save captured data traffic to a file.

To capture data on the **eth1** and **cellular1** interfaces, the configuration commands are:

```
digi.router> analyzer state on
digi.router> analyzer interfaces eth1,cellular1
digi.router>
```

Example filters for capturing data traffic

To filter captured data, use the **analyzer** command filter parameter. For example:

digi.router> analyzer filter ip host 192.168.1.1

For more information on filtering, see http://www.tcpdump.org/manpages/pcap-filter.7.html.

The following are examples of filters on data traffic capturing for several types of network data.

Example IPv4 capture filters

Capture traffic to and from IP host 192.168.1.1:

digi.router> analyzer filter ip host 192.168.1.1

Capture traffic from IP host **192.168.1.1**:

digi.router> analyzer filter ip src host 192.168.1.1

Capture traffic to IP host 192.168.1.1:

digi.router> analyzer filter ip dst host 192.168.1.1

Capture traffic for a particular IP protocol:

digi.router> analyzer filter ip proto <protocol>

where **<protocol>** can be a number in the range of **1** to **255** or one of the following keywords: \icmp, icmp6, igmp, pim, ah, esp, vrrp, \udp, or \tcp.

Note icmp, **tcp**, and **udp** are also filter keywords and must be preceded with \ when used with **protocol**.

Capture traffic to and from a TCP port 80:

digi.router> analyzer filter ip proto \tcp and port 80

Capture traffic to UDP port 53:

digi.router> analyzer filter ip proto \udp and dst port 53

Capture traffic from UDP port 53:

digi.router> analyzer filter ip proto \udp and src port 53

Capture to and from IP host 10.0.0.1 but filter out ports 22 and 80:

digi.router> analyzer filter ip host 10.0.0.1 and not (port 22 or port 80)

Example Ethernet capture filters

Capture Ethernet packets to and from host 00:40:FF:0F:45:94:

digi.router> analyzer filter ether host 00:40:FF:0F:45:94

Capture Ethernet packets from host 00:40:FF:0F:45:94:

digi.router> analyzer filter ether src 00:40:FF:0F:45:94:

Capture Ethernet packets to host 00:40:FF:0F:45:94:

digi.router> analyzer filter ether dst 00:40:FF:0F:45:94

Show captured data traffic

To view the captured data traffic, use the show analyzer command. The command output shows the following information for each packet:

- The packet number
- The timestamp for when the packet was captured
- The length of the packet and the amount of data captured
- Whether the packet was sent or received by the device
- The interface on which the packet was sent or received
- A hexadecimal dump of the packet of up to 256 bytes
- Decoded information of the packet

The output uses indents received packets as a visual cue for sent and received packets.

The output is paged. Press the spacebar to view the next page of data. Enter ${\bf Q}$ to navigate to the command prompt.

For example:

```
digi.router> show analyzer
Packet 1 : Nov-09-2016 09:26:06.256857, Length 74 bytes (Captured Length 74 bytes)
Sent on interface eth1
  00 04 2d f4 f8 aa 00 40 ff 0f 45 94 08 00 45 00
                                                                     ..-......E....E.
  00 3c 19 73 00 00 7f 01 e2 da 2f 00 00 64 08 08
                                                                     .<.s.... ../..d..
  08 08 08 08 00 08 e1 00 01 44 7a 61 62 63 64 65 66
67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75 76
                                                                     ..... Dzabcdef
                                                                     ghijklmn opqrstuv
  77 61 62 63 64 65 66 67 68 69
                                                                      wabcdefg hi
 Ethernet Header
   Destination MAC Addr : 00:04:2d:f4:f8:aa
   Source MAC Addr : 00:40:ff:0f:45:94
Ethernet Type : IP (0x0800)
 IP Header
   IP Version: 4Header Length: 20 bytesToS: 0x00Total Length: 60 bytesID: 6515 (0x1973)

        Flags
        :

        Fragment Offset
        : 0 (0x0000)

        TTL
        : 127 (0x7f)

        Protocol
        : ICMP (1)

        Chapterum
        : 0x02da

   Flags
   Checksum
                               : 0xe2da
   Source IP Address : 47.0.0.100
Dest. IP Address : 8.8.8.8
 ICMP Header
                            : Echo Request (8)
   Type
   Code
                              : 0
   Checksum
                             : 0x08e1
 ICMP Data
   61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 abcdefgh ijklmnop
71 72 73 74 75 76 77 61 62 63 64 65 66 67 68 69 qrstuvwa bcdefghi
 Packet 2 : Nov-09-2016 09:26:06.284248, Length 74 bytes (Captured Length 74 bytes)
 Received on interface eth1
              00 40 ff 0f 45 94 00 04 2d f4 f8 aa 08 00 45 00
                                                                                 .@..E... -....E.
              00 3c e7 97 00 00 36 01 5d b6 08 08 08 08 2f 00
                                                                                 .<....6. 1...../.
              00 64 00 00 10 e1 00 01 44 7a 61 62 63 64 65 66
                                                                                 .d..... Dzabcdef
              67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75 76
                                                                                 ghijklmn opqrstuv
              77 61 62 63 64 65 66 67 68 69
                                                                                 wabcdefg hi
           Ethernet Header
              Destination MAC Addr : 00:40:ff:0f:45:94
              Source MAC Addr : 00:04:2d:f4:f8:aa
Ethernet Type : IP (0x0800)
              Ethernet Type
            IP Header
              IP Version: 4Header Length: 20 bytesToS: 0x00Total Length: 60 bytesID: 59287 (0xe797)

        Flags
        :

        Fragment Offset
        : 0 (0x0000)

        TTL
        : 54 (0x36)

        Protocol
        : ICMP (1)

              Checksum
                                         : 0x5db6
              Source IP Address : 8.8.8.8
              Dest. IP Address
                                         : 47.0.0.100
          ICMP Header
              Туре
                                         : Echo Reply (0)
              Code
                                         : 0
              Checksum
                                         : 0x10e1
          ICMP Data
              61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 abcdefgh ijklmnop
              71 72 73 74 75 76 77 61 62 63 64 65 66 67 68 69 qrstuvwa bcdefghi
digi.router>
```

Clear captured data traffic

To clear the captured data traffic, use the clear command, specifying clear analyzer.

```
digi.router> clear analyzer
digi.router>
```

Save captured data traffic to a file

Data traffic is captured to RAM and not saved when the device reboots. To upload the file to a PC, you must first save the captured data to a file.

Command line

Use the save command. For example:

```
digi.router> save analyzer lan1.pcapng
digi.router>
```

Use the "ping" command to troubleshoot network connections

Use the ping command troubleshoot connectivity problems. See the ping command description for command syntax and examples.

Stop ping commands

To stop pings when the number of pings to send (the **count** parameter) has been set to a high value, enter **Ctrl+C**.

Ping to check internet connection

To check your internet connection, enter:

ping 8.8.8.8

Use the "traceroute" command to diagnose IP routing problems

Use the traceroute command to diagnose IP routing problems. This command traces the route to a remote IP host and displays results. The traceroute command differs from ping in that traceroute shows where the route fails, while ping simply returns a single error on failure.

See the traceroute command description for command syntax and examples. The traceroute command has several parameters, but they are generally not used or required:

- **hops**: The maximum number of hops to allow.
- host: The IP address of the destination host.
- **interface**: The interface for sending the route trace.
- size: The size, in bytes, of the message to send.
- src-ip: Use this source IP address for outgoing packets.
- timeout: The maximum number of seconds to wait for a response from a hop.

Example

This example shows using **traceroute** to verify that the TransPort device can route to host **8.8.8.8** (www.google.com) through the default gateway. The command output shows that **15** routing hops

were required to reach the host:

digi.router> show route

Destination Gateway Metric Protocol Idx Interface Status 10.101.1.0/24 0.0.0.0 0 Connected lan1 UP 192.168.1.0/24 0.0.0.0 0 Connected lan3 UP 10.101.12.0/24 0.0.0.0 0 Connected lan4 UP 10.101.8.0/24 0.0.0.0 0 Connected lan2 UP 192.168.8.0/24 0.0.0.0 0 Connected eth1 UP default 192.168.8.1 1 Static eth1 UP digi.router> digi.router> traceroute 8.8.8.8 traceroute to 8.8.8.8 (8.8.8.8), 30 hops max, 60 byte packets 1 192.168.8.1 (192.168.8.1) 0.613 ms 0.384 ms 0.452 ms 2 10.240.192.1 (10.240.192.1) 19.039 ms 19.070 ms 18.985 ms 3 96.34.84.22 (96.34.84.22) 19.279 ms 25.487 ms 27.848 ms 4 96.34.80.240 (96.34.80.240) 32.560 ms 96.34.80.238 (96.34.80.238) 32.593 ms 96.34.80.230 (96.34.80.230) 32.688 ms 5 96.34.2.12 (96.34.2.12) 32.494 ms 42.865 ms 96.34.81.23 (96.34.81.23) 32.418 ms 6 96.34.81.190 (96.34.81.190) 32.590 ms 31.993 ms 31.993 ms 7 96.34.2.12 (96.34.2.12) 42.367 ms 24.334 ms 29.216 ms 8 96.34.0.51 (96.34.0.51) 34.155 ms 33.648 ms 27.910 ms 9 96.34.148.2 (96.34.148.2) 34.194 ms 96.34.0.137 (96.34.0.137) 25.195 ms 37.465 ms 10 216.239.46.248 (216.239.46.248) 31.285 ms 31.068 ms 216.58.215.44 (216.58.215.44) 37.434 ms 11 96.34.148.2 (96.34.148.2) 40.958 ms 209.85.143.112 (209.85.143.112) 31.281 ms 96.34.148.2 (96.34.148.2) 40.600 ms 12 216.239.46.248 (216.239.46.248) 21.515 ms 209.85.250.70 (209.85.250.70) 63.989 ms 216.58.215.44 (216.58.215.44) 30.455 ms 13 209.85.251.163 (209.85.251.163) 26.121 ms 216.239.48.235 (216.239.48.235) 27.429 ms 209.85.251.161 (209.85.251.161) 26.867 ms 14 216.239.48.160 (216.239.48.160) 33.652 ms 64.233.174.11 (64.233.174.11) 45.731 ms 209.85.250.70 (209.85.250.70) 29.792 ms 15 216.239.48.235 (216.239.48.235) 30.280 ms 72.14.234.55 (72.14.234.55) 34.517 ms 209.85.251.243 (209.85.251.243) 38.733 ms 16 * 8.8.8.8 (8.8.8.8) 40.967 ms 44.762 ms digi.router>

By entering a **whois** command on another Unix device, the output shows that the route is as follows:

- 1. **192/8**: The local network of the TransPort device.
- 2. 192.168.8.1: The local network gateway to the Internet.
- 3. 96/8: Charter Communications, the network provider.
- 4. 216/8: Google Inc.

Stop the traceroute process

To stop the traceroute process, enter Ctrl-C.

Use the "show tech-support" command

The show tech-support command displays information useful for Digi Technical Support when handling issues with your device.

You can execute this command from the command-line interface or from the Device Console in the web interface.

The syntax for show tech-support is as follows:

show tech-support [filename]

The filename parameter is optional. If specified, the information is saved to the given filename.

The show tech-support command executes the following commands:

- show system
- show config more
- config.da0 (or whichever configuration file is in use)

- show route
- show lan
- **show lan x**, for whichever LAN interface's **admin** status is **up**
- show dhcp
- show wan
- show wan x, for whichever WAN interface's admin status is up
- show cellular
- show ipsec
- **show ipsec x**, for whichever IPsec tunnel is configured (**state=on**)
- show log
- show log system
- show firewall
- show firewall6
- show tech-support

In the output, each executed command output is prefixed with the command name; for example:

show system
=======

File system

File system	161
Create a directory	161
Display directory contents	
Change the current directory	
Delete a directory	
Display file contents	
Copy a file	
Rename a file	164
Delete a file	165
Upload and download files	166

File system

The TransPort local file system has approximately **100 MB** of space available for storing files, such as Python programs, alternative configuration files and firmware versions, and release files, such as cellular module images.

See Managing configuration files for information on managing configuration files.

Create a directory

📕 Web

- 1. On the menu, click System > Administration > File System. The File System page appears.
- 3. Enter a name for the directory and click Create.

To create a nested directory, navigate to the subdirectory by double-clicking the parent directory. Click \oplus for the New Directory dialog. Alternately, you can create a nested directory by including the parent directory with the slash delimiter / in the directory name field.

Command line

To make a new directory, use the mkdir command, specifying the name of the directory. For example:

Display directory contents

📕 Web

- 1. On the menu, click System > Administration > File System. The File System page appears.
- 2. Double-click the directory row to navigate to a sub-directory and display contents.

📟 Command line

To display directory contents, use the dir command. For example:

digi.router> dir

File Size Last Modified

File system	
-------------	--

test		Dire	ector	ſУ	
config.da0	763	Sun	Mar	5	12:36:20
config.fac	186	Mon	Feb	21	03:00:17
Remaining User Space: 102,45	7,344	bytes	5		

digi.router>

Change the current directory

Web

- 1. On the menu, click System > Administration > File System. The File System page appears.
- 2. Navigate to the desired directory or subdirectory.
- 3. To return to the home directory, click

Command line

To change the current directory, use the cd command, specifying the directory name.

For example:

```
digi.router> dir
                  Size Last Modified
File
_____
                      Directory
test
                     763 Sun Mar 5 12:36:20
186 Mon Feb 21 03:00:17
config.da0
config.fac
Remaining User Space: 102,457,344 bytes
digi.router>
digi.router> cd test
digi.router> dir
File
                Size Last Modified
_____
Remaining User Space: 102,457,344 bytes
```

digi.router>

Delete a directory

- 1. On the menu, click System > Administration > File System. The File System page appears.
- 2. Select the directory to delete.
- 3. Click **d**. A warning dialog displays.
- 4. Click **OK**.

Note This operation deletes any files in the directory along with the directory.

Command line

- 1. Make sure the directory is empty.
- 2. Use the rmdir command, specifying the name of the directory to remove. For example:

```
digi.router> dir
File
                     Size Last Modified
_____
                      Directory
test
config.da0
                      763 Sun Mar 5 12:36:20
config.fac
                       186 Mon Feb 21 03:00:17
Remaining User Space: 102,457,344 bytes
digi.router>
digi.router> rmdir test
Directory test is not empty
ERROR
digi.router>
digi.router> dir test
                   Size Last Modified
File
_____
config.tst
                      186 Wed Apr 5 07:10:41
Remaining User Space: 102,457,344 bytes
digi.router>
digi.router> del test/config.tst
digi.router>
digi.router> rmdir test
digi.router>
digi.router> dir
File
                     Size Last Modified
_____
                      763 Sun Mar 5 12:36:20
config.da0
                       186 Mon Feb 21 03:00:17
config.fac
Remaining User Space: 102,457,344 bytes
digi.router>
```

Display file contents

Web

There is no direct way to display file contents from the **System - File Management** page. Instead you must download the file and then view the downloaded file from a file editor.

- 1. On the menu, click System > Administration > File System. The File System page appears.
- 2. Select the file.
- 3. Click 📥.
- 4. When the file is downloaded, open it with an editor.

Command line

To display the contents of a file, use the more command, specifying the name of the file. For example:

```
digi.router> more config.da0
# Last updated by username on Thu Nov 19 14:26:02 2015
eth 1 ip-address "192.168.1.1"
cellular 1 apn "mobile.o2.co.uk"
cellular 1 state "on"
user 1 name "username"
user 1 password "$1$4WdqUHrv$K.aB78KILuxVpesZtyveG/"
digi.router>
```

Copy a file

To copy a file, use the copy command, specifying the existing file name, followed by the name of the new copy.

For example, to copy file **config.da0** to a file in the main directory named **backup.da0**, and then to a file named **test.cfg** in the **test** directory, enter the following:

```
> digi.router> dir
File
                            Size Last Modified
------

        test
        Directory

        config.da0
        763
        Sun Mar 5 12:36:20

        config.fac
        186
        Mon Feb 21 03:00:17

Remaining User Space: 102,457,344 bytes
digi.router>
digi.router>
digi.router> copy config.da0 backup.da0
digi.router>
digi.router> dir
                               Size Last Modified
File
-----
                                        Directory
test
test
config.da0
config.fac
                                 763 Sun Mar 5 12:36:20

        186
        Mon
        Feb
        21
        03:00:17

        763
        Wed
        Apr
        5
        07:22:29

backup.da0
Remaining User Space: 102,457,344 bytes
digi.router>
digi.router> copy config.da0 test/test.cfg
digi.router>
digi.router> dir test
File
                               Size Last Modified
       _____
test.cfg
                                763 Wed Apr 5 07:24:45
Remaining User Space: 102,457,344 bytes
```

digi.router>

Rename a file

📕 Web

- 1. On the menu, click System > Administration > File System. The File System page appears.
- 2. Select the file to rename. Navigate to the file's directory location, if necessary.

- 3. Click **C**. Enter the new file name.
- 4. Click **OK**.

Command line

To rename a file, use the rename command, specifying the existing name and the new name. For example:

```
digi.router> dir
File
                      Size Last Modified
_____
                        Directory
test
config.da0
                       763 Sun Mar 5 12:36:20
config.fac
                       186 Mon Feb 21 03:00:17
backup.da0
                       763 Wed Apr 5 07:22:29
Remaining User Space: 102,457,344 bytes
digi.router>
digi.router> rename backup.da0 test.da0
digi.router>
digi.router> dir
File
                      Size Last Modified
_____
                       Directory
test
test.da0
                      763 Wed Apr 5 07:22:29
config.da0
                       763 Sun Mar 5 12:36:20
config.fac
                       186 Mon Feb 21 03:00:17
Remaining User Space: 102,453,248 bytes
digi.router>
```

Delete a file

📕 Web

- 1. On the menu, click System > Administration > File System. The File System page appears.
- 2. Select or navigate to the file to delete.
- 3. Click 🛍. A confirm delete dialog displays.
- 4. Click **OK**.

Note To delete all files in a directory, see Delete a directory.

Command line

To delete a file, use the del command, specifying the filename to delete.

For example, to delete a file named **test.cfg** in the **test** directory, enter the following:

```
digi.router>
digi.router> dir
```

File

Size Last Modified

```
_____
                          Directory
test
                    763 Wed Apr 5 07:22:29
test.da0
config.da0
                     763 Sun Mar 5 12:36:20
config.fac
                     186 Mon Feb 21 03:00:17
Remaining User Space: 102,453,248 bytes
digi.router>
digi.router> del test.da0
digi.router>
digi.router> dir test
File
                   Size Last Modified
_____
                     763 Wed Apr 5 07:24:45
test.cfg
Remaining User Space: 102,453,248 bytes
digi.router>
digi.router> del test/test.cfg
digi.router> dir test
                 Size Last Modified
File
_____
Remaining User Space: 102,449,152 bytes
digi.router>
```

Upload and download files

From the web interface

Upload files

- 1. On the menu, click System > Administration > File System. The File System page appears.
- 2. Click 📤.
- 3. Use the local file system to browse to the location of the file to upload. Select the file and click **Open** to start the upload.
- 4. A progress dialog appears. When the upload operation is complete, the file is displayed in the file list.

Download files

- 1. On the menu, click System > Administration > File System. The File System page appears.
- Navigate to the file you want to download and click the file to select it. To download the event log, select file **event.log**. To download the system log, select file **system.log**.
- 3. Click 📥 The file downloads to your system using your browser's download settings.

📟 Command line

You can download and upload files using utilities such as Secure Copy (SCP), SSH File Transfer Protocol (SFTP), or an SFTP application, such as FileZilla.

Upload files using SCP

To upload a file to a device using SCP, use this syntax:

```
scp filename username@ip_address:filename
```

For example, to upload a file named **script.py** to a device at IP address **192.168.1.1**:

Download files using SCP

To download a file from a device using SCP, use this syntax:

```
scp username@ip_address:filename filename
```

For example, to download a file named **config.da0** to the local directory from a device at IP address **192.168.1.1** using the username **john**:

Upload files using SFTP

This example uploads a file named **lr54-1.0.2.10.bin** to TLR device **192.168.1.1** using the username **john**:

```
$ sftp john@192.168.1.1
Password:
Connected to 192.168.1.1
sftp> put lr54-1.0.2.10.bin
Uploading lr54-1.0.2.10.bin to lr54-1.0.2.10.bin
lr54-1.0.2.10.bin
100% 24M 830.4KB/s 00:00
sftp> exit
$
```

Download files using SFTP

This example downloads a file named **config.da0** from TransPort device **192.168.1.1** using the username **john** to the local directory:

Diagnostics and troubleshooting

Troubleshooting tools and resources	169
Troubleshooting Ethernet interfaces	169
Troubleshooting cellular interfaces	
Troubleshooting the serial interface	
TransPort LR54 model-specific troubleshooting	
· · · · · · · · · · · · · · · · · · ·	

Troubleshooting tools and resources

There are several tools and resources available within your TransPort device and on the Digi website for dealing with configuration or other device issues.

- Logs
- Analyze traffic
- Use the "ping" command to troubleshoot network connections
- Use the "traceroute" command to diagnose IP routing problems
- Use the "show tech-support" command
- Reboot the device
- Digi support site
- Digi knowledge base

Digi support site

For support for your TransPort device, go to www.digi.com/support.

Digi knowledge base

To access the Digi knowledge base, go to knowledge.digi.com/.

Troubleshooting Ethernet interfaces

Ethernet LED does not illuminate Device cannot communicate on WAN/ETH1 port Device cannot communicate on ETH2, ETH3, or ETH4 ports

Ethernet LED does not illuminate

Problem

Ethernet LED does not illuminate on the WAN/ETH1, ETH2, ETH3, or ETH4 ports.

Probable Cause

The most likely cause is a bad connection or a bad Ethernet cable.

Solution

1. Replace the Ethernet cable and verify that both ends are plugged in. if the Ethernet LED is now illuminated on the Ethernet port, skip the rest of these steps .

 Open the command line interface. Enter the command **eth n**, where **n** is replaced with the Ethernet port number. In the **eth** command output, verify that the state of the Ethernet port is set to **on**. For example, if you are diagnosing port **WAN/ETH1**, enter:

digi.router> eth 1	
description	
duplex	auto
mtu	1500
speed	auto
state	on

digi.router>

3. If the state is set to **off**, enter another eth command to change the state to be **on** and see if that fixes the problem. For example, to change the state of port **WAN/ETH1**, enter:

digi.router> eth 1 on

4. Enter show eth n (where n is replaced with the Ethernet port number) from the TransPort device. Verify that the Operational Status is Up and that the Link status does not say No connection. For example, on Ethernet port WAN/ETH1, enter:

digi.router> show et Eth Status and Stat	istics A				
Description :					
Admin Status : L	lp				
Oper Status : D	own				
Up Time : 4	8 Minute	es, 23 Seco	nds		
MAC Address : 0					
Link : N	lo connec	ction			
Received			Sent		
Rx Unicast Packet	: 215	12	Tx Unicast Packet	:	16147
Rx Broadcast Packet	: 917		Tx Broadcast Packet	:	8
Rx Multicast Packet	: 5638	3	Tx Multicast Packet	:	7
Rx CRC Error	: 0		Tx CRC Error	:	0
Rx Drop Packet	: 0		Tx Drop Packet	:	0
Rx Pause Packet	: 0		Tx Pause Packet	:	0
Rx Filtering Packet	: 1363	31488	Tx Collision Event	:	0
Rx Alignment Error	: 0				
Rx Undersize Error	: 0				
Rx Fragment Error	: 0				
Rx Oversize Error	: 0				
Rx Jabber Error	: 0				

- If the Link status shows there is No connection, try plugging the Ethernet cable into a different Ethernet port.
- 6. If the new Ethernet port shows the same **No connection** status, either the cable is bad, or there is a problem at the other end. If the new port shows a valid connection, something may be wrong with the TransPort hardware. Contact Digi Technical Support.

Device cannot communicate on WAN/ETH1 port

Problem

The TransPort device cannot communicate on its **WAN/ETH1** port.

Probable Cause

The most likely cause is that the WAN port is not correctly configured.

Solution

The following steps assume you are using **WAN/ETH1** as a WAN port, which is the default configuration. If you are using **WAN/ETH1** as a LAN port, see the steps in Device cannot communicate on ETH2, ETH3, or ETH4 ports.

- 1. Check the Ethernet LED for the **WAN/ETH1** port. If the LED is not lit, verify the physical connection following the steps in Ethernet LED does not illuminate.
- Open the command line interface. Enter **show wan n**, where n is the number of the WAN. In the command output, verify that the IP Address, mask, and gateway are set. For example, if WAN/ETH1 is configured for WAN1, which is the default configuration, enter:

```
digi.router> show wan 1
WAN 1 Status and Statistics
WAN Interface : eth1
Admin Status : Up
Oper Status : Down
IP Address :
Mask :
Gateway :
DNS Server(s) :
```

Probes are not being used

	Received	Sent
Packets	28225	16256
Bytes	19551951	3199259

3. If the IP configuration is not set, as shown above, the most likely problem is that the port has not been configured correctly. To view the current configuration, enter the command wan n, where n is the number of the WAN. In the command output, verify that the interface for the WAN is set to the Ethernet port. Set the correct interface if necessary. For example:

digi.router> wan 1	
activate-after	0
allow-https-access	off
allow-ssh-access	off
dhcp	on
dns1	
dns2	
gateway	
interface	eth1
ip-address	
mask	255.255.255.0
nat	on
probe-host	
probe-interval	60
probe-size	64
probe-timeout	5
retry-after	300
timeout	300

If the interface is correct, but the port still does not get an IP configuration, enter another wan
n command for that port to verify that the DHCP setting is correct. If the network to which the
WAN is connected uses DHCP to assign IP addresses, make sure DHCP is on for the WAN port.

digi.router> wan 1	
activate-after	0
allow-https-access	off
allow-ssh-access	off
dhcp	on
dns1	
dns2	
gateway	
interface	eth1
ip-address	
mask	255.255.255.0
nat	on
probe-host	
probe-interval	60
probe-size	64
probe-timeout	5
retry-after	300
timeout	300

5. If the network does not use DHCP to assign IP addresses, you need to disable DHCP on the WAN port, and configure a static IP address. For example, if your network uses static IP addresses and the TransPort device has been assigned the address 10.10.10.10 with subnet mask 255.255.255.0 and a gateway of 10.10.10.1, you would enter the following commands:

```
digi.router> wan 1 dhcp off
digi.router> wan 1 ip-address 10.10.10.10
digi.router> wan 1 mask 255.255.255.0
digi.router> wan 1 gateway 10.10.10.1
```

6. If these steps do not resolve your problem, contact Digi Technical Support.

Device cannot communicate on ETH2, ETH3, or ETH4 ports

Problem

The TransPort device is not able to communicate on its ETH2, ETH3, or ETH4 port.

Probable Cause

Ports **ETH2**, **ETH3**, and **ETH4** are usually bridged together to form a LAN. The most likely problem is that the LAN is not correctly configured.

Solution

- 1. Check the Ethernet LED for the Ethernet port. If the LED is not lit, verify the physical connection, following the steps in Ethernet LED does not illuminate.
- 2. Open the command line interface. Enter the command **lan n**, where **n** is the number of the LAN with which the Ethernet port is associated. In the command output, verify that the Ethernet port really is assigned to the LAN. For example, if the port is supposed to be associated with **LAN 1**, enter:

digi.router> lan 1	
description	Ethernet and Wi-Fi LAN network
dhcp-client	off
dns1	
dns2	
interfaces	eth2,eth3,eth4,wifi1,wifi5g1
ip-address	192.168.1.1
mask	255.255.255.0
mtu	1500
state	on

- If the Ethernet port is not listed as one of the LAN's interfaces, add it using the command lan n interfaces, where n is the Ethernet port number.
- 4. Verify that the LAN is enabled. If needed, enter the command lan n state on to enable the LAN.

digi.router> lan 1	
description	Ethernet and Wi-Fi LAN network
dhcp-client	off
dns1	
dns2	
interfaces	eth2,eth3,eth4,wifi1,wifi5g1
ip-address	192.168.1.1
mask	255.255.255.0
mtu	1500
state	on

5. Verify that the LAN is configured with an IP address. Use the **lan n ip-address** command to set the IP address if necessary.

digi.router> lan 1	
description dhcp-client dns1 dns2	Ethernet and Wi-Fi LAN network off
interfaces	eth2,eth3,eth4,wifi1,wifi5g1
ip-address	192.168.1.1
mask	255.255.255.0
mtu	1500
state	on

6. Use the **dhcp-server** command to verify the LAN's DHCP server is set up correctly. The gateway field should be set to the LAN's IP address, and the ip-address-start and ip-address-end fields should be within the subnet configured for the LAN port. For example, suppose the LAN is configured with the IP address **192.168.1.1** and subnet **255.255.255.0**. If DHCP server **1** was used to service the LAN, its configuration should look something like this:

```
digi.router> dhcp-server 1
```

dns1	192.168.1.1
dns2	
gateway	192.168.1.1
ip-address-end	192.168.1.199
ip-address-start	192.168.1.100
lease-time	1440
mask	255.255.255.0
state	on

- 7. Verify that the PC or device plugged into that port has been configured to use DHCP to get an IP address.
- 8. If the PC still cannot communicate with the Ethernet port, try plugging a different PC into the port and see if that can communicate over the port. If it can, the problem is with the first PC or device.

9. Enter the **show dhcp** command to verify that there are some available DHCP leases left. For example, the DHCP server configuration creates a range of **100** DHCP leases, and the DHCP status below shows that only one is in use. If your status showed that all available DHCP leases were in use, you would have to either update the DHCP server configuration to add more leases, or remove some devices from the LAN.

digi.router> sho	w dhcp		
DHCP Status			
IP address	Hostname	MAC Address	Lease Expires At
192.168.1.100 2017	WAL-CMS-PJACO1	6c:19:8f:b1:68:99	17:23:05, 04 Apr

10. If you still have communications issues with the LAN port, contact Digi Technical Support.

Troubleshooting cellular interfaces

Verify cellular connectivity Check cellular signal strength

digi.router>

Verify cellular connectivity

Test SIM slot 1

- 1. With the router powered off, insert a SIM card into the **SIM 1** slot of the TransPort device.
- 2. Access the TransPort command line interface. See Command line interface access options.

3. Issue the following command to confirm that the device acknowledges the SIM card:

```
digi.router> cellular 1 state on
digi.router> show cellular
```

The cellular status and statistics should be displayed. Look for the SIM status and whether the **ICCID** can be read:

If the **ICCID** does not appear in the cellular status and statistics, repeat this procedure with a different SIM card. If the **ICCID** still does not display, request an RMA with the reason **SIM SLOT 1 DETECTION FAIL**.

Test cellular connectivity with SIM 1

Note Make sure that both antennas are connected and the router is located in an area with good signal strength.

- 1. With the router powered off, insert a SIM card into the **SIM 1** slot of the TransPort device.
- 2. Open the command line interface. See Command line interface access options.
- 3. Configure an APN for SIM 1. Issue the following commands:

```
digi.router> cellular 1 apn my_apn
digi.router> cellular 1 state on
digi.router> show cellular
```

If the APN requires a username and password, add the following:

```
digi.router> cellular 1 apn-password my_apn_password
digi.router> cellular 1 apn-username my_apn_username
Warning: Wait for up to 5 minutes and check for a valid IP address
```

The cellular status and statistics table should appear. Look for the IP address:

Gateway	: 255.255.255.0
DNS servers	: 192.168.1.1, 192.168.1.2

If a valid IP address is not found, issue the show tech-support command from the device and email the command output to Digi Technical Support for assistance. To extract the show techsupport output from the device, see the following application note: http://ftp1.digi.com/support/documentation/TLR_QN04_show_tech_support.PDF

Test SIM slot 2

- 1. With the router powered off, insert a SIM card into the SIM 2 slot of the TransPort device.
- 2. Open the command line interface. See Command line interface access options.
- 3. Issue the following commands to confirm that the device acknowledges that the SIM card is installed in SIM slot 2:

digi.router> cellular 1 state off
digi.router> cellular 2 state on
digi.router> show cellular

The cellular status and statistics table should appear. Look for the **SIM status** and if the **ICCID** can be read.

If the ICCID does not appear, try with a different SIM card. If the ICCID still does not appear, contact Digi Technical Support, with the following subject line and problem description: SIM slot 2 detection fail.

Test cellular connectivity with SIM 2

- 1. Make sure that both antennas are connected and the router is located in an area with good signal strength.
- 2. With the router powered off, insert a SIM card into the SIM 2 slot of the LR54.
- 3. Open the command line interface. See Command line interface access options.
- 4. Configure an APN for SIM 2. Issue the following commands:

```
digi.router> cellular 1 state off
digi.router> cellular 2 apn my_apn
digi.router> cellular 2 state on
digi.router> show cellular
```

If the APN requires a username and password, add the following:

```
digi.router> cellular 2 apn-password my_apn_password
digi.router> cellular 2 apn-username my_apn_username
```

Cellular Status and Statistics

IP address	: 10.123.456.90
Mask	: 255.255.255.248
Gateway	: 255.255.255.0
DNS servers	: 192.168.1.1, 192.168.1.2

If a valid IP address is NOT found, enter the show tech-support command from the device and email the command output to Digi Technical Support for assistance. For instructions on extracting show tech-support output from the device, see the following application note:

http://ftp1.digi.com/support/documentation/TLR_QN04_show_tech_support.PDF

Check cellular signal strength

- 1. While the internet link is still connected from following steps in Verify cellular connectivity, access the command line interface. See Command line interface access options.
- 2. Enter the show cellular command. In the output, view the values displayed for the **Signal strength** and **Signal quality** fields:

```
digi.router> show cellular
Cellular Status and Statistics
-------
:
Signal strength : Excellent (69dBm)
Signal quality : Excellent (10dB)
;
```

- Check that the signal strength is roughly what you normally get with the same antenna in the test location, which should be +/- 10 dBm. If the signal strength is much worse than normal, try these things:
 - Swap the antennas with another set.
 - Insert a SIM card from a different carrier.
- 4. Ideally, repeat the test on a known working TransPort device that contains the same type of radio module in the same location. Make sure this known working TransPort device is connected using the same antenna and the same provider. If it does, and the signal strength is much better (+ 10 dBm) than the suspected bad router, contact Digi Technical Support, with the following subject line and problem description: Cellular signal strength low.

Troubleshooting the serial interface

Verify serial connectivity

Verify serial connectivity

Problem

When using the command line interface, command output displays unusual or garbled characters.

Probable causes

- Serial cable is bad.
- Wrong type of serial cable is being used for the serial connection.
- Wrong pinout being used for the serial connection.
- The baud rate setting for serial communication is set to different rates on either end of the connection.

Solution

Test the serial connection.

- 1. Using a straight-through serial cable, connect a PC serial port to the TransPort device. For pinout details, see the hardware reference guide for your model.
- 2. Open a terminal application such as PuTTy, with the following serial port configuration:
 - Serial Port: **COM X**, where **X** is the serial port number of the computer, usually **1**.
 - Speed: 115200
 - Connection type: depending on the application, make sure Serial is selected for the connection type.

RuTTY Configuration		×
Category:		
Session Logging Terminal	Basic options for your PuTTY s Specify the destination you want to conn Serial line COM4 Connection type: Paw Telnet Raw Telnet Raw Save or delete a stored session Saved Sessions Default Settings Close window on exit: Always Never Only on	ect to Speed 115200 CH Serial <u>L</u> oad Sa <u>v</u> e <u>D</u> elete
About	Open	<u>C</u> ancel

- 3. Click **Open**. A terminal window appears.
- 4. When prompted, enter your current username and password.

5. Check that you can send and receive command line interface commands, for example, enter show tech-support:

Putty		—		\times
Using Config File	: config.da0			^
Uptime	: 4 Hours, 9 Minutes, 8 Seconds			
System Time	: 20 February 2017, 15:02:08			
CPU	: 0% (min 0%, max 88%, avg 0%)			
Temperature	: 41.50 C			
Description	:			
Location				
Contact				
00110400				
show config				
system 1 timeout 3	3600			
system 1 wizard "o	off"			
cellular 1 apn "or	ange.m2m.spec"			
cellular 1 apn-pas	sword "\$00\$U2FsdGVkX1+07hRZpkZfSXDKrzn0zlgpDqx	kjvtpud4	="	
cellular 1 apn-use	rname "orange"			
cellular 1 state "	'on"			
lan 1 description	"Ethernet and Wi-Fi LAN network"			
lan 1 state "on"				
More				\sim

6. If the command output does not contain any garbled or unusual output, the serial connection is up and working appropriately.

If the command output has garbled output or unusual characters, continue to the next step.

- 7. Connect to the TransPort device web interface over the network. See Log in to the web interface if you need help accessing the web interface.
- 8. On the web interface, click **\$ System** and select **Device Console**. The Device Console displays.

9. In the Device Console, enter the command **serial 1**. The serial settings display.

10. Verify that the serial port is configured for **115200** baud, **8** databits, **1** stopbit, **no** flow control, and **no** parity. Verify that the **state** setting of the serial interface is **on**. For example:

```
digi router > serial 1
baud 115200
databits 8
description
flowcontrol none
parity none
state on
stopbits 1
```

- 11. If the serial configuration is incorrect, follow the instructions in Configure the serial interface to set the correct configuration.
- 12. If you have verified that the serial ports on both the PC and the TransPort device are correctly configured, and you still cannot access the command-line interface over the console, try replacing the serial cable.
- 13. If serial issues persist after following these steps, contact Digi Technical Support, with the subject line **Serial connectivity issues**.

TransPort LR54 model-specific troubleshooting

The following topics apply to TransPort LR54 models only. Check TransPort54 LEDs Recover a TransPort54 device

Check TransPort54 LEDs

To check that all LEDs are working properly, set the device into recovery mode. See Recover a TransPort54 device. This forces all LEDs to flash. Make sure to turn off and turn back on the unit once this test has been completed to retrieve full functionality.

If any of the LEDs do not light up properly during the bootup or device recovery process, contact Digi Technical Support. In the email subject line and problem description, specify **x LED failure**, where **x** is any of the following LED names:

- Power
- WWAN Signal
- WWAN Service
- SIM 1
- SIM 2
- Wi-Fi 2.4GHz
- Wi-Fi 5GHz
- WAN/ETH1*

- ETH2*
- ETH3*
- ETH4*

*On these ports, the upper Ethernet LED illuminates if a working network cable is attached only.

Recover a TransPort54 device

If other troubleshooting steps do not resolve issues you are experiencing with your TransPort54 device, you may need to perform a device recovery procedure.

Condition

When applying the power, the only LED that illuminates is the **Power** LED.

Probable cause

Corrupted firmware image on the device.

Solution

Follow the steps below to recover the device. The device recovery operation loads new firmware onto a TransPort LR54 device.

Note This process does not update or erase any previous configuration in the device. If you want to erase the current configuration, perform a factory reset instead; see Reset the device to factory defaults.

Assemble required equipment

Recovering a TransPort device requires the following:

- A PC running a Microsoft Windows-based operating system or any other operating system that allows web browsing and file upload with an Ethernet port.
- An Ethernet cable to connect the TransPort device and the PC.
- An Internet connection to download the latest firmware image from our support web site. You can perform this download operation on a separate computer.

The diagram shows how the equipment is connected during the device recovery process.

CAUTION! The computer must be connected to the **ETH2** port of the TransPort device for the recovery process to work.

Download the latest system firmware image

Download the latest system firmware image file. Go to the firmware download link listed in the topic Update system firmware. Download the **lr54-*.bin** file.

Configure a static IP address on the PC

Configure the following static IP address on the Ethernet interface on the PC:

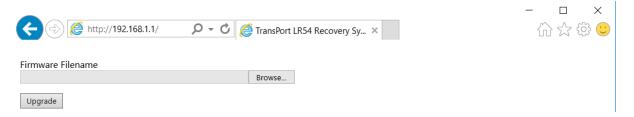
- IP address: 192.168.1.2
- Mask: 255.255.255.0

The TransPort LR54 device will use an IP address of **192.168.1.1**.

Set the device to recovery mode

- 1. Disconnect the device from power.
- 2. Locate the **Reset** button on the device.

TransPort LR54: The **Reset** button is located beneath the SIM card slot cover on the front panel, to the right of SIM slot 2. Remove the SIM cover to access the **Reset** button.


- 3. Press and hold the **Reset** button while connecting the power, and keep holding down the **Reset** button while the unit powers up.
- 4. Watch for all the LEDs on the device to blink.

- 5. Wait for all the LEDs to turn off and the **Power** LED to be blink rapidly. The device is now in recovery mode.
- 6. Now you can release the **Reset** button.

Upload new firmware

1. Open a web browser and navigate to **http://192.168.1.1**. The TransPort LR54 Recovery System navigation window appears.

- 2. Click the **Browse** button. Select or navigate to the previously downloaded firmware file.
- 3. Click Upgrade.
- 4. The **Power** LED blinks slowly during the upgrade process. This process takes approximately **30** seconds. When the process completes, all LEDs will be blinking.

WARNING! Do not remove the power from the unit during this process.

5. Disconnect the power and reconnect it. The firmware has been successfully loaded on to TransPort LR54 device and is ready to use.

Web reference

The dashboard	189
DMNR page	190
File system page	191
Firewall page	192
GRE page	194
Cellular locked pin page	195
Device preferences page	
Interfaces—cellular page	
Interfaces—Ethernet page	
Interfaces—Wi-Fi page	
IPsec page	
Local Networks page	203
Log configuration page	
Log viewer page	206
New GRE tunnel page	206
New Wide Area Network (WAN) page	208
OpenVPN client page	
OpenVPN route management page	
OpenVPN server page	
OpenVPN user management page	
Port forwarding page	
Python autostart page	220
Quality of Service (QoS) queues page	222
Quality of Service (QoS) WANs page	
RADIUS page	
Digi Remote Manager page	226
Syslog server configuration page	227
User Management page	
VRRP page	228
Wide Area Network (WAN) page—Cellular	
Wide Area Network (WAN) page—Ethernet	232
Wide Area Network (WAN) page	234

The dashboard

The dashboard shows the current state of the device.

letwork Activi	ty	Digi Remote	Manager	Device			
AN occlived ent AN eccived ent	4465,00 KB 11445,20 KB 0 368 Bytes	Status Up Time Device Id	 Connected an hour 00000000- 00000000- 00000000- 00000000	Up Time Firmware Version System Time CPU Utilization Temperature Model Part Number Serial Number Hardware Version Boot Version	1 Hour, 16 Minutes, 53 Seconds ✓ 3.9.3.97 04 Cotcher 2017, 1823254 0% 32.00 C LR544W401 LR54-M4401 LR54-M4401 LR54-00185 50001859-03 IP 1.0.0.3		
AN		Interface		LAN		VPN	
Ethernet(W) AMN 2 Cellulart AMN 3 Cellular2	✓ Up W(/ETHI) X Down		✓ Up X Down X Down X Down ✓ Up	↔ LAN 1 Ethernet and W-	✔ Up FiLAN network	IPsec IPsec 1 test OpenVPN Server Server not co OpenVPN Client No tunnels co	

Dashboard display areas

Dashboard area	Description
Network activity	Summarizes network statistics: the total number of bytes sent and received over all Wide Area Networks (WANs) and Local Area Networks (LANs), including all WANs/LANs configured and active, disabled, and/or disabled.
Digi Remote Manager	Displays the device connection status for Digi Remote Manager, the amount of time the connection has been up, and the Digi Remote Manager device ID. See Remote Manager.
Device	Displays device status, statistics, and identifying information. See the show system command for details. For Firmware Version , a green checkmark ✓ indicates the firmware is up to date and a red X indicates a firmware update is available. See Update system firmware for instructions.
WAN	Displays all configured Wide Area Networks (WANs), the physical interface assigned to the WAN, and the current state of the WAN. Click a WAN to display detailed configuration and status information. See Wide Area Networks (WANs) for details.
Interface	Displays all configured and available physical interfaces for the device and their current states. See Interfaces for details.
LAN	Displays all configured Local Area Networks (LANs), the physical interface(s) assigned to the LAN, and the current state of the LAN. Click a LAN to display detailed configuration and status information. See Local Area Networks (LANs) for details.
VPN	Displays all configured Virtual Private Network (VPN) tunnels. See Virtual Private Networks (VPN) for details.

DMNR page

Use the DMNR page to configure and view Verizon Dynamic Mobile Network Routing (DMNR).

Configuration options

Option	Description
Enable	Enables or disables DMNR. Specifies the current state of DMNR. The default is disabled .
Home agent	Specifies the IPv4 address for home agent.
Networks to route	Specifies the IPv4 addresses for the LANs to advertise. Select one or more available configured LANs or None . The default is None .
Advanced	
Authorization key	Specifies the character string for accessing the mobile network. The default is VzWNeMo .
SPI	Specifies the security parameter index. Enter an integer from 0 to 4294967295. The default is 256 .
Home network (tunnel)	Specifies an IP address for the mobile network; that is, the tunnel address that represents the mobile network. The default is 1.2.3.4 .
Lifetime	Specifies the number of seconds until the authorization key expires. Enter an integer from 120 to 65535. The default is 600 .
МТО	Specifies the maximum transmission unit in bytes for the tunnel. Enter an integer from 68 to 1476. The default value is 1476 .

Status display

Option	Description
Admin status	Shows the current administrative status: Up or Down .
Operational status	Shows the current operational status: Up or Down .
Registration status	Shows the current registration status: Registered or Unregistered .
Home agent	Shows the IP address for the Verizon home agent.
Care of address	Shows the current point of attachment IP address for DMNR.
Interface	Shows the interface for DMNR.
Lifetime (actual)	Shows the actual lifetime in seconds for the current DMNR authorization.
Networks	Shows the networks currently being advertised by DMNR.

File system page

Use the **File system** page to display and manage the files and directories in the local file system of your TransPort device.

Navigation options

Field/Button	Description
*	Navigates to the home or / directory of the file system. As you navigate through the file system, the path is displayed in breadcrumbs to the right of A ; for example:
	A > app > dist
	To return to the home directory, click
1	Uploads directory or file to the TransPort file system.
Ð	Creates a directory. You can create nested directories by specifying the path, separated by /.
*	Displayed when a file is selected. Downloads the selected file from the TransPort file system. The file is downloaded to the default download directory for your browser.
Ľ	Displayed when a directory or file is selected. Renames the selected directory or file.
⑪	Displayed when a directory or file is selected. Deletes the selected directory or file.
File list	The rest of the page lists the directories and files in the file system. Initially, all directories and files listed alphabetically, starting with directories first. All columns are sortable.
Name	The directory or file name.
Size	File size.
Last modified	Date the directory or file was last modified.

Firewall page

Use the **Firewall** page to create and manage IP filter rules.

- Input IP filter: Manage your input filters in this section of the Firewall page.
- Routing IP filter: Manage your routing and output filters in this section of the Firewall page.

Depending on the address you provide for a filter, TransPort creates rules for either IPv4 or IPv6.

Note Because output filters are rarely needed, all output filter rules you create display with a warning to notify you that you may not need to use an output filter rule.

See IP filter source and destination options and IP filter criteria options for information on configuring IP filter rules.

Input IP filter options

Option	Description	
Enabled	Enables or disables the IP filter rule. The default is enabled .	
Description	Description for the rule. Specify a string value up to 255 characters long.	
Action	Specifies what to do with received packets: Accept , Drop , or Reject packets. The default is Accept .	
Src	Specifies the interface for the incoming packets: ANY-LAN , ANY-WAN , or a specific LAN or WAN. The default is NONE .	
Address	 Specifies the source IP address for incoming packets. If you do not specify an address, the filter is applied to all addresses. Specify the address in IPv4 or IPv6 format. The format for the source IP address and the destination IP address must match. To force either IPv4 or IPv6 version, enter a default address: For IPv4 0.0.0.0/0 For IPv6 ::/0 	
Port	Specifies the destination port on the router for incoming packets. You can enter a port number, a range of ports, or a list of ports. If you do not specify a port, the filter is applied to all ports.	
Protocol	Specifies the protocol for incoming packets: tcp , udp , and icmp . If you do not specify a protocol, the filter is applied to all protocols.	

Routing IP filter options

Option	Description
Enabled	Enables or disables the IP filter rule. The default is enabled .

Option	Description
Description	Description for the rule. Specify a string value up to 255 characters long.
Action	Specifies what to do with received packets: Accept , Drop , or Reject packets. The default is Accept .
Src	Specifies the interface for the incoming packets: ANY-LAN , ANY-WAN , or a specific LAN or WAN. The default is NONE .
Address	 Specifies the source IP address for incoming packets. If you do not specify an address, the filter is applied to all addresses. Specify the IP address in IPv4 or IPv6 format. The format for the source IP address and the destination IP address must match. To force either IPv4 or IPv6 version, enter a default address: For IPv4 0.0.0.0/0 For IPv6 ::/0
Port	Specifies the source port number. You can enter a port number, a range of ports, or a list of ports. If you do not specify a port, the filter is applied to all ports.
Dest	Specifies the destination interface for forwarded packets: ANY-LAN , ANY-WAN , or a specific LAN or WAN.
Address	 Specifies the destination IP address for incoming packets. If you do not specify an address, the filter is applied to all addresses. Specify the address in IPv4 or IPv6 format. The format for the source IP address and the destination IP address must match. To force either IPv4 or IPv6 version, enter a default address: For IPv4 0.0.0.0/0 For IPv6 ::/0
Port	Specifies the destination port number. You can enter a port number, a range of ports, or a list of ports. If you do not specify a port, the filter is applied to all ports.
Protocol	Specifies the protocol for incoming packets: tcp , udp , and icmp . If you do not specify a protocol, the filter is applied to all protocols.

GRE page

Use the GRE tunnel page to create or modify a GRE tunnel. You can configure up to 10 GRE tunnels.

Configuration options

Option	Description
Enable	Enables or disables the GRE tunnel. The default is disabled .
Description	Description for the GRE tunnel. Specify a string value up to 255 characters long.
IP Address	Specifies the IPv4 address for the GRE tunnel.
Subnet Mask	Specifies the subnet mask for the GRE IP address in IPv4 format.
Peer	Specifies the remote peer address for the GRE tunnel in IPv4 format.
Кеу	Specifies the key to use for the GRE tunnel, a 4-byte unsigned integer. Specify an integer from 0 to 4294967295. The default is no key.

Status display

Option	Description
Admin Status	Shows the current administrative status: Up or Down .
Oper Status	Shows the current operational status: Up or Down .
IP Address	Shows the IP address for the GRE tunnel.
Subnet Mask	Shows the subnet mask for the GRE IP address.
Peer	Shows the IP address for the GRE peer.
Key	Shows the key for the GRE tunnel.
Packets	Shows the number of received and sent packets for the GRE tunnel.
Bytes	Shows the number of received and sent bytes for the GRE tunnel.

Cellular locked pin page

A SIM card can be locked if any user tries to set an invalid PIN for the SIM card too many times. In addition, some cellular carriers require a SIM PIN to be added before the SIM card can be used. If the SIM card is locked, the TransPort device cannot make a cellular connection.

The show cellular command indicates whether a SIM card is set to a locked state. In the show cellular output, look for the fields **SIM1 PIN status**, **SIM2 PIN status**, and **SIM status**. For example:

📖 Command line

Unlocking a SIM card can be performed from the command line interface only.

1. To unlock the SIM card, use the unlock command to set a new PIN for the SIM card using the following command syntax:

unlock <sim1 | sim2> <puk code> <new sim pin>

Where:

<sim1 | sim2> indicates whether the SIM card to unlock is in the SIM1 or SIM2 SIM card slot.

<puk code> is the code to unlock the SIM card. The PUK code can be between 8 and 10 digits long.

<new sim pin> is the new PIN for the SIM card. This PIN can be between 4 and 8 digits long. Using this parameter changes the PIN for the SIM card to a new value.

For example:

To unlock a SIM card in SIM slot SIM **1** with PUK code **12345678**, and set the new SIM PIN to **1234**:

digi.router> unlock sim1 12345678 1234

When the command operations are complete, the unlock command displays one of the following messages to indicate the state of the SIM:

SIM \mathbf{x} is permanently locked and must be replaced.

The PUK code is invalid. You have ${\boldsymbol x}$ retries left before the SIM is permanently locked.

The new PIN has been set. Please use the "save config" command to save the new PIN to the configuration.

- 2. If the SIM remains in a locked state after using the unlock command, contact your cellular carrier.
- 3. Save the configuration.

digi.router> save config

Device preferences page

Use the Device preferences page to configure system settings.

Configuration options

Option	Description	
Name	The name of this device. Accepted value is any string up to 255 characters.	
Description	A description of this device. Accepted value is any string up to 255 characters.	
Contact	Contact information for this device. Accepted value is any string up to 255 characters.	
Location	The location of this device. Accepted value is any string up to 255 characters.	
Timezone	Sets the system timezone. By setting the time zone, the device displays the local time for that time zone and automatically adjusts for daylight saving time.	
Session timeout	The time, in seconds, after which a web or command-line interface session times out if there is no activity. Accepted value is any integer from 60 to 3600. The default value is 300 .	

Status display

Option	Description
Up time	Displays the amount of time the device has been up without interruption.
Firmware version	Shows the firmware version running on the device.

Option	Description
System time	Shows the system time and date.
CPU utilization	Shows the current percentage of CPU utilization.
Temperature	Shows the current device temperature in celsius.
Model	Shows the device model.
Part number	Shows the device part number.
Serial number	Shows the device serial number.
Hardware version	Shows the device hardware version.
Boot version	Shows the device boot version.

Interfaces—cellular page

Use the Cellular interface page to create and manage cellular interfaces.

Option	Description
Enable	Enables or disables the interface. The default is enabled .
Description	Description for the interface. Specify a string value up to 255 characters long.
APN	Specifies the Access Point Name (APN) for the cellular interface. Enter a string up to 63 characters long.
APN username	Specifies the username for the APN. Enter a string up to 63 characters long.
APN password	Specifies the password for the APN. Enter a string up to 128 characters long.
SIM pin	Specifies PIN to activate the SIM. The PIN is a number between 4 to 8 digits long. If no value is specified for this parameter, no PIN is needed to activate the SIM. Enter a string up to 64 characters long.
Preferred mode	Specifies the preferred mode for the cellular interface: Auto, 4G, 3G, or 2G. The default is Auto .
Connection attempts	Specifies the number of attempts to establish a cellular connection. After this number of attempts, the cellular module is power cycled, and the device attempts to make a cellular connection again. Enter an integer from 10 to 500. The default is 20 .

Interfaces—Ethernet page

Use the Ethernet interface page to manage Ethernet interfaces.

Option	Description	
Enable Enables or disables the interface. The default is enabled .		
Description	Description for the interface. Specify a string up to 255 characters long.	
Speed	Specifies the speed in Mbps for the Ethernet interface: Automatic, 10Mbps, 100Mbps, or 1000Mbps. The default is Automatic .	
Duplex	Specifies the duplex mode for the Ethernet interface: Automatic, Full, or Half. The default is Automatic .	

Interfaces—Wi-Fi page

Use the WiFi interface page to manage Wi-Fi interfaces.

Option	Description
Mode	Shows the mode for the Wi-Fi interface: Access Point.
SSID	Specifies the Service Set Identifier (SSID) for the Wi-Fi interface. You can configure the SSID to use the device's serial number by including the percent (%s) symbol in the SSID. For example, if you specify an SSID value LR54_%s resolves to LR54_LR123456 . Enter a string up to 32 characters long.
Security	Specifies the security type for the Wi-Fi interface: none, wpa2-personal, wpa-wpa2-personal, wpa2-enterprise, or wpa-wpa2-enterprise. The default is wpa2-personal .
Password	Specifies the password for the Wi-Fi interface. The password must be 8-63 ASCII or 64 hexadecimal characters. Enter a string up to 64 characters long.
Verify password	Re-enter the password for the WiFi interface. The text you enter must match the text you entered for Password .
Description	Description for the interface. Specify a string value up to 255 characters long.
Enable	Enables or disables the interface. The default is enabled .
Broadcase SSID	Enables or disables broadcasting the SSID in beacon packets. Disabling the SSID prevents clients from easily detecting the presence of this access point. The default value is Enabled .
Isolation client	Enables or disables Wi-Fi client isolation, which prevents clients connected to the Wi-Fi access point from communicating with each other. The default value is Enabled .
Isolation access point	Enables or disables clients on a Wi-Fi access point from communicating with clients on other Access Points. The default value is Enabled .

IPsec page

Use the IPsec page to configure IPsec tunnels. You can configure up to 32 tunnels.

Network options

Option	Description
Description	Description for the IPsec tunnel. Specify a string value up to 255 characters long.
Enable	Enables or disables the IPsec tunnel. The default is enabled .
IPsec pre-shared key	Specifies the preshared key for the IPsec tunnel. Enter a string up to 128 characters long.
Local IP network	Specifies the local network IP address for this IPsec tunnel. Enter an IPv4 address.
Local identifier	Specifies the local ID used for this IPsec tunnel. Enter a string up to 31 characters long.
Remote peer IP address or name	Specifies the remote peer for this IPsec tunnel. Enter a fully qualified domain name.
Remote IP network	Specifies the remote network IP address for this IPsec tunnel. Enter an IPv4 address.
Remote IP network mask	Specifies the remote network mask for this IPsec tunnel. Enter an IPv4 address.
Remote identifier	Specifies the remote ID used for this IPsec tunnel. Enter a string up to 31 characters long.

Encryption options

Option	Description
ESP encryption	Selects the ESP encryption type for IPsec tunnel. Select multiple values of aes128, aes192 and aes256. The default is aes128 .
ESP authentication	Selects the Encapsulating Security Payload (ESP) authentication type used for the IPsec tunnel. Select multiple values of sha1 and sha256. The default value sha1 .
ESP Diffie Hellman group	Selects the Encapsulating Security Payload (ESP) Diffie-Hellman group used for the IPsec tunnel. Select multiple values of none, group5, group14, group15 and group16. The default is group14 .

Negotiation options

Option	Description
Internet Key Exchange (IKE)	Selects the Internet Key Exchange (IKE) version to use for this IPsec tunnel. The default is 1 .
IKE negotiation mode	Selects the IKEv1 mode to use for this IPsec tunnel: main or aggressive. The default is main .
IKE encryption	Selects the IKE encryption type for this IPsec tunnel. Select multiple values of aes128, aes192 and aes256. The default is aes128 .
IKE authentication	Selects the IKE authentication type for this IPsec tunnel: sha1 or sha256. The default is sha1 .
IKE Diffie Hellman group	Selects the IKE Diffie-Hellman group for this IPsec tunnel. Diffie-Hellman is a public-key cryptography protocol for establishing a shared secret over an insecure communications channel. Diffie-Hellman is used with Internet Key Exchange (IKE) to establish the session keys that create a secure channel. Select multiple values of group5, group14, group15 and group16. The default is group14 .

Lifetime options

Option	Description
IPsec tunnel lifetime	e before renegotiation
Time threshold max (seconds)	Specifies the timeout, in seconds, for dead peer detection. Enter an integer from 1 to 3600. The default value is 3600 .
Data threshold max (bytes)	Specifies the dead peer detection transmit delay. Enter an integer from 1 to 3600. The default value is 0 .
IKE Lifetime before key renegotiation	
Time threshold max (seconds)	Specifies the lifetime for the IKE key, in seconds. Enter an integer from 180 to 4294967295. The default is 4800 .

Local Networks page

Use the Local Networks page to configure and manage local networks. For each local network, you can configure the following options.

Configuration options

Option	Description
Enable	Enables or disables the network. The default is disabled .
Interfaces	Specifies one or more physical interfaces for the LAN. The default is none .
Description	Specifies a description for the network. Enter a string up to 63 characters long.
IPv4	
IP address	Specifies the IPv4 address for the network.
Netmask	Specifies the netmask for IP address in IPv4 format. The default value is 255.255.25.0 .
DHCP server	
DHCP server	Enables or disables a DHCP server. The default is disabled .
IP start	Specifies the start IP address for the range of IP addresses the DHCP server issues to clients.
IP end	Specifies the end IP address for the range of IP addresses the DHCP server issues to clients.
Lease expires	Specifies the lease length, in minutes, issued by the DHCP server.
IPv6	
Enable IPv6	Enables or disables IPv6 addressing. The default is disabled .
Advanced	
MTU	Specifies the maximum Transmission Unit (MTU), or packet size, for packets sent over the LAN. Enter an integer from 128 to 1500. The default value is 1500 . For IPv6 addresses, the minimum MTU value must be 1280 .

Status display

Option	Description	
Interfaces	Shows the interfaces for the LAN.	
Admin status	Shows the administrative status for the LAN: Up or Down.	

Option	Description
Oper status	Shows the operational status for the LAN: Up or Down.
IPv4 address	Shows the IPv4 address for the LAN.
Netmask	Shows the IPv4 netmask for the LAN.
DHCP client	Shows the status of the DHCP client: On or Off.
IPv6	Shows whether IPv6 is enabled or disabled.
Packets	Shows packets received and sent on the LAN.
Bytes	Shows bytes received and sent on the LAN.

Log configuration page

Use the **Log configuration** page to configure options for event and system logs.

Event log options

Option	Description
Log level	Specifies the level for logs. The default is Informational . For a list of log levels, see Event log levels.
Log to file	Enable or disable saving the event log to a file on the device. The default is Disabled. Digi recommends that you do not download logs to your device unless instructed to do so by support services.
Log to Syslog	Specifies a syslog server on which to store event logs. By default, the event log is not saved on a syslog server.

System log options

Option	Description
Log to file	Enable or disable saving the system log to a file on the device. The default is Disabled. Digi recommends that you do not download logs to your device unless instructed to do so by support services.
Log to Syslog	Specifies a syslog server on which to store system logs. By default, the system log is not saved on a syslog server.

WARNING! Digi recommends that you do not download log files to your device. Keeping log files on your device during normal operations can cause unnecessary wear on the device flash memory.

Log viewer page

Use the **Log viewer** page to stream and download event and system logs.

Log viewer controls

Field/Button	Description
lacksquare	Stream entries from the event log, system log, or both.
0	Pause the stream of incoming log messages.
*	Download the event or system log files.
>>	Expand the event and system logs control panel to configure the number of recent messages to show. The default is 10 messages.
~	Collapse the expanded log viewer controls panel.

Message display

Field/Button	Description
	Indicates the message is from the event log.
ር ር	Indicates the message is from the system log.
Date	Timestamp for the log message.
Level	Log level for the message.
Source	Source device application that generated the message.
Message	Message text.
Find	Search or filter log messages. All fields in the message display are included in the search, such as the Date , Level , and so on. See Find and filter log file entries.

New GRE tunnel page

Use the **New GRE tunnel** page to configure a new GRE tunnel.

Configuration options

Option	Description
Select Tunnel	Specifies the number for the tunnel, an integer from 1 to 10. By default, tunnel numbers are assigned from 1 to 10 and the next available tunnel number is used.
Enable	Enables or disables the GRE tunnel. The default is enabled .
Description	Description for the GRE tunnel. Specify a string value up to 255 characters long.
IP Address	Specifies the IPv4 address for the GRE tunnel.
Subnet Mask	Specifies the subnet mask for the GRE IP address in IPv4 format.
Peer	Specifies the remote peer address for the GRE tunnel in IPv4 format.
Кеу	Specifies the key to use for the GRE tunnel, a 4-byte unsigned integer. Specify an integer from 0 to 4294967295. The default is no key.

Status display

Option	Description
Admin Status	Shows the current administrative status: Up or Down .
Oper Status	Shows the current operational status: Up or Down .
IP Address	Shows the IP address for the GRE tunnel.
Subnet Mask	Shows the subnet mask for the GRE IP address.
Peer	Shows the IP address for the GRE peer.
Key	Shows the key for the GRE tunnel.
Packets	Shows the number of received and sent packets for the GRE tunnel.
Bytes	Shows the number of received and sent bytes for the GRE tunnel.

New Wide Area Network (WAN) page

Use the New Wide Area Networks (WAN) page to configure a new WAN.

New WAN connection

Option	Description
Select WAN	Select an available index number for the new WAN.
Select interface	Select an available interface for the WAN.
Enable	Enable or disable the network. The default is Enabled .

Configuration options—cellular

Option	Description
Select WAN	Select an available index number for the new WAN.
Select interface	Select an available interface for the WAN.
Enable	Enable or disable the network. The default is Enabled .
IPv6	
Enable IPv6	Enable or disable IPv6 addressing. The default is disabled .
Requested prefix length	Specifies the length, in bits, of the IPv6 address prefix to request from the upstream router for this WAN. The size of the prefix determines how many LANs can support IPv6. Request a prefix length of 60 bits or less to support up to 16 LANs. Enter an integer from 48 to 64. The default value is 60 .
Security	
Allow HTTPS	Enable or disable HTTPS access for the WAN. The default is Disabled .
All SSH	Enable or disable SSH access for the WAN. The default is Disabled .
Probing	
Probe host	Specifies the IPv4 or fully qualified domain name (FQDN) of the address of the device itself. The WAN failover feature sends probe packets over the WAN to the IP address of this device. Value should be a fully qualified domain name.
Probe interval	Specifies the interval, in seconds, between sending probe packets. The value for must be larger than the Probe timeout value. If not, the WAN failover configuration is considered invalid, and an error message is written to the system log. Accepted value is any integer from 2 to 3600. The default value is 60 .

Option	Description
Probe size	Specifies the size of probe packets sent to detect WAN failures. Accepted value is any integer from 64 to 1500. The default value is 64 .
Probe timeout	Specifies the timeout, in seconds, to wait for a response to a probe. The value for this parameter must be smaller than the Probe interval and timeout parameter values or the configuration is considered invalid, and an error message is written to the system log. Accepted value is any integer from 1 to 60. The default value is 5 .
Activate after	Specifies the time, in seconds, that the primary interface needs to be up before switching back to it as the active interface. If probing is active, no probes are permitted to be lost during this period. Otherwise, the timer is restarted. Accepted value is any integer from 0 to 3600. The default value is 0 .
Retry after	Specifies the time, in seconds, to wait before retrying this interface after failing over to a lower priority one. Use a large retry timeout when both interfaces are cellular interfaces. Accepted value is any integer from 10 to 3600. The default value is 180 .
Timeout	Specifies the time, in seconds, to wait for the physical interface to connect and to receive a probe response before failing over to a lower priority interface. Accepted value is any integer from 10 to 3600. The default value is 180 .

Configuration options—Ethernet

Option	Description
Enable	Enable or disable the network. The default is Enabled .
IPv4	
Configure using	Specifies configuration method: Manually or DHCP. The default is DHCP .
IP address	For manually configured WAN only. Specifies the IPv4 address for the WAN.
Netmask	For manually configured WAN only. Specifies the IPv4 netmask for the WAN.
Gateway	For manually configured WAN only. Specifies the IPv4 gateway address for the WAN.
DNS1	For manually configured WAN only. Specifies the IPv4 address for the primary DNS server.
DNS2	For manually configured WAN only. Specifies the IPv4 address for the secondary DNS server.
IPv6	
Enable IPv6	Enable or disable IPv6 addressing. The default is disabled .
Requested prefix length	Specifies the length, in bits, of the IPv6 address prefix to request from the upstream router for this WAN. The size of the prefix determines how many LANs can support IPv6. Request a prefix length of 60 bits or less to support up to 16 LANs. Enter an integer from 48 to 64. The default value is 60 .

Option	Description
Security	
Allow HTTPS	Enable or disable HTTPS access for the WAN. The default is Disabled .
Allow SSH	Enable or disable SSH access for the WAN. The default is Disabled .
Probing	
Probe host	Specifies the IPv4 or fully qualified domain name (FQDN) of the address of the device itself. The WAN failover feature sends probe packets over the WAN to the IP address of this device. Value should be a fully qualified domain name.
Probe interval	Specifies the interval, in seconds, between sending probe packets. The value for must be larger than the Probe timeout value. If not, the WAN failover configuration is considered invalid, and an error message is written to the system log. Accepted value is any integer from 2 to 3600. The default value is 60 .
Probe size	Specifies the size of probe packets sent to detect WAN failures. Accepted value is any integer from 64 to 1500. The default value is 64 .
Probe timeout	Specifies the timeout, in seconds, to wait for a response to a probe. The value for this parameter must be smaller than the Probe interval and timeout parameter values or the configuration is considered invalid, and an error message is written to the system log. Accepted value is any integer from 1 to 60. The default value is 5 .
Activate after	Specifies the time, in seconds, that the primary interface needs to be up before switching back to it as the active interface. If probing is active, no probes are permitted to be lost during this period. Otherwise, the timer is restarted. Accepted value is any integer from 0 to 3600. The default value is 0 .
Retry after	Specifies the time, in seconds, to wait before retrying this interface after failing over to a lower priority one. Use a large retry timeout when both interfaces are cellular interfaces. Accepted value is any integer from 10 to 3600. The default value is 180 .
Timeout	Specifies the time, in seconds, to wait for the physical interface to connect and to receive a probe response before failing over to a lower priority interface. Accepted value is any integer from 10 to 3600. The default value is 180 .

Status display

Option	Description
Interface	Shows the interface for the WAN.
Admin status	Shows the administrative status for the WAN: Up or Down.
Oper status	Shows the operational status for the WAN: Up or Down.
IP address	Shows the IP address for the WAN.
Netmask	Shows the Netmask for the WAN.
Gateway	Shows the Gateway for the WAN.

Option	Description
DNS servers	Shows the DNS servers for the WAN.
IPv6	Shows whether IPv6 is enabled or disabled for the WAN.
Packets	Shows the number of received and sent packets for the WAN.
Bytes	Shows the number of received and sent bytes for the WAN.

OpenVPN client page

Use the OpenVPN client page to set up OpenVPN clients.

Connection options

Option	Description
Enable	Enables or disables the OpenVPN client connection. The default is disabled .
Description	Description for the OpenVPN client. Specify a string value up to 255 characters long.
Port	Port number to which this OpenVPN client attempts to connect. Enter an integer from 1 to 65535 . The default is 1194 .
Protocol	Protocol that this OpenVPN client uses to connect: UDP or TCP . The default is UDP .
Logging Level	Specifies the level of output this OpenVPN client records in the system log. Specify an integer from 0 to 4. The default is 0 .

Network options

Option	Description
Server	IP address or fully-qualified domain name of the OpenVPN server to which this OpenVPN client attempts to connect. This option is required.
Pull Routes	Enables or disables the OpenVPN client to accept routes that are pushed from the OpenVPN server. The default is enabled .
NAT	Enables or disables Network Address Translation (NAT) for outgoing packets on the OpenVPN client network interface. Note that the OpenVPN client uses NAT only if the Bridge mode is disabled. The default is enabled .
Bridge Mode	Specify a LAN as an Ethernet bridge (TAP) for this OpenVPN client or disable Bridge mode.
	Note Although using Bridge mode eliminates the need for routing between networks (required by TUN mode), Bridge mode can cause scalability issues since all broadcast traffic flows over the OpenVPN tunnel.
	The default is Off .

Encryption options

Option	Description
Cipher	Encryption algorithm or list of algorithms the OpenVPN client can use to encrypt and decrypt data channel packets. The OpenVPN client accepts the cipher pushed by the server if it is in this list. If the OpenVPN server supports cipher negotiation, the OpenVPN client can accept additional ciphers that are not in this list. Select one or more ciphers: aes-128-cbc , aes-192-cbc , aes-256-cbc , aes-128-gcm , and aes-256-gcm . The default is aes-256-gcm , aes-128-cbc .
Digest	Digest algorithm the OpenVPN client uses to sign and authenticate data channel packets. Select one of the following: sha1 , sha224 , sha256 , sha384 , or sha512 . The default is sha1 .

Authentication options

Option	Description
Certificate Authority (CA) certificate	CA certificate file this OpenVPN client uses to validate the certificate presented by the server. See Certificate and key management.
Certificate Revocation List (CRL) file	CRL file this OpenVPN client uses to prevent connection to a server that presents a revoked certificate.
CA/CRL directory path (capath)	CA and CRL directory path for this OpenVPN client. You provide multiple CA and CRL files. Use the c_rehash tool to create CA certificates with a .0 filename extension and CRLs with a .r0 filename extension.
Certificate	Public certificate file for this OpenVPN client. The file is in PEM format.
Private Key File	Private key file for this OpenVPN client. The file is in PEM format.
Username	Username the OpenVPN client uses to authenticate with the OpenVPN server. A username is a string up to 32 characters long.
Password	Password the OpenVPN client uses to authenticate with the OpenVPN server. A password is a string up to 128 characters long.
Confirm Password	A string of up to 128 characters long that should exactly match the value used for the password parameter.

Lifetime options

Option	Description
Connect	Number of seconds to wait between connection attempts. After five 5 unsuccessful attempts, the wait time is doubled for each subsequent connection attempt, up to a maximum wait time of 300 seconds.
Retry	Accepted value is any integer from 1 to 60 . The default value is 5 .

OpenVPN route management page

User the OpenVPN route management page to manage routes for OpenVPN servers.

Route options

Option	Description
Description	Description for the OpenVPN route. Users cannot modify this description. It will always be Route1 , Route2 , etc.
Destination	IP address in IPv4 format for the destination.
Mask	Mask for the destination address in IPv4 format. The default is 255.255.255.0 .

OpenVPN server page

Use the OpenVPN server page to configure and display an OpenVPN server.

Connection options

Option	Description
Enable	Enables or disables the OpenVPN server. The default is disabled .
Description	Description for the OpenVPN server. Specify a string value up to 255 characters long.
Port	Port number to which this OpenVPN server attempts to connect. Enter an integer from 1 to 65535 . The default is 1194 .
Protocol	Protocol that this OpenVPN server uses to connect: UDP or TCP . T lhe default is UDP .
Compression	Compression algorithm this OpenVPN server uses to compress data channel packets: off, lzo, or lz4. The default is off .
Logging level	Specifies the level of output this OpenVPN server records in the system log. Specify an integer from 0 to 4. The default is 0 .

Network options

Option	Description
Network	If Bridge mode is disabled, specifies the IP address in IPv4 format of the local network for this OpenVPN tunnel. The value typically ends with .0 to match the subnet mask.
Mask	If Bridge mode is disabled, specifies the local subnet for this OpenVPN tunnel in IPv4 format. The default is 255.255.25.0 .
Bridge Mode	Specify a LAN as an Ethernet bridge (TAP) for this OpenVPN server or disable bridge mode.
	Note Although using bridge mode eliminates the need for routing between networks (required by TUN mode), bridge mode can cause scalability issues since all broadcast traffic flows over the OpenVPN tunnel.
	The default is Off .
Topology	Network topology this OpenVPN server uses to assign IP addresses to OpenVPN clients. This value is used only if Bridge mode is disabled. Select one of the following values: net30 , p2p , or subnet . The default is net30 .
Primary DNS	IP address in IPv4 format of the primary DNS server. This value is pushed to OpenVPN clients if Bridge mode is disabled.
Secondary DNS	IP address in IPv4 format of the secondary DNS server. This value is pushed to OpenVPN clients if Bridge mode is off.

Encryption options

Option	Description
Cipher	Encryption algorithm or list of algorithms the OpenVPN server can use to encrypt and decrypt data channel packets. The OpenVPN server pushes the first cipher in the list to OpenVPN clients that support cipher negotiation. OpenVPN clients that do not support cipher negotiation can connect using any cipher in this list. Select one or more ciphers: aes-128-cbc , aes-192-cbc , aes-256-cbc , aes-128-gcm , aes-192-gcm , and aes-256-gcm . The default is aes-256-gcm , aes-192-gcm , aes-192-cbc .
Digest	Digest algorithm the OpenVPN server uses to sign and authenticate data channel packets. Select one of the following: sha1 , sha224 , sha256 , sha384 , or sha512 . The default is sha1 .

Authentication options

Option	Description
Certificate Authority (CA) certificate	Certificate file this OpenVPN server uses to validate the certificate presented by the clients. See Certificate and key management.
Certificate Revocation List (CRL) file	CRL file this OpenVPN server uses to prevent connection to a client that presents a revoked certificate.
CA/CRL directory path (capath)	CA and CRL directory path for this OpenVPN server. You can provide multiple CA and CRL files. Use the c_rehash tool to create CA certificates with a .0 filename extension and CRLs with a .r0 filename extension. See rehash for details.
Diffie-Hellman file	Diffie-Hellman parameters this OpenVPN server uses for shared secret generation. This file is in PEM format.
Certificate	Public certificate file for this OpenVPN server. The file is in PEM format.
Private Key File	Private key file for this OpenVPN server. The file is in PEM format.
Authenticate By	Configures authentication to use username and password , certificates , or both . The default is certificates .
Radius Server State	Enables or disables the Radius server. The default is disabled .
Radius Server	IP address in IPv4 format for the RADIUS server for OpenVPN.
Radius Server Port	Port for the RADIUS server. Specify an integer from 1 to 65535 . The default is 1812 .
Radius Server Secret	Secret for the RADIUS server. Specify a string up to 64 characters long.

Lifetime options

Option	Description	
OpenVPN Keep	OpenVPN Keepalive	
Keepalive Interval (Seconds)	Specifies the interval at which to send a ping message if no other traffic is sent in either direction between the OpenVPN client and server. This value is also pushed to the client. To disable the ping-based keepalive mechanism, set this parameter to 0 . The default is 30 .	
Keepalive Timeout (Seconds)	Specifies the amount of time at which to restart the OpenVPN tunnel if no traffic is detected. This value should be five to six times as large as the Keepalive interval . This value is doubled before it is set on the server. This value is also pushed to the client. To disable the ping-based keepalive mechanism, set this parameter to 0 . Specify an integer from 0 to 3600 . The default is 150 .	
OpenVPN Rene	gotiation	
Time Until Tunnel Renegotiation (seconds)	Number of seconds before the data channel encryption key is renegotiated. Specify an integer from 60 to 86400 . The default is 3600 .	
Bytes Until Tunnel Renegotiation	Number of bytes sent/received before the data channel encryption key is renegotiated. To disable data channel encryption key renegotiation, set this parameter to 0 . Specify an integer from 0 to 4000000000 . The default is 0 .	

OpenVPN user management page

Use the OpenVPN user management page to add, edit, and delete VPN users.

Configuration options

Option	Description
Username	Username for OpenVPN user. Specify a string up to 32 characters long.
Password	Password for OpenVPN user. Specify a string up to 128 characters long.
Confirm password	Re-enter the password for the OpenVPN user.

Port forwarding page

Use the Port forwarding page to configure and view port forwarding rules. Each port forwarding rule automatically maps and forwards an external request for a port on a WAN to an IP address and port on an internal LAN. In this way, users can access servers on a private network when they are not directly connected to the private network.

For a port forwarding rule to be applied, you must configure **From Port** and **To IP Address**, and set the rule to **Enabled**. You can configure a maximum of 30 port forwarding rules.

Configuration options

Each port forwarding rule shows the following fields:

Option	Description
Enabled	Enables or disables the port forwarding rule. The default is enabled .
	Note Invalid rules are not applied.
Description	Description for the rule. Specify a string value up to 255 characters long.
From Port	 Port or ports to forward packets from. A port is an integer value from 0 to 65535. The default is 0. Specify a single port, a list of ports, or a range of ports: To specify a list of ports, use a comma (,) to separate the ports in the list. For example: 443,22,31. To specify a range of ports, use a colon (:) to separate the low and high ports in the range. For example: 22:31.
Source	Source WAN or LAN of incoming traffic to be forwarded. Select Any, Any-LAN, Any-WAN, or an available LAN or WAN. The default is Any .
Protocol	Protocol to which the rule applies: UDP , TCP , or UDP and TCP . The default is TCP .
To IP address	IP address in IPv4 format that packets are forwarded to.
To Port	Port to forward packets to. A port is an integer value from 0 to 65535 . Enter a port number or the Use from port(s) option to map the ports specified by From Port as the To Port . The default is Use from port(s) .

Python autostart page

Use the Python autostart page to set up Python files to be executed when the device reboots.

Option	Description
Enable	Enables or disables Python file for autostart. The default is disabled .
Filepath	Specifies the Python file to run when the device reboots. Files are run in the order listed.

Option	Description
Args	Specifies arguments to pass to the Python script.
On exit	Specifies the action to take when the script completes. Select None, Restart, or Reboot. the default is None .

Quality of Service (QoS) queues page

Use the Quality of Services (QoS) queues page to manage QoS queues.

Configuration options

Configure from one to eight QoS queues using the eight tabs in the Queues panel. Queue 1 has the highest priority; queue 2 has second-highest priority, queue 3 has third-highest priority, and so on up to queue 8 which has the lowest priority.

Field/Button	Description
Enabled	Enables or disables the QoS queue. The default is disabled .
Description	Specifies a description for the QoS queue that displays as the tab label for the queue. Specify a string value up to 255 characters long.
Bandwidth upstream	Specifies the amount of bandwidth this queue can use in Kbps or Mbps. For Kbps, enter an integer from 0 to 1000000; for Mbps, enter an integer from 1 to 1000. The default is 0 .
Borrow upstream	Enables (allows) or disables (prohibits) additional bandwidth for this queue if any unused bandwidth is available. The default is enabled .
Tag packet (DSCP)	Tags packets with a specified Differentiated Services Code Point (DSCP). Select a value from the drop-down list. The default is do not set ; that is, do not tag packets.

QoS filters

Field/Button	Description
Enabled	Enables or disables the QoS filter. For a new filter, the default is enabled .
Description	Specifies a description for the QoS filter. Specify a string value up to 255 characters long.
Queue	Specifies the queue number to associate with the QoS filter. Specify an integer from 1 to 8, corresponding to queue 1, queue 2, queue 3, and so on. The default is 0 or the current queue being edited.
Protocol	Specifies the protocols for incoming packets. Select one or more specific protocols from the drop-down or select any to include all protocols. The default is any .
Src	Specifies the source LAN or LANs of incoming packets. Select a specific LAN from the drop-down list or specify any to include all LANs. The default is any .
Src IP	Specifies the IPv4 or IPv6 source address of incoming packets. Use a simple IPv4 or IPv6 address or use CIDR notation. For example, 192.168.100.0/24, fe80::/10.

Field/Button	Description
Src port	 Specifies the port or ports for incoming packets. A port is an integer value from 0 to 65535. Specify a single port, a list of ports, or a range of ports: To specify a list of ports, use a comma (,) to separate the ports in the list. For example: 443,22,31. To specify a range of ports, use a colon (:) to separate the low and high ports in the range. For example: 22:31. The default is 0.
Dst IP	Specifies the IPv4 or IPv6 destination address of outgoing packets. Use a simple IPv4 or IPv6 address or use CIDR notation. For example, 192.168.100.0/24, fe80::/10.
Dst port	 Specifies the port or ports for outgoing packets. A port is an integer value from 0 to 65535. Specify a single port, a list of ports, or a range of ports: To specify a list of ports, use a comma (,) to separate the ports in the list. For example: 443,22,31. To specify a range of ports, use a colon (:) to separate the low and high ports in the range. For example: 22:31. The default is 0.
DSCP	Specifies one or more DSCP tags to filter incoming packets. Select one or more DSCP categories or any. The default is any .

Quality of Service (QoS) WANs page

Use the Quality of Services (QoS) WANs page to enable QoS for a configured WAN.

Configuration options

Field/Button	Description
Interface	Displays the interface for the configured WAN.
Enable QoS	Enables or disables Quality of Service (QoS) on this WAN interface. The default is disabled .
Bandwidth upstream	Sets the upstream bandwidth of the WAN interface in Kbps or Mbps. For Kbps, enter an integer from 1 to 1000000; for Mbps, enter an integer from 1 to 1000. The default is 1000 Mbps .

RADIUS page

Use the RADIUS server page to create or modify RADIUS servers.

Settings options

Option	Description
Enable	Enable or disable RADIUS authentication for system administrators. The value is either on or off . The default is off .
NAS ID	A unique identifier for this network access server (NAS). You can use the fully- qualified domain name of the NAS or any arbitrary string. The accepted value is any string up to 64 characters. If left blank, the default value of sshd is sent out.
Local Auth Fallback	Determines whether to use local authentication if the RADIUS server does not respond before the timeout expires. The value is either on or off . The default value is on .
Debug	Enable or disable additional debug messages from the RADIUS client. These messages are added to the system log. The value is either on or off . The default value is off .

Primary Server Settings

Option	Description
Primary Server	The IP address or fully-qualified domain name of the RADIUS server to use to authenticate system administrators. The value should be a fully qualified domain name.

Option	Description
Primary Server Port	The UDP port number for the RADIUS server. The accepted value is any integer from 1 to 65535 . The default value is 1812 .
Primary Server Secret	The shared secret for the RADIUS server. The secret cannot contain spaces. The accepted value is any string up to 64 characters.
Primary Server Timeout	The amount of time in seconds to wait for the RADIUS server to respond. The accepted value is any integer from 1 to 10 . The default value is 3 .

Backup Server Settings

Option	Description
Backup Server	The IP address or fully-qualified domain name of the backup RADIUS server to use to authenticate system administrators when the main RADIUS server is not available. The value should be a fully qualified domain name.
Backup Server Port	The UDP port number for the backup RADIUS server. The accepted value is any integer from 1 to 65535 . The default value is 1812 .
Backup Server Secret	The shared secret for the backup RADIUS server. The secret cannot contain spaces. The accepted value is any string up to 64 characters.
Backup Server Timeout	The amount of time in seconds to wait for the backup RADIUS server to respond. The accepted value is any integer from 1 to 10 . The default value is 3 .

Digi Remote Manager page

Use the Digi Remote Manager page to configure the TransPort device connection to Digi Remote Manager. For information on Digi Remote Manager, see Digi Remote Manager.

Administration options

Option	Description
Enable	Enables or disables connection to Digi Remote Manager for this device. The default is disabled .
Ethernet keepalive	Specifies the Ethernet keepalive timeout in seconds. Enter an integer from 10 to 7200. The default is 60 .
Cellular keepalive	Specifies the cellular keepalive timeout in seconds. Enter an integer from 10 to 7200. The default is 290 .
Keepalive count	Specifies the number of times a keepalive message is missed before the Remote Manager connection is dropped. Enter an integer from 2 to 10. The default is 3 .
Reconnect delay	Specifies the the time, in seconds, between the device's attempts to connect to Digi Remote Manager. Enter an integer from 10 to 3600. The default is 30 .

Register device

Option	Description
Username	Specifies the Digi Remote Manager username.
Password	Specifies the password for the Digi Remote Manager user.

Status display

Option	Description	
Status	Shows the current Digi Remote Manager status: Connected or Disconnected.	
Up time	me Shows the amount of time the device has been connected to Digi Remote Manager.	
Device ID	Shows the Digi Remote Manager ID for the device.	

Syslog server configuration page

Use the **Syslog server configuration** page to configure syslogs for storing event and system logs. You can configure up to two syslog servers.

Configuration options

Option	Description
Server	Specify the IP address for the server.
Port	Specify the listening port for the server. The default is port 514 .
Mode	Specify the mode for syslog traffic: UDP or TCP. The default is UDP .

User Management page

Use the User management page to create and edit TransPort users.

Note You cannot edit the current active user.

Option	Description
Username	Specifies the username for the user. Usernames are case-insensitive strings that must start with a letter or underscore (_), but can contain letters, digits, underscores (_), and hyphens (-). In addition, a username can end with a dollar sign (\$). No other characters are allowed. Enter a string up to 32 characters long.
Access	Specifies the user access control for the user: Read-only, Read-write, or Super. The default is Super .
Password	Specifies the password for the user. A password can be any string up to 128 characters long.
Confirm password	Re-enter the password for the user. The value you enter for Confirm password must match the Password value.

VRRP page

Use the VRRP page to create or modify the VRRP protocol.

Configuration parameters

Option	Description
State	Enable or disable Virtual Router Redundancy Protocol (VRRP). The value is either on or off . The default value is off .
Interface	The LAN interface on which to run VRRP. The accepted values can be one of the following: LAN1, LAN2, LAN3, LAN4, LAN5, LAN6, LAN7, LAN8, LAN9, or LAN10. The default value is LAN1.
Router ID	The ID of the VRRP virtual router. The accepted value is any integer from 1 to 255 . The default value is 1 .
Interval	The time in seconds between VRRP advertisement packets. All of the routers in the VRRP group should use the same interval. The accepted value is any integer from 1 to 60 . The default value is 1 .
Initial State	The initial VRRP state of this router when it is enabled. The accepted value is either backup or master . The default value is backup .

Option	Description
IP Address	The virtual IP address assigned to the VRRP virtual router. Each client on the LAN should use this address as the default gateway. Typically, the DHCP server distributes this address to each client. The value should be an IPv4 address.
Priority	The VRRP priority of this router. The accepted value is any integer from 1 to 255 . The default value is 100 .

Status

Option	Description
State	Specifies whether the VRRP daemon is configured to be running.
Interface	Displays the current interface being used by the VRRP daemon.
Current VRRP State	The state of the VRRP daemon on this router.
Current VRRP Priority	The current VRRP priority of this router.
Last Transition	The most recent date this router transitioned between VRRP states.
Became Master	The total number of times this router has transitioned into the VRRP master state.
Released Master	The total number of times this router has transitioned out of the VRRP master state.
Adverts Sent	The total number of VRRP advertisements sent by this router.
Adverts Received	The total number of VRRP advertisements received by this router.
Priority Zero Sent	The total number of VRRP packets with a priority of '0' sent by this router.
Priority Zero Received	The total number of VRRP packets with a priority of '0' received by this router.

Wide Area Network (WAN) page—Cellular

Use the Wide Area Networks (WAN) page to configure and manage WANs.

Configuration options-cellular

Option	Description
Enable	Enables or disables the network. The default is Enabled .
IPv6	
Enable IPv6	Enables or disables IPv6 addressing. The default is disabled .
Requested prefix length	Specifies the length, in bits, of the IPv6 address prefix to request from the upstream router for this WAN. The size of the prefix determines how many LANs can support IPv6. Request a prefix length of 60 bits or less to support up to 16 LANs. Enter an integer from 48 to 64. The default value is 60 .
Security	
Allow HTTPS	Enables or disables HTTPS access for the WAN. The default is Disabled .
All SSH	Enables or disables SSH access for the WAN. The default is Disabled.
Probing	
Probe host	Specifies the IPv4 or fully qualified domain name (FQDN) of the address of the device itself. The WAN failover feature sends probe packets over the WAN to the IP address of this device. Value should be a fully qualified domain name.
Probe interval	Specifies the interval, in seconds, between sending probe packets. The value for must be larger than the Probe timeout value. If not, the WAN failover configuration is considered invalid, and an error message is written to the system log. Accepted value is any integer from 2 to 3600. The default value is 60 .
Probe size	Specifies the size of probe packets sent to detect WAN failures. Accepted value is any integer from 64 to 1500. The default value is 64 .
Probe timeout	Specifies the timeout, in seconds, to wait for a response to a probe. The value for this parameter must be smaller than the Probe interval and timeout parameter values or the configuration is considered invalid, and an error message is written to the system log. Accepted value is any integer from 1 to 60. The default value is 5 .
Activate after	Specifies the time, in seconds, that the primary interface needs to be up before switching back to it as the active interface. If probing is active, no probes are permitted to be lost during this period. Otherwise, the timer is restarted. Accepted value is any integer from 0 to 3600. The default value is 0 .
Retry after	Specifies the time, in seconds, to wait before retrying this interface after failing over to a lower priority one. Use a large retry timeout when both interfaces are cellular interfaces. Accepted value is any integer from 10 to 3600. The default value is 180 .

Option	Description
Timeout	Specifies the time, in seconds, to wait for the physical interface to connect and to receive a probe response before failing over to a lower priority interface. Accepted value is any integer from 10 to 3600. The default value is 180 .

Status display

Option	Description
Interface	Shows the interface for the WAN.
Admin status	Shows the administrative status for the WAN: Up or Down.
Oper status	Shows the operational status for the WAN: Up or Down.
IP address	Shows the IP address for the WAN.
Netmask	Shows the Netmask for the WAN.
Gateway	Shows the Gateway for the WAN.
DNS servers	Shows the DNS servers for the WAN.
IPv6	Shows whether IPv6 is enabled or disabled for the WAN.
Packets	Shows the number of received and sent packets for the WAN.
Bytes	Shows the number of received and sent bytes for the WAN.

Wide Area Network (WAN) page—Ethernet

Use the Wide Area Networks (WAN) page to configure and manage WANs.

Configuration options—Ethernet

Option	Description
Enable	Enables or disables the network. The default is Enabled .
IPv4	
Configure using	Specifies configuration method: Manually or DHCP. The default is DHCP .
IP address	For manually configured WAN only. Specifies the IPv4 address for the WAN.
Netmask	For manually configured WAN only. Specifies the IPv4 netmask for the WAN.
Gateway	For manually configured WAN only. Specifies the IPv4 gateway address for the WAN.
DNS1	For manually configured WAN only. Specifies the IPv4 address for the primary DNS server.
DNS2	For manually configured WAN only. Specifies the IPv4 address for the secondary DNS server.
IPv6	
EnableEnables or disables IPv6 addressing. The default is disabled.IPv6	
Requested prefix length	Specifies the length, in bits, of the IPv6 address prefix to request from the upstream router for this WAN. The size of the prefix determines how many LANs can support IPv6. Request a prefix length of 60 bits or less to support up to 16 LANs. Enter an integer from 48 to 64. The default value is 60 .
Security	
Allow HTTPS	Enables or disables HTTPS access for the WAN. The default is Disabled .
Allow SSH	Enables or disables SSH access for the WAN. The default is Disabled.
Probing	
Probe hostSpecifies the IPv4 or fully qualified domain name (FQDN) of the address or itself. The WAN failover feature sends probe packets over the WAN to the this device. Value should be a fully qualified domain name.	
Probe interval	Specifies the interval, in seconds, between sending probe packets. The value for must be larger than the Probe timeout value. If not, the WAN failover configuration is considered invalid, and an error message is written to the system log. Accepted value is any integer from 2 to 3600. The default value is 60 .

Option	Description
Probe size	Specifies the size of probe packets sent to detect WAN failures. Accepted value is any integer from 64 to 1500. The default value is 64 .
Probe timeout	Specifies the timeout, in seconds, to wait for a response to a probe. The value for this parameter must be smaller than the Probe interval and timeout parameter values or the configuration is considered invalid, and an error message is written to the system log. Accepted value is any integer from 1 to 60. The default value is 5 .
Activate after	Specifies the time, in seconds, that the primary interface needs to be up before switching back to it as the active interface. If probing is active, no probes are permitted to be lost during this period. Otherwise, the timer is restarted. Accepted value is any integer from 0 to 3600. The default value is 0 .
Retry after	Specifies the time, in seconds, to wait before retrying this interface after failing over to a lower priority one. Use a large retry timeout when both interfaces are cellular interfaces. Accepted value is any integer from 10 to 3600. The default value is 180 .
Timeout Specifies the time, in seconds, to wait for the physical interface to connect and receive a probe response before failing over to a lower priority interface. Accept value is any integer from 10 to 3600. The default value is 180 .	

Status display

Option	Description
Interface	Shows the interface for the WAN.
Admin status	Shows the administrative status for the WAN: Up or Down.
Oper status	Shows the operational status for the WAN: Up or Down.
IP address	Shows the IP address for the WAN.
Netmask	Shows the Netmask for the WAN.
Gateway	Shows the Gateway for the WAN.
DNS servers	Shows the DNS servers for the WAN.
IPv6	Shows whether IPv6 is enabled or disabled for the WAN.
Packets	Shows the number of received and sent packets for the WAN.
Bytes	Shows the number of received and sent bytes for the WAN.

Wide Area Network (WAN) page

Use the Wide Area Networks (WAN) page to configure and manage WANs.

Configuration options-cellular

Option	Description		
Enable	Enables or disables the network. The default is Enabled .		
IPv6			
Enable IPv6	Enables or disables IPv6 addressing. The default is disabled .		
Requested prefix length	Specifies the length, in bits, of the IPv6 address prefix to request from the upstream router for this WAN. The size of the prefix determines how many LANs can support IPv6. Request a prefix length of 60 bits or less to support up to 16 LANs. Enter an integer from 48 to 64. The default value is 60 .		
Security			
Allow HTTPS	Enables or disables HTTPS access for the WAN. The default is Disabled .		
All SSH	Enables or disables SSH access for the WAN. The default is Disabled.		
Probing			
Probe hostSpecifies the IPv4 or fully qualified domain name (FQDN) of the address itself. The WAN failover feature sends probe packets over the WAN to th this device. Value should be a fully qualified domain name.			
Probe interval	Specifies the interval, in seconds, between sending probe packets. The value for must be larger than the Probe timeout value. If not, the WAN failover configuration is considered invalid, and an error message is written to the system log. Accepted value is any integer from 2 to 3600. The default value is 60 .		
Probe sizeSpecifies the size of probe packets sent to detect WAN failures. Accepted value integer from 64 to 1500. The default value is 64.Probe timeoutSpecifies the timeout, in seconds, to wait for a response to a probe. The value parameter must be smaller than the Probe interval and timeout parameter value integer from 1 to 60. The default value is 5.Activate afterSpecifies the time, in seconds, that the primary interface needs to be up before switching back to it as the active interface. If probing is active, no probes are 			
		Retry after	Specifies the time, in seconds, to wait before retrying this interface after failing over to a lower priority one. Use a large retry timeout when both interfaces are cellular interfaces. Accepted value is any integer from 10 to 3600. The default value is 180 .

	Option	Description
-	Timeout	Specifies the time, in seconds, to wait for the physical interface to connect and to receive a probe response before failing over to a lower priority interface. Accepted value is any integer from 10 to 3600. The default value is 180 .

Configuration options—Ethernet

Option	Description	
Enable	Enables or disables the network. The default is Enabled .	
IPv4		
Configure using	Specifies configuration method: Manually or DHCP. The default is DHCP .	
IP address	For manually configured WAN only. Specifies the IPv4 address for the WAN.	
Netmask	For manually configured WAN only. Specifies the IPv4 netmask for the WAN.	
Gateway	For manually configured WAN only. Specifies the IPv4 gateway address for the WAN.	
DNS1	For manually configured WAN only. Specifies the IPv4 address for the primary DNS server.	
DNS2	For manually configured WAN only. Specifies the IPv4 address for the secondary DNS server.	
IPv6		
Enable IPv6	Enables or disables IPv6 addressing. The default is disabled .	
Requested prefix length	Specifies the length, in bits, of the IPv6 address prefix to request from the upstream router for this WAN. The size of the prefix determines how many LANs can support IPv6. Request a prefix length of 60 bits or less to support up to 16 LANs. Enter an integer from 48 to 64. The default value is 60 .	
Security		
Allow HTTPS	Enables or disables HTTPS access for the WAN. The default is Disabled .	
Allow SSH	Enables or disables SSH access for the WAN. The default is Disabled.	
Probing		
Probe hostSpecifies the IPv4 or fully qualified domain name (FQDN) of the address of itself. The WAN failover feature sends probe packets over the WAN to the IP this device. Value should be a fully qualified domain name.Probe intervalSpecifies the interval, in seconds, between sending probe packets. The value be larger than the Probe timeout value. If not, the WAN failover configurati considered invalid, and an error message is written to the system log. Accel is any integer from 2 to 3600. The default value is 60 .		

Option	Description
Probe size	Specifies the size of probe packets sent to detect WAN failures. Accepted value is any integer from 64 to 1500. The default value is 64 .
Probe timeout	Specifies the timeout, in seconds, to wait for a response to a probe. The value for this parameter must be smaller than the Probe interval and timeout parameter values or the configuration is considered invalid, and an error message is written to the system log. Accepted value is any integer from 1 to 60. The default value is 5 .
Activate after	Specifies the time, in seconds, that the primary interface needs to be up before switching back to it as the active interface. If probing is active, no probes are permitted to be lost during this period. Otherwise, the timer is restarted. Accepted value is any integer from 0 to 3600. The default value is 0 .
Retry after	Specifies the time, in seconds, to wait before retrying this interface after failing over to a lower priority one. Use a large retry timeout when both interfaces are cellular interfaces. Accepted value is any integer from 10 to 3600. The default value is 180 .
Timeout	Specifies the time, in seconds, to wait for the physical interface to connect and to receive a probe response before failing over to a lower priority interface. Accepted value is any integer from 10 to 3600. The default value is 180 .

Status display

Option	Description
Interface	Shows the interface for the WAN.
Admin status	Shows the administrative status for the WAN: Up or Down.
Oper status	Shows the operational status for the WAN: Up or Down.
IP address	Shows the IP address for the WAN.
Netmask	Shows the Netmask for the WAN.
Gateway	Shows the Gateway for the WAN.
DNS servers	Shows the DNS servers for the WAN.
IPv6	Shows whether IPv6 is enabled or disabled for the WAN.
Packets	Shows the number of received and sent packets for the WAN.
Bytes	Shows the number of received and sent bytes for the WAN.

Command reference

Command-line interface basics	
? (Display command help)	
! (Revert command settings)	244
analyzer	
autorun	
cd	
cellular	248
clear	
cloud	
сору	253
date	254
del	
dhcp-server	
dir	258
dmnr	259
dsl	
dynamic-dns	261
eth	
exit	
firewall	
firewall6	
gre	
īp	
ip-filter	
ipsec	
lan	
mkdir	
more	277
openvpn-client	
openvpn-route	
openvpn-server	

Command-line interface basics

This section describes how to use the TransPort command line interface.

Command line interface access options

You can access the TransPort command line interface through the **serial1** interface or through a SSH connection.

You can use open-source terminal software, such as PuTTY and TeraTerm.

Alternatively, you can open the command line interface in the web interface, where it is called the Device Console.

Log in to the command line interface

- 1. Connect to the TransPort device via the Serial 1 interface or with a SSH connection.
 - For Serial connections, the baud rate is 115200, 8 data bits, no parity, 1 stop bit, and no flow control.
 - For SSH connections, the default IP address of the device is **192.168.1.1**.
- At the login prompt, enter the username and password. The default username is admin. The password for your device is printed on the device label; look for the value after Default Password:.

Username: admin Password: *********

3. A welcome message appears, followed by the current access permission level for your username and the timeout for the command session, followed by the TLR command prompt.

```
Welcome admin
Access Level: super
Timeout : 3600 seconds
digi.router>
```

Exit the command line interface

Enter the exit command.

Execute a command from the web interface

1. On the menu, click System > Device console. The device console appears.

digi.router>

2. To display the currently supported list of commands for the device, type the question mark (?) character after the system prompt:

digi.router> ?

3. To display help for a specific command, enter the command followed by the question mark (?) character.

For example, to get help for the pki command, enter:

digi.router> pki ?

Display command and parameter help using the ? character

Entering ? displays help text for all commands, individual commands, and command parameters. For example:

```
digi.router> eth ?
Configures an Ethernet interface
Syntax:
eth <1 - 4> <parameter> <value>
Available Parameters:
Parameter Description
description Ethernet interface description
duplex Ethernet interface duplex mode
mtu Ethernet interface MTU
speed Ethernet interface speed
state Enables or disables Ethernet interface
```

```
digi.router> eth
```

To display help on parameters, enter the command, the interface number as needed, and parameter name, followed by the **?** character. For example, to display help on the **eth** command's **speed** parameter, enter:

```
digi.router> eth 1 speed ?
Syntax : eth 1 speed <value>
Description : Ethernet interface speed
Current Value : auto
Valid Values : auto, 10, 100, 1000
Default value : auto
digi.router> eth 1 speed
```

To use the **?** character in a parameter value, enclose it within " characters. For example, to display the help text for the **system** command's **description** parameter:

system 1 description ?

To set the system command description parameter to ?:

system 1 description "?"

Revert command settings using the ! character

To revert command settings to their defaults, use the ! character.

To revert the default setting of the interfaces parameter on the **lan** command, enter:

digi.router> lan 1 interfaces !

To use the **!** character in a parameter value, enclose it within **"** characters. For example, to reset the Wi-Fi SSID to the default (blank):

wifi 1 ssid !

To set the Wi-Fi SSID to **!abc**:

wifi 1 ssid "!abc"

Auto-complete commands and parameters

When entering a command and parameter, pressing the **Tab** key causes the command-line interface to auto-complete as much of the command and parameter as possible.

Auto-complete applies to these command elements only :

- Command names. For example, entering cell<Tab> auto-completes the command as cellular
- Parameter names. For example:
 - ping int<Tab> auto-completes the parameter as interface
 - system loc<Tab>auto-completes the parameter as location.
- Parameter values, where the value is one of an enumeration or an on|off type; for example, eth
 1 duplex auto|full|half

Auto-complete does not function for:

- Parameter values that are string types
- Integer values
- File names
- Select parameters passed to commands that perform an action

Enter configuration commands

Configuration commands configure settings for various device features. Configuration commands have the following format:

```
<command> <instance> <parameter> <value>
```

Where <instance> is the index number associated with the feature. For example, this command configures the **eth1** Ethernet interface:

digi.router> eth 1 ip-address 10.1.2.3

For commands with only one instance, you do not need to enter the instance. For example:

digi.router> system timeout 100

Entering strings in configuration commands

For string parameters, if the string value contains a space, the value must be enclosed in quotation marks; For example, to assign a descriptive name for the device using the **system** command, enter:

```
digi.router> system description "HQ router"
```

Save configuration settings to a file

Configuration changes are **not** automatically saved. This means that the device discards any unsaved changes when the device reboots.

On configuration pages, click Apply to save changes to the configuration file immediately.

Command line

Enter the **save config** command.

```
digi.router> save config
```

Switch configuration files

📟 Command line

You can store multiple configuration files on a device, but the device uses only one configuration file when it reboots. The default configuration file is named **config.da0**.

To switch to another configuration file:

- 1. If needed, identify the current configuration file using the show system command.
- 2. Change the current configuration file using the update command.
- 3. If needed, create the configuration file you specified in the **update** command using the save command.

Step 1: Identify the current configuration file

To identify the current configuration file, use the show system command. For example:

```
digi.router> show system
Model : LR54W
Part Number : LR54-AW401
Serial Number : LR000038
Hardware Version : Not available
Using Bank : 1
```

```
Firmware Version : 1.1.0.6 06/17/16 13:37:58
Bootloader Version: 201602051801
Using Config File : config.da0
Uptime
                  : 14 Minutes, 29 Seconds
System Time
                 : 23 July 2016, 13:08:09
CPU
                  : 3% (min 1%, max 70%, avg 3%)
                  : Not available
Temperature
Description
                  :
Location
                  :
Contact
                  :
digi.router>
```

Step 2: Change the configuration file name

To change the name of the current configuration file, use the update command. For example:

digi.router> update config <filename>

The file you specified is used the next time the device reboots.

Step 3: Save the current configuration to the configuration file

If the configuration file name you specified on the <u>update</u> command does not exist, use the <u>save</u> command **config** parameter to create the new configuration file by saving the current configuration. To save the current configuration, use the <u>save</u> command **config** parameter. For example:

digi.router> save config

Display status and statistics using "show" commands

show commands display status and statistics for various features. For example:

- show config displays all the current configuration settings for the device. This is a particularly
 useful during initial device startup after running the Getting Started Wizard, or when
 troubleshooting the device.
- show system displays system information and statistics for the device, including CPU usage.
- show eth displays status and statistics for specific or all Ethernet interfaces.
- show cellular displays status and statistics for specific or all cellular interfaces.

? (Display command help)

Displays help text for all commands, individual commands, and command parameters.

To display help on parameters, enter the command name, the interface number as needed, and parameter name, followed by the **?** character.

To use the **?** character in a parameter value, enclose it within " characters. For example, to display the help text for the **system** command's **description** parameter:

system 1 description ?

To set the system command description parameter to ?:

system 1 description "?"

! (Revert command settings)

Reverts an individual command element to its default.

For example, to revert the default setting of interfaces on the **lan** command, enter:

digi.router> lan 1 interfaces !

To use the **!** character in a parameter value, enclose it within " characters. For example, to reset the Wi-Fi SSID to the default (blank):

wifi 1 ssid !

To set the Wi-Fi SSID to **!abc**:

wifi 1 ssid "!abc"

analyzer

Configures the network packet capture feature. Enabling data traffic capture significantly affects device performance.

Syntax

analyzer <parameter> <value>

Parameters

state

Enables or disables packet capture. Accepted values can be one of off or on. The default value is off.

interfaces

The member interfaces for the packet capture operation. List the interfaces, separated by commas. Accepted values can be multiple values of none, lan1, lan2, lan3, lan4, lan5, lan6, lan7, lan8, lan9, lan10, eth1, eth2, eth3, eth4, wifi1, wifi2, wifi3, wifi4, wifi5g1, wifi5g2, wifi5g3, wifi5g4, cellular1, cellular2 and lo. The default value is none.

filter

The filter for capturing data packets, in BPF format. If you do not specify a filter, the capture operation captures all incoming and outgoing packets.

Accepted value is any string up to 255 characters.

autorun

Configures commands to be automatically run at boot-up. You can use auto-run commands for tasks such as switching configuration files, or scheduling a reboot. You can configure up to 10 auto-run commands. Use the python-autostart command to schedule python programs.

This command is available to super users only.

Syntax

autorun <1 - 10> <parameter> <value>

Parameters

command

Command to run.

Accepted value is any string up to 100 characters.

Examples

autorun 1 command "copy config.da0 config.backup"

Automatically copy a file.

cd

Changes the current directory.

Syntax

cd [dir]

Parameters

dir

When a directory name is specified, 'cd' changes the current directory to it.

cellular

Configures a cellular interface.

Syntax

cellular <1 - 2> <parameter> <value>

Parameters

state

Enables or disables the cellular interface. Accepted values can be one of off or on. The default value is off.

description

A description of the cellular interface. Accepted value is any string up to 63 characters.

apn

The Access Point Name (APN) for the cellular interface. Accepted value is any string up to 63 characters.

apn-username

The username for the APN. Accepted value is any string up to 63 characters.

apn-password

The password for the APN. Accepted value is any string up to 128 characters.

preferred-mode

The preferred cellular mode for the cellular interface. Accepted values can be one of auto, 4g, 3g or 2g. The default value is auto.

connection-attempts

The number of attempts to establish a cellular connection. After this number of attempts, the cellular module is power cycled, and the device attempts to make a cellular connection again. Accepted value is any integer from 10 to 500. The default value is 20.

pin

PIN to activate the SIM. The PIN is a number between 4 to 8 digits long. If no value is specified for this parameter, no PIN is needed to activate the SIM.

Accepted value is any string up to 64 characters.

Examples

cellular 1 state on	
Enable the Cellular 1 interface.	
cellular 1 state off	
Disable the Cellular 1 interface.	
cellular 2 apn broadband	
Set the SIM slot 2 APN to 'broadband.'	
cellular 1 username my-username	
Set the SIM slot 1 username to 'my-username.'	
cellular 1 password my-password	

Set the SIM slot 1 password to 'my-password.'

clear

Clears system status and statistics, such as the event log, firewall counters, traffic analyzer log, etc. This command is available to super users only.

Syntax

```
clear firewall
clear firewall6
clear log
clear log system
clear log all
clear analyzer
clear web-filter-id
```

Parameters

firewall

Clears firewall counters.

firewall6

Clears firewall IPv6 counters.

log

Clears event log.

analyzer

Clears the traffic analyzer log.

web-filter-id

Clears the device ID provided by the Cisco Umbrella service. The router automatically acquires a device ID whenever web filtering is enabled.

Examples

clear firewall

Clear the packet and byte counters in all firewall rules.

clear firewall6

Clear the packet and byte counters in all IPv6 firewall rules.

clear log

Clear the TLR event log and leaves an entry in the log after clearing.

clear log system

Clear the system/kernel event log and leaves an entry in the log after clearing.

clear analyzer

Clear the traffic analyzer log.

clear web-filter-id

Clear the Cisco Umbrella device ID.

cloud

Configures Digi Remote Manager settings.

Syntax

cloud <parameter> <value>

Parameters

state

Enable or disable Digi Remote Manager. Value is either on or off. The default value is on.

server

The name of the Digi Remote Manager server. Value should be a fully qualified domain name. The default value is my.devicecloud.com.

reconnect

The time, in seconds, between the device's attempts to connect to Digi Remote Manager. Accepted value is any integer from 10 to 3600. The default value is 30.

keepalive

The interval, in seconds, used to contact the server to validate connectivity over a non-cellular interface.

Accepted value is any integer from 10 to 7200. The default value is 60.

keepalive-cellular

The interval, in seconds, used to contact the server to validate connectivity over a cellular interface. Accepted value is any integer from 10 to 7200. The default value is 290.

keepalive-count

Number of keepalives missed before the device disconnects from Remote Manager. Accepted value is any integer from 2 to 10. The default value is 3.

health

Enable or disable health metric reporting to Digi Remote Manager. Value is either on or off. The default value is on.

сору

Copies a file. This command is available to all users.

Syntax

copy source dest

Parameters

source

The source file to be copied to the location specified by 'dest.'

dest

The destination file, or file to which the source file is copied.

date

Manually sets and displays the system date and time.

Syntax

date [HH:MM:SS [DD:MM:YYYY]]

Parameters

time

System time, specified in the 24-hour format HH:MM:SS.

date

System date, specified in the format DD:MM:YYYY.

Examples

date 14:55:00 03:05:2016

Set the system date and time to 14:55:00 on May 3, 2016.

del

Deletes a file. This command is available to all users.

Syntax

del file

Parameters

file

The file to be deleted.

dhcp-server

Configures Dynamic Host Configuration Protocol (DHCP) server settings.

Syntax

dhcp-server <1 - 10> <parameter> <value>

Parameters

state

Enables or disables this DHCP server. Value is either on or off. The default value is off.

ip-address-start

The first IP address in the pool of addresses to assign. Value should be an IPv4 address.

ip-address-end

The last IP address in the pool of addresses to assign. Value should be an IPv4 address.

mask

The IP network mask given to clients. Value should be an IPv4 address. The default value is 255.255.255.0.

gateway

Override the IP gateway address given to clients. By default, the gateway address given to clients is the IP address of the LAN with the same index as this DHCP server. If VRRP is enabled for this LAN, the VRRP virtual IP address is given to clients instead. However, if a gateway address is explicitly specified here, that address is given to clients instead of the LAN or VRRP IP address.

Value should be an IPv4 address.

dns1

Override the preferred DNS server address given to clients. By default, the DNS server address given to clients is the IP address of the LAN with the same index as this DHCP server. If VRRP is enabled for this LAN, the VRRP virtual IP address is given to clients instead. However, if a DNS server address is explicitly specified here, that address is given to clients instead of the LAN or VRRP IP address. Value should be an IPv4 address.

dns2

Alternate DNS server address given to clients. Value should be an IPv4 address.

lease-time

The length, in minutes, of the leases issued by this DHCP server. Accepted value is any integer from 2 to 10080. The default value is 1440.

dir

Displays the contents of the current directory.

Syntax

dir [dir]

Parameters

dir

Lists information about the directory (by default, the current directory).

dmnr

Configures dynamic mobile network routing

Syntax

dmnr <parameter> <value>

Parameters

state

Enables or disables DMNR. Value is either on or off. The default value is off.

home-agent

The IP address of the home agent. Value should be an IPv4 address.

home-network

The IPv4 address of the home network. Use a simple IP address, or use CIDR notation (example: 192.168.100.0/24).

Accepted value is any string up to 18 characters. The default value is 1.2.3.4.

key

Authorization key for the home agent. Accepted value is any string up to 255 characters. The default value is VzWNeMo.

spi

Security parameter index used to identify the security association. Accepted value is any integer from 0 to 4294967295. The default value is 256.

lifetime

The lifetime of the registration to the home agent. Accepted value is any integer from 120 to 65535. The default value is 600.

mtu

The maximum transmission unit (MTU) of the underlying tunnel. Accepted value is any integer from 68 to 1476. The default value is 1476.

local-networks

Allows you to select the lans to advertise. Accepted values can be multiple values of none, lan1, lan2, lan3, lan4, lan5, lan6, lan7, lan8, lan9 and lan10. The default value is none.

dsl

UNUSED

Syntax

dsl <parameter> <value>

Parameters

unused

UNUSED

Accepted value is any string up to 63 characters.

dynamic-dns

Configures the dynamic DNS client on this device. This client notifies a dynamic DNS service of the IP address of this device. This allows external users to access this device using a fixed domain name, even when the public IP address of the device changes due to WAN failover or DHCP lease expiration.

Syntax

dynamic-dns <parameter> <value>

Parameters

state

Enables or disables the dynamic DNS client. Value is either on or off. The default value is off.

service

Specifies the dynamic DNS service to which this dynamic DNS client will push updates. Accepted values can be one of dyndns, noip, changeip or dnsomatic. The default value is dyndns.

hostname

The domain name that refers to this device. This domain name is provided when registering with the dynamic DNS service.

Value should be a fully qualified domain name.

username

The username used to authenticate with the dynamic DNS service. Accepted value is any string up to 255 characters.

password

The password used to authenticate with the dynamic DNS service. Accepted value is any string up to 255 characters.

ip-monitoring

Specify wheather dynamic DNS client monitors the IP address of this device or monitors a web service that returns a public IP address.

Accepted values can be one of wan or public. The default value is public.

eth

Configures an Ethernet interface.

Syntax

eth <1 - 4> <parameter> <value>

Parameters

state

Enables or disables the Ethernet interface. Accepted values can be one of off or on. The default value is on.

description

A description of the Ethernet interface. Accepted value is any string up to 63 characters.

duplex

The duplex mode the device uses to communicate on the Ethernet network. The keyword 'auto' causes the device to sense the mode used on the network and adjust automatically. Accepted values can be one of auto, full or half. The default value is auto.

speed

Transmission speed, in Mbps, the device uses on the Ethernet network. The keyword 'auto' causes the device to sense the Ethernet speed of the network and adjust automatically. Accepted values can be one of auto, 10, 100 or 1000. The default value is auto.

mtu

The Maximum Transmission Unit (MTU) transmitted over the Ethernet interface. Accepted value is any integer from 64 to 1500. The default value is 1500.

Examples

eth 3 mask 255.255.255.0

Set network mask of Ethernet interface 3 to 255.255.255.0.

eth 3 state on

Enable Ethernet interface 3.

eth 3 state off

Disable Ethernet interface 3.

exit

Exits the TransPort LR command-line interface.

Syntax

firewall

Configures the firewall. The TransPort LR firewall is a full stateful firewall to control which packets are allowed into and out of the device. Firewalls can filter packets based on the IP address, protocol, TCP ports, and UDP ports. You can also use the firewall to do port forwarding. The TransPort LR firewall is based on the open-source firewall named iptables. It uses the same syntax as the iptables firewall, except that the rules start with firewall instead of iptables. The firewall syntax is case-sensitive. For more information on configuring the firewall, see the Firewall section of the TransPort LR User Guide and these external sources: http://www.netfilter.org/documentation and https://help.ubuntu.com/community/IptablesHowTo

This command is available to super users only.

Syntax

firewall rule

Parameters

rule

Firewall rule.

firewall6

Configures the IPv6 firewall. The TransPort LR firewall is a full stateful firewall to control which packets are allowed into and out of the device. Firewalls can filter packets based on the IP address, protocol, TCP ports, and UDP ports. You can also use the firewall to do port forwarding. The TransPort LR firewall is based on the open-source firewall named iptables. It uses the same syntax as the iptables firewall, except that the rules start with firewall instead of iptables. The firewall syntax is case-sensitive. For more information on configuring the firewall, see the Firewall section of the TransPort LR User Guide and these external sources: http://www.netfilter.org/documentation and https://help.ubuntu.com/community/IptablesHowTo

This command is available to super users only.

Syntax

firewall6 rule

Parameters

rule

Firewall rule.

gre

Configures a GRE tunnel.

Syntax

gre <1 - 10> <parameter> <value>

Parameters

state

Enables or disables this GRE tunnel. Value is either on or off. The default value is off.

description

A description of this GRE tunnel. Accepted value is any string up to 255 characters.

ip-address

IPv4 address for this GRE interface. Value should be an IPv4 address.

mask

IPv4 subnet mask for this GRE interface. Value should be an IPv4 address.

peer

Remote peer for this GRE interface. Value should be an IPv4 address.

key

The key to use for this GRE tunnel. Accepted value is any string up to 10 characters.

ip

Configures Internet Protocol (IP) settings.

Syntax

ip <parameter> <value>

Parameters

admin-conn

Administrative distance value for connected routes. Administrative distance values rank route types from most to least preferred. If there are two routes to the same destination that have the same mask, the device uses a route's 'metric' parameter value to determine which route to use. In such a case, the administrative distances for the routes determine the preferred type of route to use. The administrative distance is added to the route's metric to calculate the metric the routing engine uses. Usually, connected interfaces are most preferred, because the device is directly connected to the networks on such interfaces, followed by static routes.

Accepted value is any integer from 0 to 255. The default value is 0.

admin-static

Administrative distance value for static routes. See 'admin-conn' for how routers use administrative distance.

Accepted value is any integer from 0 to 255. The default value is 1.

hostname

IP hostname for this device. Accepted value is any string up to 63 characters.

ip-filter

Configures IP filter rules.

Syntax

ip-filter <1 - 32> <parameter> <value>

Parameters

description

The description of this rule. Accepted value is any string up to 255 characters.

state

Enables or disables an IP filter rule. Value is either on or off. The default value is off.

action

Accepts, drops, or rejects IP packets. Accepted values can be one of accept, drop or reject. The default value is accept.

src-ip-address

The IPv4 or IPv6 source address of the incoming packet. Use a simple IPv4 or IPv6 address, or use CIDR notation (example: 192.168.100.0/24, fe80::/10)

Accepted value is any string up to 43 characters.

src-ip-port

The source port(s) of the incoming packet. Use a simple port, a range (lowport:highport) or a list (port1,port2...,portn). Default '0' implies 'Any'. Source port is ignored when protocol does not explicitly include tcp or udp.

Accepted value is any string up to 255 characters. The default value is 0.

dst-ip-address

The IPv4 or IPv6 destination address of the incoming packet. Use a simple IPv4 or IPv6 address, or use CIDR notation (example: 192.168.100.0/24, fe80::/10)

Accepted value is any string up to 43 characters.

dst-ip-port

The destination port(s) of the incoming packet. Use a simple port, a range (lowport:highport) or a list (port1,port2...,portn). Default '0' implies 'Any'. Dest port is ignored when protocol does not explicitly include tcp or udp.

Accepted value is any string up to 255 characters. The default value is 0.

src

The WAN or LAN that is the source of incoming traffic. Required if 'dst' is not specified. Must be different than 'dst'.

Accepted values can be one of none, any-lan, lan1, lan2, lan3, lan4, lan5, lan6, lan7, lan8, lan9, lan10, any-wan, wan1, wan2, wan3, wan4, wan5, wan6, wan7, wan8, wan9, wan10, dmnr-tunnel, any-gre, gre1, gre2, gre3, gre4, gre5, gre6, gre7, gre8, gre9 or gre10. The default value is none.

dst

The WAN or LAN that is the destination of outgoing traffic. Required if 'src' is not specified. Must be different than 'src'.

Accepted values can be one of none, any-lan, lan1, lan2, lan3, lan4, lan5, lan6, lan7, lan8, lan9, lan10, any-wan, wan1, wan2, wan3, wan4, wan5, wan6, wan7, wan8, wan9, wan10, dmnr-tunnel, any-gre, gre1, gre2, gre3, gre4, gre5, gre6, gre7, gre8, gre9 or gre10. The default value is none.

protocol

The protocol of the incoming packet. Use a single protocol, a list (tcp,udp,icmp), or exclusive value (any). When set to 'any', src-ip-port and dst-ip-port values are ignored.

Accepted values can be multiple values of tcp, udp, icmp and any. The default value is tcp,udp.

ipsec

Configures an IPsec tunnel. Up to 32 IPsec tunnels can be configured.

Syntax

ipsec <1 - 32> <parameter> <value>

Parameters

state

Enables or disables the IPsec tunnel. Accepted values can be one of off or on. The default value is off.

description

A description of this IPsec tunnel. Accepted value is any string up to 255 characters.

peer

The remote peer for this IPsec tunnel. Value should be a fully qualified domain name.

local-network

The local network IP address for this IPsec tunnel. Value should be an IPv4 address.

local-mask

The local network mask for this IPsec tunnel. Value should be an IPv4 address.

remote-network

The remote network IP address for this IPsec tunnel. Value should be an IPv4 address.

remote-mask

The remote network mask for this IPsec tunnel. Value should be an IPv4 address.

esp-authentication

The Encapsulating Security Payload (ESP) authentication type used for the IPsec tunnel. Accepted values can be multiple values of sha1 and sha256. The default value is sha1.

esp-encryption

ESP encryption type for IPsec tunnel

Accepted values can be multiple values of aes128, aes192 and aes256. The default value is aes128.

esp-diffie-hellman

The Encapsulating Security Payload (ESP) Diffie-Hellman group used for the IPsec tunnel. Accepted values can be multiple values of none, group5, group14, group15 and group16. The default value is group14.

auth-by

The authentication type for the IPsec tunnel. Accepted values can be multiple values of psk. The default value is psk.

psk

The preshared key for the IPsec tunnel. Accepted value is any string up to 128 characters.

local-id

The local ID used for this IPsec tunnel. Accepted value is any string up to 31 characters.

remote-id

The remote ID used for this IPsec tunnel. Accepted value is any string up to 31 characters.

lifetime

Number of seconds before this IPsec tunnel is renegotiated. Accepted value is any integer from 60 to 86400. The default value is 3600.

lifebytes

Number of bytes sent before this IPsec tunnel is renegotiated. A value of 0 means the IPsec tunnel will not be renegotiated based on the amount of data sent.

Accepted value is any integer from 0 to 4000000000. The default value is 0.

margintime

The number of seconds before the 'lifetime' limit to attempt to renegotiate the security association (SA).

Accepted value is any integer from 1 to 3600. The default value is 540.

marginbytes

The number of bytes before the 'lifebytes' limit to attempt to renegotiate the security association (SA).

Accepted value is any integer from 0 to 1000000000. The default value is 0.

random

The percentage of the total renegotiation limits that should be randomized. Accepted value is any integer from 0 to 200. The default value is 100.

ike

The Internet Key Exchange (IKE) version to use for this IPsec tunnel. Accepted value is any integer from 1 to 1. The default value is 1.

ike-mode

The IKEv1 mode to use for this IPsec tunnel. Accepted values can be one of main or aggressive. The default value is main.

ike-encryption

The IKE encryption type for this IPsec tunnel. Accepted values can be multiple values of aes128, aes192 and aes256. The default value is aes128.

ike-authentication

The IKE authentication type for this IPsec tunnel. Accepted values can be multiple values of sha1 and sha256. The default value is sha1.

ike-diffie-hellman

The IKE Diffie-Hellman group for this IPsec tunnel. Diffie-Hellman is a public-key cryptography protocol for establishing a shared secret over an insecure communications channel. Diffie-Hellman is used with Internet Key Exchange (IKE) to establish the session keys that create a secure channel.

Accepted values can be multiple values of group5, group14, group15 and group16. The default value is group14.

ike-lifetime

The lifetime for the IKE key, in seconds. Accepted value is any integer from 180 to 4294967295. The default value is 4800.

ike-tries

The number of attempts to negotiate this IPsec tunnel before failing. Accepted value is any integer from 0 to 100. The default value is 3.

dpddelay

Dead peer detection transmit delay. Accepted value is any integer from 1 to 3600. The default value is 30.

dpdtimeout

Timeout, in seconds, for dead peer detection. Accepted value is any integer from 1 to 3600. The default value is 150.

dpd

Enables or disables dead peer detection. Dead Peer Detection (DPD) is a method of detecting a dead Internet Key Exchange (IKE) peer. The method uses IPsec traffic patterns to minimize the number of messages required to confirm the availability of a peer.

Value is either on or off. The default value is off.

metric

The metric for the IPsec route. The metric defines the order in which the device uses routes if there are two routes to the same destination. In such a case, the device uses the IPsec route with the smaller metric.

Accepted value is any integer from 0 to 255. The default value is 10.

Examples

ipsec 3 state on
Enable IPsec tunnel 3.
ipsec 3 state off
Disable IPsec tunnel 3.
ipsec 3 esp-authentication sha256
Set ESP authentication for IPsec tunnel 3 to SHA256.
ipsec 3 esp-encryption aes256

Set ESP encryption for IPsec tunnel 3 to AES 256 bit keys.

ipsec 3 esp-diffie-hellman group15

Set IPsec tunnel 3 to use ESP Diffie-Hellman group 15 for negotiation.

lan

Configures a Local Area Network (LAN). A LAN is a group of Ethernet and Wi-Fi interfaces.

Syntax

lan <1 - 10> <parameter> <value>

Parameters

state

Enables or disables a LAN. Value is either on or off. The default value is off.

description

A descriptive name for the LAN. Accepted value is any string up to 63 characters.

mtu

Maximum Transmission Unit (MTU) for the LAN. Accepted value is any integer from 128 to 1500. The default value is 1500.

interfaces

The physical interfaces for the LAN. Accepted values can be multiple values of none, eth1, eth2, eth3, eth4, wifi1, wifi2, wifi3, wifi4, wifi5g1, wifi5g2, wifi5g3 and wifi5g4. The default value is none.

ip-address

IPv4 address for the LAN. While it is not strictly necessary for a LAN to have an IP address, an IP address must be configured to send traffic from and to the LAN. Value should be an IPv4 address.

mask

IPv4 subnet mask for the LAN. Value should be an IPv4 address. The default value is 255.255.255.0.

dns1

Preferred DNS server. Value should be an IPv4 address.

dns2

Alternate DNS server. Value should be an IPv4 address.

dhcp-client

Enables or disable the DHCP client for this LAN. Value is either on or off. The default value is off.

ipv6-state

Enables or disables IPv6 support on this LAN. Value is either on or off. The default value is off.

ipv6-mode

Selects configuration method to provision clients on this LAN. Currently only DHCPv6 is supported. Accepted values can be one of dhcpv6. The default value is dhcpv6.

mkdir

Creates a directory. This command is available to all users.

Syntax

mkdir dir

Parameters

dir

The directory to be created.

more

Displays the contents of a file.

Syntax

more [file]

Parameters

file

File to be displayed.

openvpn-client

Configures an OpenVPN client.

Syntax

openvpn-client <1 - 10> <parameter> <value>

Parameters

state

Enables or disables this OpenVPN client. Value is either on or off. The default value is off.

description

A description of this OpenVPN client. Accepted value is any string up to 255 characters.

server

The IP address or fully-qualified domain name of the OpenVPN server to which this OpenVPN client attempts to connect.

Value should be a fully qualified domain name.

port

The port number to which this OpenVPN client attempts to connect. Accepted value is any integer from 1 to 65535. The default value is 1194.

protocol

The protocol (TCP or UDP) that this OpenVPN client uses to connect. Accepted values can be one of udp or tcp. The default value is udp.

connect-retry

The number of seconds to wait between connection attempts. After 5 unsuccessful attempts, the wait time is doubled for each subsequent connection attempt, up to a maximum wait time of 300 seconds. Accepted value is any integer from 1 to 60. The default value is 5.

bridge-mode

Enables Ethernet bridge (TAP) mode for this OpenVPN client. This eliminates the need for routing between networks as required by TUN mode, but may have scalability issues, since all broadcast traffic will flow over the OpenVPN tunnel.

Accepted values can be one of off, lan1, lan2, lan3, lan4, lan5, lan6, lan7, lan8, lan9 or lan10. The default value is off.

cipher

The encryption algorithm or list of algorithms the OpenVPN client can use to encrypt and decrypt data channel packets. The OpenVPN client will accept the cipher pushed by the server if it is in this list. If the OpenVPN server supports cipher negotiation, the OpenVPN client may accept additional ciphers that are not in this list.

Accepted values can be multiple values of aes-128-cbc, aes-192-cbc, aes-256-cbc, aes-128-gcm, aes-192-gcm and aes-256-gcm. The default value is aes-256-gcm, aes-256-cbc, aes-128-gcm, aes-128-cbc.

digest

The digest algorithm the OpenVPN client uses to sign and authenticate data channel packets. Accepted values can be one of sha1, sha224, sha256, sha384 or sha512. The default value is sha1.

са

The CA certificate this OpenVPN client uses to validate the certificate presented by the server. This file is in PEM format and is often named 'ca.crt' or similar.

Accepted value is any string up to 63 characters.

crl

The CRL this OpenVPN client uses to prevent connection to a server that presents a revoked certificate. This file is in PEM format and is often named 'crl.pem' or similar.

Accepted value is any string up to 63 characters.

capath

The CA and CRL directory path for this OpenVPN client. This allows you to provide multiple CA and CRL files. You should use the c_rehash tool to create CA certificates with a '.0' filename extension and CRLs with a '.r0' filename extension.

Accepted value is any string up to 63 characters.

cert

The public certificate for this OpenVPN client. This file is in PEM format and is often named 'client.crt' or similar.

Accepted value is any string up to 63 characters.

key

The private key for this OpenVPN client. This file is in PEM format and is often named 'client.key' or similar.

Accepted value is any string up to 63 characters.

username

The username the OpenVPN client uses to authenticate with the OpenVPN server. Accepted value is any string up to 32 characters.

password

The password the OpenVPN client uses to authenticate with the OpenVPN server. Accepted value is any string up to 128 characters.

pull-routes

Allows the OpenVPN client to accept or reject routes that are pushed from the OpenVPN server. Value is either on or off. The default value is on.

verb

Adjusts the amount of output that this OpenVPN client records in the system log. Set this parameter to 0 to record only errors and warnings. Set this parameter to 3 to record a fairly complete activity log.

Accepted value is any integer from 0 to 4. The default value is 0.

nat

Enables Network Address Translation (NAT) for outgoing packets on the OpenVPN client network interface. NAT allows a computer on a local network to send a request to a computer behind the OpenVPN server without adding additional routes on the OpenVPN server. NAT changes the source IP address of the outgoing packet to the IP address of the OpenVPN client, hiding the local network from the OpenVPN server. Since the request appears to come from the OpenVPN client, the response packet is destined for the OpenVPN client, and the OpenVPN server properly routes it to the correct OpenVPN client. The OpenVPN client only uses NAT if the 'bridge-mode' parameter is set to 'off'.

Value is either on or off. The default value is on.

openvpn-route

Specifies the routes the OpenVPN server pushes to OpenVPN clients so they can access resources located behind the OpenVPN server. These resources would be otherwise unavailable since they are on different subnets than the OpenVPN tunnel itself. Typically, these routes would only be needed for non-bridged (TUN) configurations.

Syntax

openvpn-route <1 - 10> <parameter> <value>

Parameters

destination

Destination network for the route. This value typically ends with '.0' to match the subnet mask. Value should be an IPv4 address.

mask

Subnet mask for the route. Value should be an IPv4 address. The default value is 255.255.255.0.

openvpn-server

Configures an OpenVPN server.

Syntax

openvpn-server <parameter> <value>

Parameters

state

Enables or disables the OpenVPN server. Value is either on or off. The default value is off.

description

A description of this OpenVPN server. Accepted value is any string up to 255 characters.

network

The local network for this OpenVPN tunnel if 'bridge-mode' is set to off. This value typically ends with '.0' to match the subnet mask.

Value should be an IPv4 address.

mask

The local subnet for this OpenVPN tunnel if 'bridge-mode' is set to off. Value should be an IPv4 address. The default value is 255.255.255.0.

dns1

The IPv4 address of the primary DNS server. This value is pushed to OpenVPN clients if 'bridge-mode' is set to off.

Value should be an IPv4 address.

dns2

The IPv4 address of the secondary DNS server. This value is pushed to OpenVPN clients if 'bridge-mode' is set to off.

Value should be an IPv4 address.

port

The port this OpenVPN server uses to listen for incoming connections from OpenVPN clients. Accepted value is any integer from 1 to 65535. The default value is 1194.

topology

The network topology this OpenVPN server uses to assign IP addresses to OpenVPN clients. This value is only used if 'bridge-mode' is set to off.

Accepted values can be one of net30, p2p or subnet. The default value is net30.

protocol

The protocol (TCP or UDP) this OpenVPN server uses to listen for incoming connections from OpenVPN clients.

Accepted values can be one of udp or tcp. The default value is udp.

bridge-mode

Enables Ethernet bridge (TAP) mode for this OpenVPN server. This eliminates the need for routing between networks as required by TUN mode, but may have scalability issues, since all broadcast traffic will flow over the OpenVPN tunnel.

Accepted values can be one of off, lan1, lan2, lan3, lan4, lan5, lan6, lan7, lan8, lan9 or lan10. The default value is off.

cipher

The encryption algorithm or list of algorithms the OpenVPN server can use to encrypt and decrypt data channel packets. The OpenVPN server will always push the first cipher in the list to OpenVPN clients that support cipher negotiation. OpenVPN clients that do not support cipher negotiation can connect using any cipher in this list.

Accepted values can be multiple values of aes-128-cbc, aes-192-cbc, aes-256-cbc, aes-128-gcm, aes-192-gcm and aes-256-gcm. The default value is aes-256-gcm, aes-256-cbc, aes-128-gcm, aes-128-cbc.

digest

The digest algorithm the OpenVPN server uses to sign and authenticate data channel packets. Accepted values can be one of sha1, sha224, sha256, sha384 or sha512. The default value is sha1.

auth-by

Configures authentication to use certs, username/password, or both.

Accepted values can be one of certs, user-pass or both. The default value is certs.

са

The CA certificate this OpenVPN server uses to validate all certificates presented by clients. This file is in PEM format and is often named 'ca.crt' or similar.

Accepted value is any string up to 63 characters.

crl

The CRL this OpenVPN server uses to deny access to any client that presents a revoked certificate. This file is in PEM format and is often named 'crl.pem' or similar.

Accepted value is any string up to 63 characters.

capath

The CA and CRL directory path for this OpenVPN server. This allows you to provide multiple CA and CRL files. You should use the c_rehash tool to create CA certificates with a '.0' filename extension and CRLs with a '.r0' filename extension.

Accepted value is any string up to 63 characters.

dh

The Diffie-Hellman parameters this OpenVPN server uses for shared secret generation. This file is in PEM format and is often named 'dh2048.pem' or similar. Leave blank to use Elliptic Curve Diffie-Hellman key exchange.

Accepted value is any string up to 63 characters.

cert

The public certificate for this OpenVPN server. This file is in PEM format and is often named 'server.crt' or similar.

Accepted value is any string up to 63 characters.

key

The private key for this OpenVPN server. This file is in PEM format and is often named 'server.key' or similar.

Accepted value is any string up to 63 characters.

radius-server

The IP address for the RADIUS server for OpenVPN. Value should be an IPv4 address.

radius-server-port

The port for the RADIUS server. Accepted value is any integer from 1 to 65535. The default value is 1812.

radius-server-secret

The secret for the RADIUS server. Accepted value is any string up to 64 characters.

radius-server-state

Enables or disables RADIUS authentication. Value is either on or off. The default value is off.

compression

The compression algorithm this OpenVPN server uses to compress data channel packets. Accepted values can be one of off, Izo or Iz4. The default value is off.

verb

Adjusts the amount of output that this OpenVPN server records in the system log. Set this parameter to 0 to record only errors and warnings. Set this parameter to 3 to record a fairly complete activity log.

Accepted value is any integer from 0 to 4. The default value is 0.

keepalive-interval

Sends a ping message if no other traffic is sent in either direction between the OpenVPN client and server. This value is also pushed to the client. To disable the ping-based keepalive mechanism, set this

parameter to 0.

Accepted value is any integer from 0 to 3600. The default value is 30.

keepalive-timeout

Restarts the OpenVPN tunnel if no traffic is detected for this many seconds. This value should typically be 5-6 times as large as the 'keepalive-interval' value. This value is doubled before it is set on the server. This value is also pushed to the client. To disable the ping-based keepalive mechanism, set this parameter to 0.

Accepted value is any integer from 0 to 3600. The default value is 150.

reneg-bytes

Number of bytes sent/received before data channel encryption key is renegotiated. To disable data channel encryption key renegotiation, set this parameter to 0.

Accepted value is any integer from 0 to 4000000000. The default value is 0.

reneg-sec

Number of seconds before the data channel encryption key is renegotiated. Accepted value is any integer from 60 to 86400. The default value is 3600.

openvpn-user

Configures an OpenVPN server user.

Syntax

openvpn-user <1 - 10> <parameter> <value>

Parameters

username

Username for OpenVPN user. Accepted value is any string up to 32 characters.

password

Password for OpenVPN user. Accepted value is any string up to 128 characters.

ping

Sends ICMP echo (ping) packets to the specified destination address.

Syntax

ping [ipv6] [count n] [interface ifname] [size bytes] destination

Parameters

ipv6

Specifies whether the destination address to ping is an IPv6 address.

count

Number of pings to send.

interface

The interface from which pings are sent.

size

The number of data bytes to send.

destination

The name of the IP host to ping.

Examples

ping ipv6 ipv6.google.com

Ping the ipv6 host 'ipv6.google.com'

ping 8.8.8.8

Ping IP address 8.8.8.8 with packets of default size 56 bytes

ping count 10 size 8 8.8.8.8

Ping IP address 8.8.8.8 for 10 times

ping interface eth2 count 5 8.8.8.8

Ping IP address 8.8.8.8 for 5 times via Ethernet interface 2

pki

The public key infrastructure is used to manage private key and certificate files to secure network activities.

This command is available to super users only.

Syntax

```
pki privkey <privkeyfile> <size> [aes128|aes256 <passphrase>]
pki list
pki del <privkeyfile>
pki addkey <privkeyfile>
pki csr [country c] [state st] [locality l] [organization o] [organizational-unit
ou] [common-name cn] [email e] [passphrase pw] <privkeyfile> <csr-file> <digest>
pki dh-file <parameter-file> <size>
```

Parameters

csr

Create a Certificate Signing Request.

privkey

Generate a private key file.

list

Show the private key files.

del

Remove a private key file.

addkey

Add an externally-generated private key file to the list of private key files.

dh-file

Generate a Diffie Hellman parameter file using the PEM format.

Examples

privkey mykeyfile.key 2048

Generates an unencrypted mykeyfile.key with 2048 bits rsa

privkey mykeyfile.key 4096 aes256 "my secret phrase"

Generates an encrypted mykeyfile.key with 4096 bits rsa

dh-file mydhfile.pem 1024

Generates a Diffie Hellman 1024 bit parameter file

list

Lists the existing key files

del mykeyfile.key

Deletes mykeyfile.key from the list of key files

addkey mykeyfile.key

Moves the externally-generated file mykeyfile.key from the upload folder into the list of private key files

csr common-name www.example.com mykeyfile.key my.csr sha256

Create a Certificate Signing Request with a common name

port-forward

Configures port forwarding rules.

Syntax

port-forward <1 - 30> <parameter> <value>

Parameters

port

The TCP or UDP port or ports from which incoming packets are forwarded. Accepted value is any string up to 255 characters.

to-port

The TCP or UDP port that packets are forwarded to after being received on the incoming port(s). Accepted value is any integer from 0 to 65535. The default value is 0.

to-ip-address

The IPv4 address that packets are forwarded to after being received on the incoming interface. Value should be an IPv4 address.

description

The description of this rule. Accepted value is any string up to 255 characters.

state

Enables or disables a port forward rule. Invalid rules are not enabled. Value is either on or off. The default value is off.

protocol

The protocol or protocols of the packets to forward. Accepted values can be one of tcp, udp or tcp-and-udp. The default value is tcp-and-udp.

src

The WAN or LAN that is the source of incoming traffic to be forwarded.

Accepted values can be one of any, any-lan, lan1, lan2, lan3, lan4, lan5, lan6, lan7, lan8, lan9, lan10, anywan, wan1, wan2, wan3, wan4, wan5, wan6, wan7, wan8, wan9 or wan10. The default value is any.

Examples

port-forward 4 port 80

Forward port 80 to the to-port and to-ip-address

port-forward 4 port 1000:2000

Forward all ports in the range 1000-2000

port-forward 4 port 23,24,25

Forward ports in the list 23,24,25

port-forward 4 src any-wan

Forwards traffic from WANs only

pwd

pwd

Displays the current directory name.

Syntax

pwd

Parameters

python

Start Python This command is available to super users only.

Syntax

```
python
python <filepath> [args]
python stop <id>
```

Parameters

filepath

The path to the python file.

args

Arguments to send to the python file.

id

The id of the python file to be stopped.

python-autostart

Configure Python applications to be run at startup. This command is available to super users only.

Syntax

python-autostart <1 - 4> <parameter> <value>

Parameters

filepath

Path to the file to be run Accepted value is any string up to 255 characters.

on-exit

Action taken when the application exits Accepted values can be one of none, restart or reboot. The default value is none.

args

Arguments sent to the application Accepted value is any string up to 255 characters.

state

Enables or disable application startup Accepted values can be one of on or off. The default value is on.

qos-filter

Configures QoS filters.

Syntax

qos-filter <1 - 32> <parameter> <value>

Parameters

description

The description of this filter. Accepted value is any string up to 255 characters.

state

Enables or disables a QoS filter. Value is either on or off. The default value is off.

queue

All traffic matching this filter is sent to this queue. Accepted value is any integer from 0 to 8. The default value is 0.

src-ip-address

The IPv4 or IPv6 source address of the incoming packet. Use a simple IPv4 or IPv6 address, or use CIDR notation (example: 192.168.100.0/24, fe80::/10)

Accepted value is any string up to 43 characters.

src-ip-port

The source port(s) of the incoming packet. Use a simple port, a range (lowport:highport) or a list (port1,port2...,portn). Default '0' implies 'Any'. Source port is ignored when protocol does not explicitly include tcp or udp.

Accepted value is any string up to 255 characters. The default value is 0.

dst-ip-address

The IPv4 or IPv6 destination address of the incoming packet. Use a simple IPv4 or IPv6 address, or use CIDR notation (example: 192.168.100.0/24, fe80::/10)

Accepted value is any string up to 43 characters.

dst-ip-port

The destination port(s) of the incoming packet. Use a simple port, a range (lowport:highport) or a list (port1,port2...,portn). Default '0' implies 'Any'. Dest port is ignored when protocol does not explicitly include tcp or udp.

Accepted value is any string up to 255 characters. The default value is 0.

src

The interface that is the source of incoming traffic.

Accepted values can be one of any, any-lan, lan1, lan2, lan3, lan4, lan5, lan6, lan7, lan8, lan9 or lan10. The default value is any.

protocol

The protocol of the incoming packet. Use a single protocol, a list (tcp,udp,icmp), or exclusive value (any). When set to 'any', src-ip-port and dst-ip-port values are ignored.

Accepted values can be multiple values of tcp, udp, icmp and any. The default value is tcp,udp.

dscp

The Differentiated Services Field values to match. Use a single value, a list (ef,af11,af21), or exclusive value (any).

Accepted values can be multiple values of any, be, af11, af12, af13, af21, af22, af23, af31, af32, af33, af41, af42, af43, ef, cs0, cs1, cs2, cs3, cs4, cs5, cs6 and cs7. The default value is any.

qos-queue

Configures a QoS queue

Syntax

qos-queue <1 - 8> <parameter> <value>

Parameters

state

Enables or disables this QoS queue. Value is either on or off. The default value is off.

description

A description of this QoS queue. Accepted value is any string up to 255 characters.

bandwidth-upstream

Amount of bandwidth that is guaranteed to this queue in kbps. The sum of the guaranteed bandwidth for all queues should not exceed the bandwidth of the slowest WAN with QoS enabled. Accepted value is any integer from 0 to 1000000. The default value is 0.

borrow-upstream

Allow the queue to use additional bandwidth if there is any unused. Value is either on or off. The default value is on.

dscp-class

Set the DSCP class of outbound packets using this queue.

Accepted values can be one of do-not-set, be, af11, af12, af13, af21, af22, af23, af31, af32, af33, af41, af42, af43, ef, cs0, cs1, cs2, cs3, cs4, cs5, cs6 or cs7. The default value is do-not-set.

radius

Configures RADIUS authentication for system administrators, restricting access to the web and command line interfaces.

This command is available to super users only.

Syntax

radius <parameter> <value>

Parameters

state

Enable or disable RADIUS authentication for system administrators. Value is either on or off. The default value is off.

server

The IP address or fully-qualified domain name of the RADIUS server to use to authenticate system administrators.

Value should be a fully qualified domain name.

server-port

The UDP port number for the RADIUS server.

Accepted value is any integer from 1 to 65535. The default value is 1812.

server-secret

The shared secret for the RADIUS server. Secret can not contain spaces, an open bracket ([), or a close bracket (]).

Accepted value is any string up to 64 characters.

nas-id

A unique identifier for this network access server (NAS). The fully-qualified domain name of the NAS is often used, but any arbitrary string may be used. String may not contain spaces, an open bracket ([), or close bracket (]).

Accepted value is any string up to 64 characters.

server-timeout

The amount of time in seconds to wait for the RADIUS server to respond. Accepted value is any integer from 3 to 10. The default value is 3.

local-auth

Whether to use local authentication if the RADIUS server does not respond before the timeout expires. Value is either on or off. The default value is on.

debug

Enable or disable additional debug messages from the RADIUS client. These messages are added to the system log.

Value is either on or off. The default value is off.

backup-server

The IP address or fully-qualified domain name of the backup RADIUS server to use to authenticate system administrators when the main RADIUS server is not available.

Value should be a fully qualified domain name.

backup-server-port

The UDP port number for the backup RADIUS server. Accepted value is any integer from 1 to 65535. The default value is 1812.

backup-server-secret

The shared secret for the backup RADIUS server. Secret can not contain spaces, an open bracket ([), or a close bracket (]).

Accepted value is any string up to 64 characters.

backup-server-timeout

The amount of time in seconds to wait for the backup RADIUS server to respond. Accepted value is any integer from 3 to 10. The default value is 3.

reboot

Reboots the device immediately or at a scheduled time. Performing a reboot will not automatically save any configuration changes since the configuration was last saved. This command is available to all users.

Syntax

reboot [[in M][at HH:MM][cancel]]

Parameters

in

For a scheduled reboot, the minutes before the device is rebooted.

at

For a scheduled reboot, the time to reboot the device, specified in the format HH:MM.

cancel

Cancels a scheduled reboot.

rename

Renames a file. This command is available to all users.

Syntax

rename oldName newName

Parameters

oldName

Old file name.

newName

New file name.

rmdir

Deletes a directory. This command is available to all users.

Syntax

rmdir dir

Parameters

dir

The directory to be removed.

route

Configures a static route, a manually-configured entry in the routing table.

Syntax

route <1 - 32> <parameter> <value>

Parameters

destination

The destination IP network for the static route. Value should be an IPv4 address.

mask

The destination IP netmask for the static route. Value should be an IPv4 address.

gateway

The gateway to use for the static route. Value should be an IPv4 address.

metric

The metric for the static route. The metric defines the order in which the device uses routes if there are two routes to the same destination. In such a case, the device uses the route with the smaller metric.

Accepted value is any integer from 0 to 255. The default value is 0.

interface

The name of the interface to which packets are routed.

Accepted values can be one of none, cellular1, cellular2, gre1, gre2, gre3, gre4, gre5, gre6, gre7, gre8, gre9 or gre10. The default value is none.

save

Saves the configuration to flash memory. Unless you issue this command, all configuration changes since the configuration was last saved are discarded after a reboot. This command is available to all users.

Syntax

save config save analyzer

Parameters

config

Saves all configuration to flash memory.

analyzer

Saves the current captured traffic to a file.

Examples

save config

Save the current configuration to flash memory.

save analyzer packets.pcapng

Saves the current captured traffic to packets.pcapng.

serial

Configures a serial interface.

Syntax

serial <1 - 4> <parameter> <value>

Parameters

state

Enables or disables the serial interface. Value is either on or off. The default value is on.

description

A description of the serial interface. Accepted value is any string up to 63 characters.

baud

The data rate in bits per second (baud) for serial transmission. Accepted values can be one of 110, 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200, 230400, 460800 or 921600. The default value is 115200.

databits

Number of data bits in each transmitted character. Accepted values can be one of 8 or 7. The default value is 8.

parity

Sets the parity bit. The parity bit is a method of detecting errors in transmission. It is an extra data bit sent with each data character, arranged so that the number of 1 bits in each character, including the parity bit, is always odd or always even.

Accepted values can be one of none, odd or even. The default value is none.

stopbits

The number of stop bits sent at the end of every character. Accepted values can be one of 1 or 2. The default value is 1.

flowcontrol

The type of flow control signals to pause and resume data transmission. Available options are software flow control using XON/XOFF characters, hardware flow control using the RS232 RTS and CTS signals, or no flow control signals.

Accepted values can be one of none, software or hardware. The default value is none.

show analyzer

Displays the traffic analyzer log.

Parameters

description

Display the traffic analyzer log.

show cellular

Displays cellular interface status and statistics.

Parameters

description

A description of the cellular interface.

admin-status

Whether the Cellular interface is sufficiently configured to be brought up.

oper-status

Whether the Cellular interface is up or down.

module

Manufacturer's model number for the cellular module.

firmware-version

Manufacturer's version number for the software running on the cellular module.

hardware-version

Manufacturer's version number for the cellular module hardware.

imei

International Mobile Station Equipment Identity (IMEI) number for the cellular module, a unique number assigned to every mobile device.

sim-status

Which SIM slot is currently in use by the device.

signal-strength

A measure of the signal level of the cellular network, measured in dB.

signal-quality

An indicator of the quality of the received cellular signal, measured in dB.

registration-status

The status of the cellular module's connection to a cellular network.

network-provider

Network provider for the cellular network.

temperature

Current temperature of the cellular module, as read and reported by the temperature sensor on the cellular module.

connection-type

Cellular connection type.

radio-band

The radio band on which the cellular module is operating.

channel

The radio channel on which the cellular module is operating.

pdp-context

The current Packet Data Protocol (PDP) connection context. A PDP context contains routing information for packet transfer between a mobile station (MS) and a gateway GPRS support node (GGSN) to have access to an external packet-switching network. The PDP context identified by an exclusive MS PDP address (the mobile station's IP address). This means that the mobile station will have as many PDP addresses as activated PDP contexts.

ip-address

IP address for the cellular interface.

mask

Address mask for the cellular interface.

gateway

IP address of the remote end of the cellular connection.

dns-servers

IP addresses of the DNS servers in use for the cellular interface.

rx-packets

Number of packets received by the cellular module during the current data session.

tx-packets

Number of packets transmitted by the cellular module during the current data session.

rx-bytes

Number of bytes received by the cellular module during the current data session.

tx-bytes

Number of bytes transmitted by the cellular module during the current data session.

attachment-status

The status of the cellular module's attachment to a cellular network.

iccid

Integrated Circuit Card Identifier (ICCID). This identifier is unique to each SIM card.

sim1-pin-status SIM1 PIN Status.

sim1-pin-retries Number of retries PIN left on SIM1

sim2-pin-status SIM2 PIN Status.

sim2-pin-retries

Number of PIN retries left on SIM2

show cloud

Displays Digi Remote Manager connection status and statistics.

Parameters

status

Status of the device connection to the Digi Remote Manager.

server

The URL of the connected Digi Remote Manager.

deviceid

Device ID for Digi Remote Manager connection.

uptime

Amount of time, in seconds, that the Digi Remote Manager connection has been established.

rx-bytes

Number of bytes received from Digi Remote Manager.

rx-packets

Number of packets received from Digi Remote Manager.

tx-bytes

Number of bytes transmitted to Digi Remote Manager.

tx-packets

Number of packets transmitted to Digi Remote Manager.

show config

Displays the current device configuration.

Parameters

config

The current configuration running on the device.

show dhcp

Displays information about DHCP connected clients.

Parameters

dhcp

Displays the DHCP status.

show dmnr

Displays local networks and their DMNR details.

Parameters

admin-status

Whether DMNR is sufficiently configured to be brought up.

oper-status

Whether the DMNR tunnel is up or down.

registration-status

Displays the DMNR registration state as it negotiates with the Home Agent.

home-agent

Displays the IP address of DMNR Home Agent.

care-of-address

Displays the IP address of DMNR Care of Address.

interface

Displays the interface used by the DMNR tunnel.

lifetime

Displays the actual lifetime status.

local-networks

Displays the local networks and their DMNR status.

show dsl

UNUSED

Parameters

unused

UNUSED

show eth

Displays Ethernet interfaces status and statistics.

Parameters

description

A description of the Ethernet interface.

admin-status

Whether the Ethernet interface is sufficiently configured to be brought up.

oper-status

Whether the Ethernet interface is up or down.

uptime

Amount of time the Ethernet interface has been up.

mac-address

The MAC address, or physical address, of the Ethernet interface.

link-status

The current speed and duplex mode of the Ethernet interface.

link-speed

The current speed of the Ethernet interface.

link-duplex

The current duplex mode of the Ethernet interface.

rx-unicast-packets

The number of unicast packets transmitted on the Ethernet interface.

tx-unicast-packets

The number of unicast packets transmitted on the Ethernet interface.

rx-broadcast-packets

The number of broadcast packets received on the Ethernet interface.

tx-broadcast-packets

The number of broadcast packets transmitted on the Ethernet interface.

rx-multicast-packets

The number of multicast packets received on the Ethernet interface.

tx-multicast-packets

The number of multicast packets transmitted on the Ethernet interface.

rx-crc-errors

The number of received packets that do not contain the proper cyclic redundancy check (CRC), or checksum value.

tx-crc-errors

The number of transmitted packets that do not contain the proper cyclic redundancy check (CRC), or checksum value.

rx-drop-packets

The number of received packets that have been dropped on the Ethernet interface.

tx-drop-packets

The number of transmitted packets that have been dropped on the Ethernet interface.

rx-pause-packets

The number of pause packets received on the Ethernet interface. An overwhelmed network node can send a packet, which halts the transmission of the sender for a specified period of time.

tx-pause-packets

The number of pause packets transmitted on the Ethernet interface.

rx-filtering-packets

The number of received packets that were blocked or dropped through packet filtering.

tx-collisions

The number of collision events detected in transmitted data. Collisions occur when two devices attempt to place a packet on the network at the same time. Collisions are detected when the signal on the cable is equal to or exceeds the signal produced by two or more transceivers that are transmitting simultaneously.

rx-alignment-error

The number of received packets that do not end on an 8-bit boundary, known as an alignment error.

rx-undersize-error

The number of received packets that do not end on an 8-bit boundary, known as an alignment error.

rx-fragment-error

The number of received packets that contain fewer than the required minimum of 64 bytes, and have a bad CRC. Fragments are generally caused by collisions.

rx-oversize-error

The number of received packets that are larger than the maximum 1518 bytes and have a good CRC.

rx-jabber-error

The number of packets that are greater than 1518 bytes and have a bad CRC. If a transceiver does not halt transmission after 1518 bytes, it is considered to be a jabbering transceiver.

rx-packets

The number of packets received on the Ethernet interface.

tx-packets

The number of packets transmitted on the Ethernet interface.

rx-bytes

The number of bytes received on the Ethernet interface.

tx-bytes

The number of bytes transmitted on the Ethernet interface.

rx-errors

The total number of received packets that are marked as errors.

tx-errors

The total number of transmitted packets that are marked as errors.

tx-carrier-error

The number of transmission failures due to improper signaling, as with a duplex mismatch.

rx-fifo-error

The number of events in which the Ethernet driver detects an inability to service the receive packet queue, as with processor congestion.

tx-fifo-error

The number of events in which the Ethernet driver detects an inability to service the transmit packet queue, as with processor or network congestion.

show firewall

Displays the firewall status and statistics. By default, all firewall tables are displayed. To display individual tables, specify the table name on the show firewall command. In the command output, the policy for each chain is also displayed in brackets after the chain name. The firewall keeps a counter for each rule which counts the number of packets and bytes that have been matched against the rule. This is a useful tool to determine if a rule is correctly detecting packets. To clear the counters, use the 'clear firewall' command.

Parameters

filter

The currently defined filter table for IPv4.

mangle

The currently defined mangle table for IPv4.

raw

The currently defined raw table for IPv4.

nat

The currently defined nat table for IPv4.

show firewall6

Displays the firewall status and statistics. By default, all firewall tables are displayed. To display individual tables, specify the table name on the show firewall6 command. In the command output, the policy for each chain is also displayed in brackets after the chain name. The firewall keeps a counter for each rule which counts the number of packets and bytes that have been matched against the rule. This is a useful tool to determine if a rule is correctly detecting packets. To clear the counters, use the 'clear firewall6' command.

Parameters

filter

The currently defined filter table for IPv6.

mangle

The currently defined mangle table for IPv6.

show gre

Displays Generic Routing Encapsulation (GRE) tunnel status and statistics.

Parameters

admin-status

Whether the GRE tunnel is sufficiently configured to be brought up.

oper-status

Whether the GRE tunnel is up or down.

description

Description of the GRE tunnel.

ip-address

IP address for the GRE tunnel.

mask

Subnet mask for the GRE tunnel.

peer Remote peer for this GRE tunnel.

key Key being used by this GRE tunnel.

rx-bytes

Number of bytes received by the GRE tunnel.

rx-packets

Number of packets received by the GRE tunnel.

tx-bytes

Number of bytes transmitted by the GRE tunnel.

tx-packets

Number of packets transmitted by the GRE tunnel.

show ip-filter

Displays IP filter rules status.

Parameters

description

The description of this rule.

state

Whether the IP filter rule is enabled or disabled.

action

The action taken when the rule matches.

src-ip-address

The IPv4 source address of the incoming packet. Use a simple IP address, or use CIDR notation (example: 192.168.100.0/24)

src-ip-port

The source port(s) of the incoming packet. Use a simple port, a range (lowport:highport) or a list (port1,port2...,portn). Default '0' implies 'Any'. Source port is ignored when protocol does not explicitly include tcp or udp.

dst-ip-address

The IPv4 destination address of the incoming packet. Use a simple IP address, or use CIDR notation (example: 192.168.100.0/24)

dst-ip-port

The destination port(s) of the incoming packet. Use a simple port, a range (lowport:highport) or a list (port1,port2...,portn). Default '0' implies 'Any'. Dest port is ignored when protocol does not explicitly include tcp or udp.

src

The WAN or LAN that is the source of incoming traffic.

dst

The WAN or LAN that is the destination of outgoing traffic.

protocol

The protocol of the incoming packet. Use a single protocol, a list (tcp,udp,icmp), or exclusive value (any). When set to 'any', src-ip-port and dst-ip-port values are ignored.

show ipsec

Displays IPsec tunnel status and statistics.

Parameters

description

A description for this IPsec tunnel.

admin-status

Whether this IPsec tunnel is sufficiently configured to be brought up.

oper-status

Whether this IPsec tunnel is up or down.

uptime

Amount of time, in seconds, this IPsec tunnel has been up.

peer-ip

Peer IP address for this IPsec tunnel.

local-network

Local network for this IPsec tunnel.

local-mask

Local network mask for this IPsec tunnel.

remote-network

Remote network for this IPsec tunnel.

remote-mask

Remote network mask for this IPsec tunnel.

key-negotiation

Key negotiation used for this IPsec tunnel.

rekeying-in

Amount of time before the keys are renegotiated.

ah-ciphers

Authentication Header (AH) Ciphers.

esp-ciphers

Encapsulating Security Payload (ESP) Ciphers.

renegotiating-in

Renegotiating in.

outbound-esp-sas Outbound ESP Security Associations (SA).

inbound-esp-sas

Inbound ESP Security Associations (SA).

rx-bytes

Number of bytes received over the IPsec tunnel.

tx-bytes

Number of bytes transmitted over the IPsec tunnel.

ike-spis

IKE Security Parameter Indexes.

show ipstats

Displays system-level Internet Protocol (IP) status and statistics.

Parameters

rx-bytes Number of bytes received.

rx-packets Number of packets received.

rx-multicast-packets Number of multicast packets received.

rx-multicast-bytes Number of multicast bytes received.

rx-broadcast-packets Number of broadcast packets received.

rx-forward-datagrams Number of forwarded packets received.

rx-delivers Number of received packets delivered.

rx-reasm-requireds Number of received packets that required reassembly.

rx-reasm-oks Number of received packets that were reassembled without errors.

rx-reasm-fails Number of received packets for which reassembly failed.

rx-discards Number of received IP packets that have been discarded.

rx-no-routes Number of received packets that have no routing information associated with them.

rx-address-errors

Number of received packets containing IP address errors.

rx-unknown-protos

Number of received packets where the protocol is unknown.

rx-truncated-packets

Number of received packets where the data was truncated.

tx-bytes

Number of bytes transmitted.

tx-packets Number of packets transmitted.

tx-multicast-packets Number of multicast packets transmitted.

tx-multicast-bytes

Number of multicast bytes transmitted.

tx-broadcast-packets

Number of broadcast packets transmitted.

tx-forward-datagrams

Number of forwarded packets transmitted.

tx-frag-requireds

Total number of transmitted IP packets that required fragmenting.

tx-frag-oks

Number of transmitted IP packets that were fragmented without errors.

tx-frag-fails

Number of transmitted IP packets for which fragmentation failed.

tx-frag-creates

Number of IP fragments created.

tx-discards

Number of transmitted IP packets that were discarded.

tx-no-routes

Number of transmitted IP packets that had no routing information associated with them.

show lan

Displays Local Area Network (LAN) status and statistics.

Parameters

admin-status

Whether the LAN is sufficiently configured to be brought up.

oper-status

Whether the LAN is up or down.

description

Description of the LAN.

interfaces

The physical interfaces for the LAN.

mtu

Maximum Transmission Unit for the LAN.

ip-address

IP address for the LAN.

dhcp-client

Enables or disable the DHCP client for this LAN.

mask

Subnet mask for the LAN.

dns1

Preferred DNS server.

dns2 Alternate DNS server.

rx-bytes Number of bytes received by the LAN.

rx-packets Number of packets received by the LAN.

tx-bytes

Number of bytes transmitted by the LAN.

tx-packets

Number of packets transmitted by the LAN.

ipv6-address

The IPv6 address or addresses assigned to the LAN.

show log

Displays log(event or system/kernel).

Parameters

system

Display the system/kernel log.

show openvpn-client

Displays status and statistics about this OpenVPN client.

Parameters

description

A description of this OpenVPN client.

admin-status

Whether this OpenVPN client is configured to be running.

oper-status

Whether this OpenVPN client is actually running.

server

The IP address or fully-qualified domain name of the OpenVPN server to which this OpenVPN client attempts to connect.

interface

The name of the local virtual network interface (TUN/TAP adapter) that this OpenVPN client uses.

ip-address

The IP address assigned to the local virtual network interface (TUN/TAP adapter) that this OpenVPN client uses.

mask

The subnet mask assigned to the local virtual network interface (TUN/TAP adapter) that this OpenVPN client uses.

mtu

The Maximum Transmission Unit (MTU) size configured for the local virtual network interface (TUN/TAP adapter) that this OpenVPN client uses.

interface-rx-bytes

The number of bytes received on the local virtual network interface (TUN/TAP adapter) that this OpenVPN client uses.

interface-tx-bytes

The number of bytes transmitted on the local virtual network interface (TUN/TAP adapter) that this OpenVPN client uses.

interface-rx-packets

The number of packets received on the local virtual network interface (TUN/TAP adapter) that this OpenVPN client uses.

interface-tx-packets

The number of packets transmitted on the local virtual network interface (TUN/TAP adapter) that this OpenVPN client uses.

socket-rx-bytes

The number of bytes received on the local UDP/TCP socket that this OpenVPN client uses.

socket-tx-bytes

The number of bytes transmitted on the local UDP/TCP socket that this OpenVPN client uses.

show openvpn-server

Displays status and statistics about this OpenVPN server.

Parameters

description

A description of this OpenVPN server.

admin-status

Whether this OpenVPN server is configured to be running.

oper-status

Whether this OpenVPN server is actually running.

interface

The name of the local virtual network interface (TUN/TAP adapter) that this OpenVPN server uses.

ip-address

The IP address assigned to the local virtual network interface (TUN/TAP adapter) that this OpenVPN server uses.

mask

The subnet mask assigned to the local virtual network interface (TUN/TAP adapter) that this OpenVPN server uses.

mtu

The Maximum Transmission Unit (MTU) size configured for the local virtual network interface (TUN/TAP adapter) that this OpenVPN server uses.

interface-rx-bytes

The number of bytes received on the local virtual network interface (TUN/TAP adapter) that this OpenVPN server uses.

interface-tx-bytes

The number of bytes transmitted on the local virtual network interface (TUN/TAP adapter) that this OpenVPN server uses.

interface-rx-packets

The number of packets received on the local virtual network interface (TUN/TAP adapter) that this OpenVPN server uses.

interface-tx-packets

The number of packets transmitted on the local virtual network interface (TUN/TAP adapter) that this OpenVPN server uses.

show port-forward

Displays port forwarding rules.

Parameters

port

The TCP or UDP port or ports from which incoming packets are forwarded.

to-port

The TCP or UDP port that packets are forwarded to after being received on the incoming port(s).

to-ip-address

The IPv4 address that packets are forwarded to after being received on the incoming interface.

description

The description of this rule.

state

Enables or disables a port forward rule. Invalid rules are not enabled.

protocol

The protocol or protocols of the packets to forward.

src

The WAN or LAN that is the source of incoming traffic to be forwarded.

show python

Displays running Python applications

Parameters

applications

Displays running Python applications

show route

Displays all IP routes in the IPv4 routing table.

Parameters

destination

Destination of the route.

gateway

The gateway for the route.

metric

The metric assigned to the route.

protocol

The protocol for the route.

idx

The index number for the route.

interface The interface for the route.

status Status of the route.

show serial

Displays serial interface status and statistics.

Parameters

description

A description of the serial interface.

admin-status

Whether the serial interface is sufficiently configured to be brought up.

oper-status

Whether the serial interface is up or down.

uptime

Amount of time the serial interface has been up.

tx-bytes

Number of bytes transmitted over the serial interface.

rx-bytes

Number of bytes received over the serial interface.

overrun

Number of times the next data character arrived before the hardware could move the previous character.

overflow

Number of times the received buffer was full when additional data was received.

line-status

The current signal detected on the serial line.

show system

Displays system status and statistics.

Parameters

model The model name for the device.

part-number The part number for the device.

serial-number The serial number for the device.

hardware-version The hardware version for the device.

bank The current firmware flash memory bank in use.

firmware-version The current firmware version running on the device.

bootloader-version

The current bootloader version running on the device.

config-file

The current configuration file loaded on the device.

uptime The time the device has been up.

system-time The current time on the device.

cpu-usage Current CPU usage.

cpu-min Minimum CPU usage.

cpu-max Maximum CPU usage. **cpu-avg** Average CPU usage.

description Description for this device.

location Location details for this device.

contact Contact information for this device.

temperature The current temperature of the device.

core-temperature

The current temperature of the CPU core.

show tech-support

Displays information needed by Digi Technical Support when diagnosing device issues.

Parameters

output-file

The name of the file to which the command output is written. Optional.

show vrrp

Displays VRRP tunnel status and statistics.

Parameters

state

Whether the VRRP daemon is configured to be running.

interface

Displays current interface being used by the VRRP daemon.

current-state

The state of the VRRP daemon on this router.

current-master

Displays IP address and priority of the router that is currently the VRRP master.

current-priority

The current VRRP priority of this router.

last-transition

The most recent date that this router transitioned between VRRP states.

became-master

The total number of times that this router has transitioned into the VRRP master state.

released-master

The total number of times that this router has transitioned out of the VRRP master state.

adverts-sent

The total number of VRRP advertisements sent by this router.

adverts-received

The total number of VRRP advertisements received by this router.

priority-sent

The total number of VRRP packets with a priority of '0' sent by this router.

priority-received

The total number of VRRP packets with a priority of '0' received by this router.

show wan

Displays Wide Area Network (WAN) status and statistics.

Parameters

admin-status

Whether the WAN is sufficiently configured to be brought up.

oper-status

Whether the WAN is up or down.

interface

The physical interface assigned to the WAN.

ip-address

IP address for the WAN.

dns1

Preferred DNS server.

dns2 Alternate DNS server.

gateway

The gateway to use for the static route.

mask

Subnet mask for the WAN.

rx-bytes

Number of bytes received by the WAN.

rx-packets

Number of packets received by the WAN.

tx-bytes

Number of bytes transmitted by the WAN.

tx-packets

Number of packets transmitted by the WAN.

probe-host

The IPv4 address or fully qualified domain name (FQDN) of the device to send probes to.

probe-resp-seconds

Number of seconds since the device received the last probe response. A value of -1 indicates that probes are disabled. A value of -2 indicates the device has not received any probe responses yet.

ipv6-address

The IPv6 address or addresses assigned to the WAN.

ipv6-dns1

Preferred IPv6 DNS server.

ipv6-dns2

Alternate IPv6 DNS server.

show web-filter

Displays status for the web filtering service used for all WAN traffic.

Parameters

state

Whether web filtering is enabled.

device-id

Device ID from the Cisco Umbrella Network Device Registration API.

show wifi

Displays status and statistics for a Wi-Fi 2.4 GHz interface.

Parameters

interface

The name of the Wi-Fi 2.4 GHz interface.

description

A descriptive name for the Wi-Fi 2.4 GHz interface.

admin-status

Whether the Wi-Fi 2.4 GHz interface is sufficiently configured to be brought up.

oper-status

Whether the Wi-Fi 2.4 GHz interface is up or down.

channel

The radio channel on which the Wi-Fi 2.4 GHz interface is operating.

ssid

Service Set Identifier (SSID) for the Wi-Fi 2.4 GHz interface.

security

Security for the Wi-Fi 2.4 GHz interface.

rx-bytes

The number of bytes received by the Wi-Fi 2.4 GHz interface.

tx-bytes

The number of bytes transmitted by the Wi-Fi 2.4 GHz interface.

rx-packets

The number of packets transmitted by the Wi-Fi 2.4 GHz interface.

tx-packets

The number of packets transmitted by the Wi-Fi 2.4 GHz interface.

rx-multicasts

The number of receive multicasts by the Wi-Fi 2.4 GHz interface.

tx-collisions

The number of transmit collisions by the Wi-Fi 2.4 GHz interface.

rx-errors

The number of receive errors by the Wi-Fi 2.4 GHz interface.

tx-errors

The number of transmit errors by the Wi-Fi 2.4 GHz interface.

rx-dropped

The number of receive packets dropped by the Wi-Fi 2.4 GHz interface.

tx-dropped

The number of transmit packets dropped by the Wi-Fi 2.4 GHz interface.

rx-fifo-errors

The number of receive FIFO errors by the Wi-Fi 2.4 GHz interface.

tx-fifo-errors

The number of transmit FIFO errors by the Wi-Fi 2.4 GHz interface.

rx-crc-errors

The number of received packets by the Wi-Fi 2.4 GHz interface that do not contain the proper cyclic redundancy check (CRC), or checksum value.

tx-aborted-errors

The number of transmit aborted errors by the Wi-Fi 2.4 GHz interface.

rx-frame-errors

The number of receive frame errors by the Wi-Fi 2.4 GHz interface.

tx-carrier-errors

The number of transmit carrier errors by the Wi-Fi 2.4 GHz interface.

rx-length-errors

The number of receive length errors by the Wi-Fi 2.4 GHz interface.

tx-heartbeat-errors

The number of transmit heartbeat errors by the Wi-Fi 2.4 GHz interface.

rx-missed-errors

The number of receive missed errors by the Wi-Fi 2.4 GHz interface.

tx-window-errors

The number of transmit window errors by the Wi-Fi 2.4 GHz interface.

rx-over-errors

The number of receive over errors by the Wi-Fi 2.4 GHz interface.

show wifi5g

Displays status and statistics for a Wi-Fi 5 GHz interface.

Parameters

interface

The name of the Wi-Fi 5 GHz interface.

description

A descriptive name for the Wi-Fi 5 GHz interface.

admin-status

Whether the Wi-Fi 5 GHz interface is sufficiently configured to be brought up.

oper-status

Whether the Wi-Fi 5 GHz interface is up or down.

channel

The radio channel on which the Wi-Fi 5 GHz interface is operating.

ssid

Service Set Identifier (SSID) for the Wi-Fi 5 GHz interface.

security

Security for the Wi-Fi 5 GHz interface.

rx-bytes

The number of bytes received by the Wi-Fi 5 GHz interface.

tx-bytes

The number of bytes transmitted by the Wi-Fi 5 GHz interface.

rx-packets

The number of packets transmitted by the Wi-Fi 5 GHz interface.

tx-packets

The number of packets transmitted by the Wi-Fi 5 GHz interface.

rx-multicasts

The number of receive multicasts by the Wi-Fi 5 GHz interface.

tx-collisions

The number of transmit collisions by the Wi-Fi 5 GHz interface.

rx-errors

The number of receive errors by the Wi-Fi 5 GHz interface.

tx-errors

The number of transmit errors by the Wi-Fi 5 GHz interface.

rx-dropped

The number of receive packets dropped by the Wi-Fi 5 GHz interface.

tx-dropped

The number of transmit packets dropped by the Wi-Fi 5 GHz interface.

rx-fifo-errors

The number of receive FIFO errors by the Wi-Fi 5 GHz interface.

tx-fifo-errors

The number of transmit FIFO errors by the Wi-Fi 5 GHz interface.

rx-crc-errors

The number of received packets by the Wi-Fi 5 GHz interface that do not contain the proper cyclic redundancy check (CRC), or checksum value.

tx-aborted-errors

The number of transmit aborted errors by the Wi-Fi 5 GHz interface.

rx-frame-errors

The number of receive frame errors by the Wi-Fi 5 GHz interface.

tx-carrier-errors

The number of transmit carrier errors by the Wi-Fi 5 GHz interface.

rx-length-errors

The number of receive length errors by the Wi-Fi 5 GHz interface.

tx-heartbeat-errors

The number of transmit heartbeat errors by the Wi-Fi 5 GHz interface.

rx-missed-errors

The number of receive missed errors by the Wi-Fi 5 GHz interface.

tx-window-errors

The number of transmit window errors by the Wi-Fi 5 GHz interface.

rx-over-errors

The number of receive over errors by the Wi-Fi 5 GHz interface.

snmp

Configures Simple Network Management Protocol (SNMP) management for this device.

Syntax

snmp <parameter> <value>

Parameters

v1

Enables or disables SNMPv1 support. Value is either on or off. The default value is off.

v2c

Enables or disables SNMPv2c support. Value is either on or off. The default value is off.

v3

Enables or disables SNMPv3 support. Value is either on or off. The default value is off.

port

The port on which the device listens for SNMP packets. Accepted value is any integer from 0 to 65535. The default value is 161.

authentication-traps

Enables or disables SNMP authentication traps. Value is either on or off. The default value is off.

Examples

snmp vl on

Enable SNMPv1 support.

snmp v2c on

Enable SNMPv2c support.

snmp port 161

Set the SNMP listening port to 161.

snmp-community

Configures SNMPv1 and SNMPv2c communities.

Syntax

snmp-community <1 - 10> <parameter> <value>

Parameters

community

SNMPv1 or SNMPv2c community name. Accepted value is any string up to 128 characters.

access

SNMPv1 or SNMPv2c community access level. Accepted values can be one of read-only or read-write. The default value is read-only.

Examples

snmp-community 1 community public

Set the first SNMPv1 or SNMPv2c community name to 'public.'

snmp-community 1 access read-write

Set the first SNMPv1 or SNMPv2c community access level to 'read-write.'

snmp-user

Configures SNMPv3 users.

Syntax

snmp-user <1 - 10> <parameter> <value>

Parameters

user

SNMPv3 user name. Accepted value is any string up to 32 characters.

authentication

SNMPv3 authentication type. Accepted values can be one of none, md5 or sha1. The default value is none.

privacy

SNMPv3 privacy type. To use SNMPv3 privacy (that is, Data Encryption Standard (DES) or Advanced Encryption Standard (AES)) for the SNMP user, the SNMPv3 authentication type must be set to MD5 or SHA1.

Accepted values can be one of none, aes or des. The default value is none.

access

SNMPv3 user access level. Accepted values can be one of read-only or read-write. The default value is read-only.

authentication-password

SNMPv3 authentication password. The password is stored in encrypted form. Accepted value is any string up to 64 characters.

privacy-password

SNMPv3 privacy password. The password is stored in encrypted form. Accepted value is any string up to 64 characters.

sntp

Configures system date and time using Simple Network Time Protocol (SNTP). SNTP continually polls an external NTP time server on either a private company network or the internet at a configured interval rate.

Syntax

sntp <parameter> <value>

Parameters

state

Enables or disables SNTP to set the system date and time. Accepted values can be one of off or on. The default value is on.

server

The SNTP server to use for setting system date and time. Value should be a fully qualified domain name. The default value is time.devicecloud.com.

update-interval

The interval, in minutes, at which the device checks the SNTP server for date and time. Accepted value is any integer from 1 to 10080. The default value is 1440.

ssh

Configures Secure Shell (SSH) server settings.

Syntax

ssh <parameter> <value>

Parameters

server

Enables or disables the SSH server. Value is either on or off. The default value is on.

port

The port number for the SSH Server. Accepted value is any integer from 1 to 65535. The default value is 22.

ca-key

The base64 encoded public key for the certificate authority trusted to sign SSH certificates for user authentication.

This element is available to super users only.

Accepted value is any string up to 716 characters.

ca-key-type

The key type of the CA public key

This element is available to super users only.

Accepted values can be one of none, ecdsa-sha2-nistp256, ecdsa-sha2-nistp384, ecdsa-sha2-nistp521, ssh-ed25519 or ssh-rsa. The default value is none.

syslog

Configures remote syslog servers

Syntax

syslog <1 - 2> <parameter> <value>

Parameters

server

Set the syslog server ip address. You can configure the syslog to log remotely to this ip address. Value should be a fully qualified domain name.

server-port

This is the port that syslog server uses to report events. Accepted value is any integer from 0 to 65535. The default value is 514.

mode

This allows you to send syslog messages with either TCP or UDP. Accepted values can be one of udp or tcp. The default value is udp.

system

Configures system settings.

Syntax

system <parameter> <value>

Parameters

prompt

The prompt displayed in the command-line interface. You can configure the system prompt to use the device's serial number by including '%s' in prompt value. For example, a 'prompt' parameter value of 'LR54_%s' resolves to 'LR54_LR123456.'

Accepted value is any string up to 16 characters. The default value is digi.router>.

timeout

The time, in seconds, after which a web or command-line interface session times out if there is no activity.

Accepted value is any integer from 60 to 3600. The default value is 300.

loglevel

The minimum event level that is logged in the event log.

Accepted values can be one of emergency, alert, critical, error, warning, notice, info or debug. The default value is info.

name

The name of this device. Accepted value is any string up to 255 characters.

location

The location of this device. Accepted value is any string up to 255 characters.

contact

Contact information for this device. Accepted value is any string up to 255 characters.

page

Sets the page size for command-line interface output. Accepted value is any integer from 0 to 100. The default value is 40.

device-specific-passwords

Enables or disables device-specific passwords. Encrypted passwords can be device-specific or not. When encrypted passwords are device-specific, they are more secure, but cannot be copied onto another device. Value is either on or off. The default value is off.

description

A description of this device. Accepted value is any string up to 255 characters.

passthrough

The TCP port used for passthrough. The value 0 disables passthrough mode. A reboot is required for changes to this setting to take effect.

Accepted value is any integer from 0 to 65535. The default value is 0.

wizard

Enables or disables the Getting Started Wizard. To skip the wizard, disable this option. Value is either on or off. The default value is on.

ipsec-debug

Enables or disables display of IPsec debugging messages. These messages help diagnose issues with IPsec configuration and interoperability.

Accepted values can be one of off or on. The default value is off.

log-to-file

Enables or disables logging TLR events to a file. If disabled, the log is created in RAM, and is lost when the device is rebooted. If enabled, the log is created to flash and is saved on reboot. Saving event logs to files and keeping them resident for some time is not recommended for normal operations, as this practice can lead to additional wear to the device's flash memory.

Value is either on or off. The default value is off.

log-system-to-file

If enabled, log system/kernel events to system.log (on flash, will be saved on reboot). This is not recommended for normal operations, as this practice can lead to additional wear to the device's flash memory.

Value is either on or off. The default value is off.

timezone

Sets the system timezone. When the date and time is set using SNTP, the system time is set to Universal Coordinated Time (UTC) and not to your local time. In addition, the date and time, whether it is set manually or using SNTP, does not automatically change to reflect Daylight Saving Time (DST). By setting the time zone, the device displays the local time for that time zone and automatically adjusts for daylight saving time.

Accepted values can be one of none, canada-atlantic, canada-central, canada-eastern, canadamountain, canada-newfoundland, canada-pacific, europe-central, europe-eastern, europe-western, uk-ireland, us-alaska, us-arizona, us-central, us-eastern, us-hawaii, us-indiana, us-mountain or uspacific. The default value is none.

log-to-syslog

Enables logging TLR events to a syslog server Accepted values can be multiple values of syslog1, syslog2 and off. The default value is off.

log-system-to-syslog

Enables logging system events to a syslog server Accepted values can be multiple values of syslog1, syslog2 and off. The default value is off.

traceroute

Traces the network route to a remote IP host.

Syntax

```
traceroute [src-ip <ip-address>] [interface <interface>] [hops <n>] [timeout
<secs>] [size <bytes>] host
```

Parameters

src-ip

Use this source IP address for outgoing packets.

interface

The interface from which traceroute messages are sent.

hops

The maximum number of hops to allow.

timeout

The maximum number of seconds to wait for a response from a hop.

size

The size, in bytes, of the message to send.

host

The IP address of the destination host.

Examples

traceroute 8.8.8.8

Finds the network route to IP address 8.8.8.8

unlock

Unlock a SIM card and set a new SIM card PIN code. This command is available to super users only.

Syntax

unlock <sim1 | sim2> <puk code> <new sim pin>

Parameters

sim

The SIM slot number in which the SIM card is inserted. Enter sim1 if the SIM card is inserted in slot SIM1, or sim2 if the SIM card is inserted in slot SIM2.

puk_code

The PUK code for the SIM card. This code can be between 8 and 10 digits long.

new_sim_pin

The new SIM card PIN. This PIN can be between 4 and 8 digits long.

Examples

unlock sim1 12345678 1234

Unlock the SIM card in SIM1 with PUK code 12345678 and set the new SIM PIN to 1234.

unlock sim2 12345678 1234

Unlock the SIM card in SIM2 with PUK code 12345678 and set the new SIM PIN to 1234.

update

Performs system updates, such as firmware updates, setting the cellular carrier, and setting the configuration file used at bootup and when saving configuration. Firmware update options include specifying the device system firmware or the cellular module firmware to load onto the device. This command is available to super users only.

Syntax

```
update firmware <firmware-file>
update modem <firmware-images-path | carrier-name>
update config <configuration-file>
update carrier <carrier-name>
```

Parameters

firmware

Updates the device system firmware.

modem

Updates the cellular module firmware.

config

Sets the configuration filename.

carrier

Update the cellular module for a carrier. Current allowed carrier values are att, verizon, and generic.

Examples

update config config.da1

Set the configuration file to 'config.da1.'

update firmware filename

Initiate the device system firmware update process.

update modem

Initiate the cellular module firmware update process. This process retrieves image files from Digi International site and downloads the images to the module.

update modem ./modem_fw

Initiate the cellular module firmware update process. This process uploads firmware files from the directory ./modem_fw to the cellular module.

update modem verizon

Initiate the cellular module firmware update process. This process retrieves firmware files from the Digi repository of cellular module firmware files and uploads the images to the module.

update carrier att

Initiates the cellular module to use ATT.

user

Configures users and user access privileges.

Syntax

user <1 - 10> <parameter> <value>

Parameters

name

User names are case-insensitive strings, which must start with a letter or underscore (_), but otherwise can contain letters, digits, underscores (_), or hyphens (-). In addition, they can end with a dollar sign (\$). No other characters are allowed.

Accepted value is any string up to 32 characters.

password

The password for the user. Accepted value is any string up to 128 characters.

access

The user access level for the user. User access levels determine the level of control users have over device features and their settings. The 'super' access permission allows the most control over features and settings, and 'read-only' the lowest control over features and settings.

Accepted values can be one of read-only, read-write or super. The default value is super.

ssh-key

The base64 encoded SSH public key to use for authentication of this user Accepted value is any string up to 716 characters.

ssh-key-type

The key type of the SSH public key

Accepted values can be one of none, ecdsa-sha2-nistp256, ecdsa-sha2-nistp384, ecdsa-sha2-nistp521, ssh-ed25519 or ssh-rsa. The default value is none.

Examples

user 1 username _Username1234\$

Valid user 1 username starting with _ and ending with \$.

user 3 username userName-1234

Valid user 3 username containing a dash.

vrrp

Configures Virtual Router Redundancy Protocol (VRRP). This allows multiple routers to work together to provide a LAN with high-reliability routing to the Internet or another network.

Syntax

vrrp <parameter> <value>

Parameters

state

Enable or disable Virtual Router Redundancy Protocol (VRRP). Value is either on or off. The default value is off.

initial-state

The initial VRRP state of this router when it is enabled. Accepted values can be one of backup or master. The default value is backup.

interface

The LAN interface on which to run VRRP. Accepted values can be one of lan1, lan2, lan3, lan4, lan5, lan6, lan7, lan8, lan9 or lan10. The default value is lan1.

ip-address

The virtual IP address assigned to the VRRP virtual router. Each client on the LAN should use this address as the default gateway. Typically, the DHCP server distributes this address to the each client. Value should be an IPv4 address.

router-id

The ID of the VRRP virtual router. Accepted value is any integer from 1 to 255. The default value is 1.

priority

The VRRP priority of this router. Accepted value is any integer from 1 to 255. The default value is 100.

interval

The time in seconds betweeen VRRP advertisement packets. All of the routers in the VRRP group should use the same interval.

Accepted value is any integer from 1 to 60. The default value is 1.

wan

Configures a Wide Area Network (WAN). The physical communications interface for the WAN can be an Ethernet or cellular interface that connects to a remote network, such as the internet.

Syntax

wan <1 - 10> <parameter> <value>

Parameters

interface

The physical interface to use for the WAN.

Accepted values can be one of none, eth1, eth2, eth3, eth4, cellular1 or cellular2. The default value is none.

nat

Enables Network Address Translation (NAT) for outgoing packets on the WAN. NAT is a mechanism that allows sending packets from a private network (for example, 10.x.x.x or 192.168.x.x) over a public network. The device changes the source IP address of the packet to be the address for the WAN interface, which is a public IP address. This allows the device on the public network to know how to send responses.

Value is either on or off. The default value is on.

timeout

The time, in seconds, to wait for the physical interface to connect and to receive a probe response before failing over to a lower priority interface.

Accepted value is any integer from 10 to 3600. The default value is 180.

probe-host

The IPv4 or fully qualified domain name (FQDN) of the address of the device itself. The WAN failover feature sends probe packets over the WAN to the IP address of this device. Value should be a fully qualified domain name.

probe-timeout

Timeout, in seconds, to wait for a response to a probe. The value for this parameter must be smaller than the probe-interval and timeout parameter values or the configuration is considered invalid, and an error message is written to the system log.

Accepted value is any integer from 1 to 60. The default value is 5.

probe-interval

Interval, in seconds, between sending probe packets. The value for probe-interval must be larger than the probe-timeout value. If not, the WAN failover configuration is considered invalid, and an error message is written to the system log.

Accepted value is any integer from 2 to 3600. The default value is 60.

probe-size

Size of probe packets sent to detect WAN failures. Accepted value is any integer from 64 to 1500. The default value is 64.

activate-after

The time, in seconds, that the primary interface needs to be up before switching back to it as the active interface. If probing is active, no probes are permitted to be lost during this period. Otherwise, the timer is restarted.

Accepted value is any integer from 0 to 3600. The default value is 0.

retry-after

The time, in seconds, to wait before retrying this interface after failing over to a lower priority one. Use a large retry timeout when both interfaces are cellular interfaces.

Accepted value is any integer from 10 to 3600. The default value is 180.

dhcp

Enables or disables the DHCP client. The DHCP client is used to automatically get an IP address for the interface from a DHCP server.

Value is either on or off. The default value is on.

ip-address

The IPv4 address to be statically assigned to this WAN if DHCP is disabled. Value should be an IPv4 address.

mask

The IPv4 mask to be statically assigned to this WAN if DHCP is disabled. Value should be an IPv4 address. The default value is 255.255.255.0.

gateway

The gateway to use for the default route. Value should be an IPv4 address.

dns1

The IPv4 address of the preferred DNS server. This value overrides the value assigned by DHCP. Value should be an IPv4 address.

dns2

The IPv4 address of the alternate DNS server used if the device cannot communicate with the preferred server.

Value should be an IPv4 address.

allow-ssh-access

Allow SSH access on this WAN interface. Custom firewall rules may affect the behavior of this parameter.

Value is either on or off. The default value is off.

allow-https-access

Allow HTTPS access on this WAN interface. Custom firewall rules may affect the behavior of this parameter.

Value is either on or off. The default value is off.

state

Enables or disables a WAN interface Value is either on or off. The default value is on.

ipv6-state

Enables or disables IPv6 support on this WAN interface Value is either on or off. The default value is off.

ipv6-prefix-length

Set the length, in bits, of the IPv6 address prefix to request from the upstream router for this WAN. The size of the prefix determines how many LANs can support IPv6. Request a prefix length of 60 bits or less to support up to 16 LANs.

Accepted value is any integer from 48 to 64. The default value is 60.

qos

Enables or disables Quality of Service (QoS) on this WAN interface Value is either on or off. The default value is off.

bandwidth-upstream

Sets the upstream bandwidth of the WAN interface in kbps. Accepted value is any integer from 1 to 1000000. The default value is 1000000.

web-filter

Configures the web filtering service to be used for all WAN traffic. Use of a web filtering service like Cisco Umbrella may provide content filtering, security, privacy, and monitoring features. If web filtering is enabled, all DNS requests passing through the router are redirected to the selected web filtering service, ensuring that computers on the LAN cannot bypass the web filter.

Syntax

web-filter <parameter> <value>

Parameters

state

Enables or disables the use of a web filtering service for all WAN traffic. Value is either on or off. The default value is off.

service

Selects the web filtering service that the router uses for all WAN traffic. Accepted values can be one of umbrella. The default value is umbrella.

token

The customer-specific API token for the Cisco Umbrella service. This token can be found on the Cisco Umbrella dashboard under the Network Devices area. The router uses this token to automatically obtain a device ID using the Network Device Registration API.

Accepted value is any string up to 255 characters.

wifi

Configures a Wi-Fi 2.4 GHz interface.

Syntax

wifi <1 - 4> <parameter> <value>

Parameters

state

Enables or disables the Wi-Fi 2.4 GHz interface. Accepted values can be one of off or on. The default value is off.

description

A descriptive name for the Wi-Fi 2.4 GHz interface. Accepted value is any string up to 255 characters.

ssid

Service Set Identifier (SSID) for the Wi-Fi 2.4 GHz interface. You can configure the SSID to use the device's serial number by including '%s' in the SSID. For example, an 'ssid' parameter value of 'LR54_%s' resolves to 'LR54_LR123456.'

Accepted value is any string up to 32 characters.

security

Security for the Wi-Fi 2.4 GHz interface.

Accepted values can be one of none, wpa2-personal, wpa-wpa2-personal, wpa2-enterprise or wpa-wpa2-enterprise. The default value is wpa2-personal.

password

Password for the Wi-Fi 2.4 GHz interface. The password must be 8-63 ASCII or 64 hexadecimal characters

Accepted value is any string up to 132 characters.

broadcast-ssid

Enables or disables broadcasting the SSID in beacon packets. Disabling the SSID prevents clients from easily detecting the presence of this access point.

Accepted values can be one of off or on. The default value is on.

isolate-clients

Enables or disables Wi-Fi client isolation, which prevents clients connected to the Wi-Fi access point from communicating with each other.

Accepted values can be one of off or on. The default value is on.

isolate-ap

Enables or disables clients on a Wi-Fi access point from communicating with clients on other Access Points.

Accepted values can be one of off or on. The default value is on.

radius-server

The IP address for the RADIUS server for WPA/WPA2-Enterprise. Value should be an IPv4 address.

radius-server-port

The port for the RADIUS server. Accepted value is any integer from 1 to 65535. The default value is 1812.

radius-password

The password for the RADIUS server. Accepted value is any string up to 64 characters.

pmf

Enables or disables Protected Management Frames for the Wi-Fi 2.4 GHz interface. Enabling this feature is currently not recommended, as it will prevent most clients from being able to connect to the Wi-Fi access point.

Accepted values can be one of off or on. The default value is off.

wifi5g

Configures a Wi-Fi 5 GHz interface.

Syntax

wifi5g <1 - 4> <parameter> <value>

Parameters

state

Enables or disables the Wi-Fi 5 GHz interface. Accepted values can be one of off or on. The default value is off.

description

A descriptive name for the Wi-Fi 5 GHz interface. Accepted value is any string up to 255 characters.

ssid

Service Set Identifier (SSID) for the Wi-Fi 5 GHz interface. You can configure the SSID to use the device's serial number by including '%s' in the SSID. For example, an 'ssid' parameter value of 'LR54_%s' resolves to 'LR54_LR123456.'

Accepted value is any string up to 32 characters.

security

Security for the Wi-Fi 5 GHz interface.

Accepted values can be one of none, wpa2-personal, wpa-wpa2-personal, wpa2-enterprise or wpa-wpa2-enterprise. The default value is wpa2-personal.

password

Password for the Wi-Fi 5 GHz interface. The password must be 8-63 ASCII or 64 hexadecimal characters

Accepted value is any string up to 132 characters.

broadcast-ssid

Enables or disables broadcasting the SSID in beacon packets. Disabling the SSID prevents clients from easily detecting the presence of this access point.

Accepted values can be one of off or on. The default value is on.

isolate-clients

Enables or disables Wi-Fi client isolation, which prevents clients connected to the Wi-Fi access point from communicating with each other.

Accepted values can be one of off or on. The default value is on.

isolate-ap

Enables or disables clients on a Wi-Fi access point from communicating with clients on other Access Points.

Accepted values can be one of off or on. The default value is on.

radius-server

The RADIUS server for WPA/WPA2-Enterprise. Value should be an IPv4 address.

radius-server-port

The port for the RADIUS server. Accepted value is any integer from 1 to 65535. The default value is 1812.

radius-password

The password for the RADIUS server. Accepted value is any string up to 64 characters.

pmf

Enables or disables Protected Management Frames for the Wi-Fi 5 GHz interface. Enabling this feature is currently not recommended, as it will prevent most clients from being able to connect to the Wi-Fi access point.

Accepted values can be one of off or on. The default value is off.

wifi-global

Configures global settings for Wi-Fi interfaces.

Syntax

wifi-global <parameter> <value>

Parameters

wifi-channel

The channel to use for Wi-Fi 2.4 GHz interfaces. Accepted values can be one of auto, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or 11. The default value is auto.

wifi5g-channel

The channel to use for Wi-Fi 5 GHz interfaces.

Accepted values can be one of auto, 36, 40, 44, 48, 52, 56, 60, 64, 100, 104, 108, 112, 116, 132, 136 or 140. The default value is 36.

wifi-txpower

The TX power to use for Wi-Fi 2.4 GHz interfaces by percentage. Accepted value is any integer from 1 to 100. The default value is 100.

wifi5g-txpower

The TX power to use for Wi-Fi 5 GHz interfaces by percentage. Need reboot after change. Accepted value is any integer from 1 to 100. The default value is 100.

Advanced topics

Using firewall and firewall6 commands	372
Understanding system firewall rules	382

Using firewall and firewall6 commands

The TransPort firewall is a full stateful firewall that controls which packets are allowed into and out of the device. Firewalls can filter packets based on the IP address, protocol, TCP ports, and UDP ports. You can either:

 Allow TransPort to automatically manage firewall rules using built-in features, such as port forwarding and IP filters.

or

Directly manage firewalls using the firewall and firewall6 commands.

This section describes how to manage firewalls using the firewall and firewall6 commands. Use the firewall command to manage IPv4 traffic, and use the firewall6 command to manage IPv6 traffic. Both firewall commands function in the same manner except the firewall6 command does not manage a **nat** table.

For details on how to manage firewalls using built-in TransPort features, see Understanding system firewall rules.

TransPort firewalls based on iptables firewall

The TransPort firewall and firewall6 commands are based on the open-source firewall named **iptables**. Both commands use the same syntax as **iptables**, except the rules start with the keyword **firewall** or **firewall6** instead of **iptables**. The firewall syntax is case-sensitive.

For more information on configuring the firewall, see www.netfilter.org/documentation and ptablesHowTo.

Note TransPort automatically manages some **iptables** rules, referred to as **system firewall rules**. Some system firewall rules are added when the device starts; other system firewall rules are added and removed when built-in features are configured. For example, when you use port forwarding, the TransPort adds system firewall rules based on your port forwarding rules. Take care when directly modifying firewall rules using firewall and firewall6 commands. The system may reapply unmodified rules when you use certain commands, the system restarts, or other configuration changes are made. See Understanding system firewall rules for details.

Tables and chains in firewall rules

Depending on their function, firewall rules are organized into tables and chains. The tables define the function of the rule. The chains define when the rule is applied in relation to when a packet is being received, sent or forwarded.

Tables

Firewall tables are as follows:

filter

The filter table filters packets being sent, received, and forwarded by the device. This is the default table if one is not specified in the firewall rule. The filter table supports these chains: **INPUT**, **OUTPUT**, **FORWARD**.

nat

The nat table modifies the source and destination IP addresses and TCP and UDP ports so that traffic can be sent between private IP networks such as a company network and public IP

networks such as the Internet. The nat table supports these chains: **OUTPUT**, **PREROUTING**, **POSTROUTING**.

mangle

The mangle table modifies a packet being sent, received, or forwarded by the device. The mangle table supports these chains: **INPUT**, **OUTPUT**, **FORWARD**, **PREROUTING**, **POSTROUTING**.

raw

The raw table marks packets for special treatment. When a packet is received, the raw table is processed first. The raw table supports these chains: **INPUT**, **OUTPUT**, **FORWARD**, **PREROUTING**, **POSTROUTING**.

Chains

By default, there are multiple chains for directing packets:

INPUT

For packets destined for the device.

OUTPUT

For packets generated by the device.

FORWARD

For packets forwarded by the device.

PREROUTING

For packets before the device has decided to forward the packet, or if the packet has been defined for the device.

POSTROUTING

For packets that have been forwarded by the device, or if the packet has been generated by the device.

tlr_port_forward

Used by the nat table. Contains rules associated with port forwarding. Reserved for use by the TransPort system only. Do not modify these rules.

tlr_wan_input

Used by the filter table. Contains rules associated with WAN configuration. Reserved for use by the TransPort system only. Do not modify these rules.

tlr_ip_filter_input

Used by the filter table. Contains rules associated with ip-filter for data destined to the device. Reserved for use by the TransPort system only. Do not modify these rules.

tlr_ip_filter_output

Used by the filter table. Contains rules associated with ip-filter for data originating from the device. Reserved for use by the TransPort system only. Do not modify these rules.

tlr_ip_filter_forward

Used by the filter table. Contains rules associated with ip-filter for data routing through the device. Reserved for use by the TransPort system only. Do not modify these rules.

tlr_ip_priority_output

Used by the filter table. Contains rules associated with services on the device that require outgoing access for correct operation. Reserved for use by the TransPort system only. Do not modify these rules.

Policy rules

A policy rule defines the default action for a chain; for example ACCEPT or DROP.

For example, the policy could be to drop all inbound packets that do not explicitly match any of the chain rules.

Using a policy rule is better than simply defining a normal rule that matches all packets. Policy rules are the last rule tested for a chain, while a normal rule could appear anywhere in the list of rules, depending how rules were added.

Default firewall configuration

To provide a secure device out-of-the-box, the LR54 firewall is configured for the following default behavior:

- Block all traffic received on the physical interfaces for WANs (eth1, cellular1, cellular2) except for traffic for established connections or related data.
- Allow all traffic from the physical interfaces for LANs to be forwarded by the device.
- Only allow ICMP, SSH, HTTP, HTTPS, DNS and DHCP traffic to be received on the physical interfaces for LANs.
- All other traffic is blocked.

The default settings allows devices connected on the physical interfaces for LANs to make connections over the physical interfaces for WANs, but remote devices cannot make a connection to the device or devices connected on the physical interfaces for LANs.

This means that by default it is not possible to make an HTTPS or SSH connection via a WAN. To allow HTTPS or SSH connections over a WAN, see Allow HTTPS access on a WAN and Allow SSH access on a WAN to change the default firewall behavior.

Example firewall rules

Filter	⁻ Table								
Chair	n INPUT (policy DROP	xx packe	ets,	xxx by	/tes)			
num	pkts by	tes target	prot	opt	in	out	source	destination	
[s	snip]								
5	Θ	0 ACCEPT	icmp		lan+	any	anywhere	anywhere	<pre>/* (autogenerated)</pre>
lan */									
6	Θ	0 ACCEPT	tcp		lan+	any	anywhere	anywhere	tcp dpt:22 /*
(autog	generated) lan */							
7	Θ	0 ACCEPT	tcp		lan+	any	anywhere	anywhere	tcp dpt:http /*
(autog	generated) lan */							
8	Θ	0 ACCEPT	tcp		lan+	any	anywhere	anywhere	tcp dpt:443 /*
(autog	generated) lan */							
9	Θ	0 ACCEPT	udp		lan+	any	anywhere	anywhere	udp dpt:67 /*
(autog	generated) lan */							
10	Θ	0 ACCEPT	udp		lan+	any	anywhere	anywhere	udp dpt:53 /*
	generated	, ,							
[s	snip]								

Allow SSH access on a WAN

To allow SSH access on a WAN interface:

- Open the command-line interface, either from a command prompt or the web interface System > Device Console option.
- 2. Use the wan command **allow-ssh-access** option to toggle SSH access on a WAN. For example, to allow SSH access on WAN 1:

digi.router> wan 1 allow-ssh-access on

3. Save the configuration.

digi.router> save config

Allow SSH access for only a specific source IP address

To allow SSH access for only a specific IP address:

- Open the command-line interface, either from a command prompt or the web interface
 System > Device Console option.
- 2. Use the ip-filter command to allow incoming connections from hosts on the 10.20 network to SSH (port 22). For example, assuming port **22** is the SSH port, enter commands similar to the following:

```
digi.router> ip-filter 1 description Allow WAN SSH only from 10.20 network
digi.router> ip-filter 1 action accept
digi.router> ip-filter 1 src any-wan
digi.router> ip-filter 1 src-ip-address 10.20.0.0/16
digi.router> ip-filter 1 dst-ip-port 22
digi.router> ip-filter 1 state on
```

3. Use the wan command **allow-ssh-access** option to prohibit SSH access on a WAN. For example, to turn off SSH access on WAN 1:

WARNING! Before turning off ssh access for a WAN, make sure your device can accept traffic other than ssh traffic. Otherwise, when you turn off ssh access, you may remove your ability to access the device.

```
digi.router> wan 1 allow-ssh-access off
```

4. Save the configuration.

digi.router> save config

Allow HTTPS access on a WAN

To allow HTTPS access on a WAN interface:

- Open the command-line interface, either from a command prompt or the web interface
 System > Device Console option.
- 2. Use the wan command **allow-https-access** option to toggle HTTPS access on a WAN. For example, to allow HTTPS access on **WAN 1**:

```
digi.router> wan 1 allow-https-access on
```

3. Save the configuration.

digi.router> save config

Allow HTTPS access on a WAN from only a specific source IP address

To allow HTTPS access on a WAN interface:

- Open the command-line interface, either from a command prompt or the web interface
 System > Device Console option.
- Use the ip-filter command to allow incoming connections from hosts on the 10.20 network to HTTPS (port 443). For example, assuming port **443** is the HTTPS port, enter commands similar to the following:

```
digi.router> ip-filter 1 description Allow WAN HTTPS only from 10.20
network
digi.router> ip-filter 1 action accept
digi.router> ip-filter 1 src any-wan
digi.router> ip-filter 1 src-ip-address 10.20.0.0/16
digi.router> ip-filter 1 dst-ip-port 443
digi.router> ip-filter 1 state on
```

 Use the wan command allow-https-access option to prohibit HTTPS access on a WAN. For example:

digi.router> wan 1 allow-https-access off

4. Save the configuration.

digi.router> save config

Add a firewall rule

Note Take care when inserting or updating rules. The number of rules and the position of system rules may change when you configure some TransPort components. See Understanding system firewall rules for details.

Add a rule to the bottom of the firewall

To add a rule to the bottom of the firewall, use the firewall or firewall6 command **-A** option, using the following syntax. The command syntax is case-sensitive.

firewall [-t table] -A <chain> <rule>

If you do not specify a table (**-t**), the default table is the **filter** table. For example, to append a rule to the bottom of the **filter** table, the firewall command is: digi.router> firewall -A INPUT -i lan1 -p icmp --icmp-type echo-request -j DROP
digi.router>

The show firewall output for the **filter** table created by the above command is:

digi.router> show firewall filter

Filter Table					
Chain INPUT (policy D	ROP 4 packets, 256 by	tes)			
num pkts bytes targ	et protopt in	out	source	destination	
1 3 152 DROP	tcp any	any	anywhere	anywhere	tcp dpt:22
2 0 0 DROP	icmp lan1	any	anywhere	anywhere	icmp echo-request
Chain FORWARD (policy num pkts bytes targ		bytes) out	source	destination	
Chain OUTPUT (policy num pkts bytes targ		bytes) out	source	destination	
digi.router>					

Insert a rule at any position of the firewall

To insert rules into the firewall at any position, the firewall or firewall6 command –I option, using the following syntax:

firewall [-t table] -I <chain> <position> <rule>

For example, to insert a rule before the second rule, specify a position of 2.

digi.router>					
digi.router> show firewa	ll filter				
Filter Table					
Chain INPUT (policy DROP num pkts bytes target 1 3 152 DROP	0 packets, 0 byte prot opt in tcp any	out	source anywhere	destination anywhere	tcp dpt:22
2 74 4440 DROP	icmp lan1		anywhere	anywhere	icmp echo-request
Chain FORWARD (policy ACC num pkts bytes target	CEPT 0 packets, 0 prot opt in	bytes) out	source	destination	
Chain OUTPUT (policy ACCI num pkts bytes target			source	destination	
digi.router> digi.router> firewall -I digi.router> digi.router> show firewa Filter Table		arl -p u	dpdport 7 -j	ACCEPT	
Chain INPUT (policy DROP	4 packets, 256 by	tes)			
num pkts bytes target	prot opt in	out	source	destination	
1 3 152 DROP	tcp any	any	anywhere	anywhere	tcp dpt:22
2 0 0 ACCEPT	udp cellu	lar1 any	anywhere	anywhere	udp dpt:7
3 74 4440 DROP	icmp lan1	any	anywhere	anywhere	icmp echo-request
Chain FORWARD (policy ACC num pkts bytes target			source	destination	
Chain OUTPUT (policy ACCI num pkts bytes target			source	destination	
digi.router>					

For more information on configuring the firewall, see www.netfilter.org/documentation and ptablesHowTo.

Update a firewall rule

Note Take care when inserting or updating rules. The number of rules and the position of system rules may change when you configure some TransPort components. See Understanding system firewall rules for details.

To update a firewall rule, use the firewall or firewall6 command -R option, using the following syntax:

```
firewall [-t table] -R <chain> <position> <rule>
```

For example, to update the second rule, specify a position of 2.

digi.router> firewall -R INPUT 2 -i cellular1 -p udp --dport 123 -j ACCEPT

The show firewall output for the filter table created by the above command looks like this:

```
digi.router> show firewall filter
Filter Table
Chain INPUT (policy DROP 2 packets, 130 bytes)

      pkts bytes target
      prot opt in
      out

      3
      152 DROP
      tcp -- any any

      0
      0 ACCEPT
      udp -- cellular1 any

      74
      4440 DROP
      icmp -- lan1

num
                                                                     source
                                                                                                destination
                                                                   anywhere
                                                                                                anywhere
                                                                                                                            tcp dpt:22
1
                                                                                                                            udp dpt:123
2
                                                                       anvwhere
                                                                                                anywhere
3
                                                                    anvwhere
                                                                                                anywhere
                                                                                                                            icmp echo-request
Chain FORWARD (policy ACCEPT 0 packets, 0 bytes)
num pkts bytes target prot opt in
                                                         out
                                                                    source
                                                                                                destination
Chain OUTPUT (policy ACCEPT 2 packets, 130 bytes)
                                                                                                destination
                                                                     source
num
      pkts bytes target
                                  prot opt in
                                                          out
digi.router>
```

Delete a firewall rule

Note Take care when inserting or updating rules. The number of rules and the position of system rules may change when you configure some TransPort components. See Understanding system firewall rules for details.

To delete a firewall rule, use the firewall or firewall6 command **–D** option. You can delete a single firewall rule or all firewall rules.

Delete a single firewall rule

For example, suppose the following firewall rule exists to block incoming SSH traffic over the **cellular1** interface. The firewall rule is displayed here through the output from a show config command:

```
[FIREWALL]
*filter
-A INPUT -i cellular1 -p tcp -m tcp --dport 22 -j DROP
COMMIT
[FIREWALL_END]
```

The command to delete this firewall rule is:

firewall -D INPUT -i cellular1 -p tcp -m tcp --dport 22 -j DROP

Delete all firewall rules

To remove all firewall rules, use the firewall or firewall6 command **-F** option. If you do not specify a table, all the rules in the filter table are deleted.

firewall -F [-t]

WARNING! Using **firewall -F -t nat** to clear entries in the NAT table removes entries that perform NAT operations on WAN interfaces. Clearing such entries could leave the device unreachable if you are remotely accessing it over a WAN interface.

Show firewall rules and counters

To display all firewall rules and counters, use the show firewall or show firewall6 command. For example:

Display all firewall rules

```
digi.router> show firewall
 Filter Table
Chain INPUT (policy DROP 0 packets, 0 bytes)
                                                                     destination
 num
     pkts bytes target
                             prot opt in
                                            out
                                                     source
             272 ACCEPT
                             all -- eth+
                                                                                        state RELATED, ESTABLISHED
                                                                     anywhere
1
         3
                                            any
                                                     anywhere
/* (autogenerated) wan */
               0 ACCEPT
                             all -- cellular1 any
                                                                      anywhere
                                                                                        state RELATED, ESTABLISHED
2
         0
                                                        anywhere
/* (autogenerated) wan */
                             all -- cellular2 anv
                                                                                        state RELATED, ESTABLISHED
3
         0
               0 ACCEPT
                                                        anywhere
                                                                     anywhere
        generated) wan */
33 2412 tlr_wan_input all -- any
icmo -- lan+ any
/* (autogenerated) wan */
                                                         anvwhere
                                                                     anywhere
                                                                                        /* (autogenerated) wan */
4
                                                any
 5
                                                     anywhere
                                                                      anywhere
                                                                                        /* (autogenerated) lan */
                             tcp -- lan+
         0
                0 ACCEPT
                                                                                        tcp dpt:22 /*
 6
                                                     anywhere
                                                                      anywhere
                                            any
(autogenerated) lan */
                0 ACCEPT
         Θ
                             tcp -- lan+
                                                     anywhere
                                                                      anywhere
                                                                                        tcp dpt:http /*
                                             any
(autogenerated) lan */
                0 ACCEPT
                                                                                        tcp dpt:443 /*
                             tcp -- lan+
                                                                      anvwhere
                                                     anvwhere
8
         0
                                             anv
(autogenerated) lan */
                0 ACCEPT
                             udp -- lan+
                                                                                        udp dpt:67 /*
          0
                                             any
                                                     anvwhere
                                                                      anywhere
(autogenerated) lan */
 10
         0
                0 ACCEPT
                             udp -- lan+
                                                      anywhere
                                                                      anywhere
                                                                                        udp dpt:53 /*
                                             any
(autogenerated) lan */
        33 2412 ACCEPT
                             all -- lo
                                                                      anywhere
                                                                                        /* (autogenerated) core */
                                                     anvwhere
 11
                                             anv
 Chain FORWARD (policy DROP 0 packets, 0 bytes)
 num
     pkts bytes target
                             prot opt in
                                            out
                                                      source
                                                                      destination
                             tcp -- lan+
         Θ
               0 REJECT
                                                     anywhere
                                                                      anywhere state INVALID /*
 1
                                            any
(autogenerated)core */ reject-with tcp-reset
2 0 0 DROP all -- lan+
                                                     anywhere
                                                                      anywhere
                                                                                        state INVALID /*
                                            anv
(autogenerated) core */
                             tcp -- any
         0
                0 TCPMSS
                                                     anywhere
                                                                      anywhere
                                                                                        tcp flags:SYN,RST/SYN /*
 3
                                            any
(autogenerated) core */ TCPMSS clamp to PMTU
         0
                0 ACCEPT
                             all -- eth+
                                                      anywhere
                                                                      anywhere
                                                                                        state RELATED.ESTABLISHED
 4
                                            any
/* (autogenerated) wan */
                             all -- cellular1 anv
                                                                                        state RELATED.ESTABLISHED
               0 ACCEPT
5
         0
                                                     anywhere
                                                                      anywhere
/* (autogenerated) wan */
                                                                                        state RELATED, ESTABLISHED
               0 ACCEPT
                             all -- cellular2 any
                                                     anywhere
                                                                      anywhere
6
         Θ
/* (autogenerated) wan */
         Θ
               0 ACCEPT
                             all -- any
                                                      anywhere
                                                                      anywhere
                                                                                        ctstate DNAT /*
 7
                                             any
(autogenerated) port-forward */
                                                                      anywhere
         0
                0 ACCEPT
                             all -- lan+
                                            anv
                                                     anvwhere
                                                                                        /* (autogenerated) lan */
 8
 Chain OUTPUT (policy ACCEPT 8 packets, 576 bytes)
     pkts bytes target
                             prot opt in
                                                      source
                                                                      destination
 num
                                             out
 Chain tlr_wan_input (1 references)
      pkts bytes target
                             prot opt in
                                             out
                                                      source
                                                                      destination
 num
```

Raw Table

Chain PREROUTING (policy ACCEPT 116 packets, 17802 bytes) num pkts bytes target prot opt in destination out source Chain INPUT (policy ACCEPT 36 packets, 2684 bytes) num pkts bytes target prot opt in out source destination Chain FORWARD (policy ACCEPT 0 packets, 0 bytes) num pkts bytes target source destination prot opt in out Chain OUTPUT (policy ACCEPT 36 packets, 2620 bytes) num pkts bytes target prot opt in source destination out Chain POSTROUTING (policy ACCEPT 36 packets, 2620 bytes) destination num pkts bytes target prot opt in out source NAT Table Chain PREROUTING (policy ACCEPT 2 packets, 120 bytes) num pkts bytes target protopt in out source 1 38 10641 tlr_port_forward all -- any any destination any anywhere anywhere /* (autogenerated) portforward */ Chain INPUT (policy ACCEPT 0 packets, 0 bytes) source num pkts bytes target prot opt in destination out Chain OUTPUT (policy ACCEPT 1 packets, 72 bytes) source pkts bytes target prot opt in out destination num Chain POSTROUTING (policy ACCEPT 1 packets, 72 bytes) pkts bytes target prot opt in out source destinat 3 208 MASQUERADE all -- any eth1 anywhere anywhere 0 0 MASQUERADE all -- any cellular1 anywhere anywhere destination num pkts bytes target 1 0 MASQUERADE all -- any cellular1 anywhere 0 MASQUERADE all -- any cellular2 anywhere 2 3 Θ anywhere Chain tlr_port_forward (1 references) prot opt in destination num pkts bytes target out source

Display a specific firewall table

To display individual firewall tables, specify the table name on the show firewall or show firewall6 command. In the command output, the policy for each chain is also displayed in brackets after the chain name. For example:

```
digi.router> show firewall filter
Filter Table
Chain INPUT (policy ACCEPT 1732 packets, 117K bytes)
num pkts bytes target prot opt in
                                       out
                                               source
                                                               destination
      16 960 DROP
                         tcp -- cellular1 any anywhere
                                                              anywhere
                                                                                  tcp dpt:22
Chain FORWARD (policy ACCEPT 788 packets, 82764 bytes)
                                               source
num pkts bytes target prot opt in
                                       out
                                                              destination
Chain OUTPUT (policy ACCEPT 1646 packets, 110K bytes)
num pkts bytes target
                                                               destination
                       prot opt in
                                       out
                                               source
digi.router>
```

Display and clear firewall rule counters

The firewall keeps a counter for each rule that counts the number of packets and bytes that have been matched against the rule. This is a useful tool to determine if a rule is correctly detecting packets.

To clear the counters, use the **clear firewall** and **clear firewall6** commands.

digi.router> show firewall	filter			
Filter Table				
Chain INPUT (policy ACCEPT num pkts bytes target 1 3 152 DROP 2 23 1380 DROP	1732 packets, 117K bytes prot opt in out tcp cellular1 any icmp lan1 any	source anywhere	destination anywhere anywhere	tcp dpt:22 icmp echo-request

Chain FORWARD (policy ACCEPT 788 packets, 82764 bytes) num pkts bytes target prot opt in destination out source Chain OUTPUT (policy ACCEPT 1646 packets, 110K bytes) destination num pkts bytes target prot opt in out source digi.router> digi.router> clear firewall Filter Table Chain INPUT (policy ACCEPT 0 packets, 0 bytes) num pkts bytes target prot opt in out 1 0 0 DROP tcp -- cellular1 any 2 0 0 DROP icmp -- lan1 any destination source anywhere anywhere tcp dpt:22 anywhere anywhere icmp echo-request Chain FORWARD (policy ACCEPT 0 packets, 0 bytes) source num pkts bytes target prot opt in destination out Chain OUTPUT (policy ACCEPT 0 packets, 0 bytes) num pkts bytes target prot opt in source destination out digi.router>

Understanding system firewall rules

This section explains how TransPort built-in components automatically create and apply system firewall rules transparently when you configure system components.

Who should read this section

Do this	If you
Skip this section	If you do not use the firewall or firewall6 commands or you use the commands only to create simple firewall rules that allow greater access to device features, skip this section.
Continue reading this section	If you use the firewall or firewall6 commands to create or manage firewall rules on your TransPort device, read this section to understand how TransPort components automatically create and manage system firewall rules and how all firewall rules—both system-generated and command-generated—are saved and applied.

What are system firewall rules?

System firewall rules are automatically created and managed when you configure various TransPort components. For example, the WAN, LAN, and portforward components create and manage system firewall rules when you configure the components, either from the web interface or the command line. System firewall rules are applied when the TransPort device starts and anytime you configure a TransPort component that creates or modifies a system firewall rule.

Demonstration

For example, if you enter the following command to allow HTTPS access on WAN 1:

```
wan 1 allow-https-access on
```

TransPort automatically creates a new system firewall rule in the **tlr_wan_input** section of the **iptables** chain. See Using firewall and firewall6 commands for more information about tables and chains.

The new rule might look like this:

Chain tlr_wan_input (1 references)									
num	pkts by	tes target	prot opt in	out	source	destination			
1	Θ	0 ACCEPT	tcp eth1	any	anywhere	anywhere	tcp dpt:443 /* (autogenerated) wan 1 */		

The WAN firewall rule will be re-applied anytime the WAN configuration is changed from the web interface or the command line.

Testing new firewall rules

When you create or modify firewall rules using the firewall or firewall6 commands, save the new rules using the **save config** command and then reboot the TransPort device to test the new rules.

The **FIREWALL** section of the configuration file **config.da0** is saved based on **iptables** save support, and the **FIREWALL** section is executed after the system firewall rules.

Using the autorun command to force firewall rule precedence

If you have difficulty with the saved rule set or the order in which rules are executed, you can use the autorun command to work around these issues. Use an **autorun** command to apply a firewall rule after system startup and after all firewall rules have been applied.

For example, the following **autorun** command applies a DROP to all ICMP requests for the LAN after system startup and after all the firewall rules have been applied. Note the example rule is marked with the **donotsave** comment to prevent it from being saved to the **FIREWALL** section of the **config.da0** file.

autorun 1 command firewall -I INPUT 1 -i lan+ -p icmp -j DROP -m comment --comment (donotsave)

The result is that the autorun firewall rule is inserted before all of the user and system rules in the **INPUT** chain.

Demonstration

For example, enter the following command to configure the WAN to allow HTTPS connections:

```
wan 1 allow-https-access on
```

A user rule to drop HTTPS traffic on any Ethernet interface might look like this:

firewall -A INPUT -i eth+ -p tcp -m tcp --dport 443 -m comment --comment BLOCK-HTTPS-EXAMPLE -j DROP

And the result may not be as expected. HTTPS traffic to eth1 (on a device where eth1 is part of wan 1) will not be dropped. The reason can be demonstrated in the following snippet of lines from the show firewall command.

Input packets are processed by the **INPUT** chain in the filter table. When rule 4 is encountered, the system chain **tlr_wan_input** is processed, accepting packets destined for HTTPS (port 443). The appended rule 12 to drop HTTPS packages is never processed because the packet was already accepted due to the system rule created by **wan 1 allow-https-access on**.

```
digi.router> show firewall
```

Filter Table

```
Chain INPUT (policy DROP 8 packets, 2523 bytes)
     pkts bytes target
                        prot opt in
                                                   source
                                                                       destination
num
                                           out
. . .
                                                                                            /* (autogenerated) wan */
4
       798 92581 tlr_wan_input all -- any
                                                       anywhere
                                                                       anywhere
                                              anv
. . .
                                                                       anywhere
                                                                                            tcp dpt:443 /* BLOCK-HTTPS-EXAMPLE */
               0 DROP
                           tcp -- eth+ any
12
                                                   anywhere
. . .
Chain tlr_wan_input (1 references)
                                                                       destination
num
    pkts bytes target prot opt in
                                           out
                                                   source
1
              0 ACCEPT
                           tcp -- eth1 anv
                                                   anvwhere
                                                                       anywhere
                                                                                            tcp dpt:443 /* (autogenerated) wan 1 */
         0
. . .
```

System chains

The system creates **iptables** chains named with the prefix **tlr_**.

- Do not modify rules in tlr chains using the firewall or firewall6 commands. Changes will be discarded.
- Do not modify rules jumping to or from tlr chains. Changes will be discarded or negatively affect the system configuration.

Migration of rules from older firmware

Prior to TransPort **1.4.0.0** firmware, all firewall rules (both user and system) were saved in the **FIREWALL** section of the configuration file **config.da0**. The rules were restored as one unit during startup as part of system initialization.

With TransPort firmware **1.4.0.0** and later, any firewall rules recognized as system firewall rules are migrated out of the configuration file and are now managed by the system. The system firewall rules run each time the device is started or when configuration changes result in new or modified system firewall rules.

Future releases

System firewall rules will continue to change and be restructured as subsequent versions of the TransPort firmware are released. If you create or modify firewall rules using the firewall command, be aware of the relationship between system-managed rules and the rules you create.